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Abstract
We provide an exposition of the main results of the theory of bidimensionality in parameterized
algorithm design. This theory applies to graph problems that are bidimensional in the sense that
i) their solution value is not increasing when we take minors or contractions of the input graph and
ii) their solution value for the (triangulated) (k × k)-grid graph grows as a quadratic function
of k. Under certain additional conditions, mainly of logical and combinatorial nature, such
problems admit subexponential parameterized algorithms and linear kernels when their inputs
are restricted to certain topologically defined graph classes. We provide all formal definitions
and concepts in order to present these results in a rigorous way and in their latest update.
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1 Introduction

The theory of bidimensionality, was introduced in [27] and has been developed further during
the last decade in [33, 35, 28, 38, 55, 59, 67, 54, 53] (see also [30, 34, 52, 26, 39, 32]). It provides
general techniques for designing efficient fixed-parameter algorithms and approximation
schemes for NP-hard graph problems in broad classes of graphs.

A parameterized problem on graphs can be seen as a subset Π of G × N where G is
some graph class (for instance, planar graphs) and the question is whether an instance
(G, k) is a member of Π, where k is the parameter of the problem. The main objective is to
design an f(k) ·nO(1)-step algorithm that answers this question while keeping the parametric
dependence f(k) as low as possible. This implies that, for each fixed value k, the problem can
be solved by an algorithm running in polynomial-time where the degree of this polynomial
does not depend on the value of k.

The combinatorial base of bidimensionality is the celebrated grid-exclusion theorem from
the Graph Minors series of Robertson and Seymour [82, 81]. This theorem states that every
graph excluding a (r× r)-grid as a minor should have treewidth bounded by some function of
r (see Subsection 2.1 for the formal definition of treewidth and the minor relation). Treewidth
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2 Bidimensionality and Parameterized Algorithms

is a cornerstone parameter in algorithmic graph theory measuring the topological resemblance
of a graph to the structure of a tree.

The central idea of bidimensionality resides in the fact, that for many parameterized graph
problems, the presence in their input graphs of a (bidimensional) (Ω(

√
k) × Ω(

√
k))-grid

as a minor is directly providing a positive (or a negative) answer to the problem. The
bidimensionality condition, together with certain conditions on G, is able to reduce the
problem to the case where the treewidth of the input graph is sublinear in the problem
parameter k.

A graph of bounded treewidth can be viewed as a “monodimensional” tree-like structure.
According to Courcelle’s theorem [21], if the problem is expressible in Monadic Second Order
Logic (MSO), then it is possible to process this tree-like structure as the input of a tree
automaton that can solve the problem in time that is linear in the size of the input graph. If
the parametric dependence of this algorithm can be made singly exponential, the sublinear
(on k) treewidth of G yields a parameterized algorithm with subexponential parameterized
dependence. This simple reasoning, provides a generic way to design parameterized algorithms
with subexponential parametric dependence. In many cases, this provides algorithms running
in 2O(

√
k) · nO(1) which appears to be the best parametric dependence one may expect,

according to the results in [14].
In Section 2 we provide all definitions and theorems that support the above ideas. The

concept of bidimensionality is formally defined in Section 3 and in Section 4 we abstract
the above methodology into a single theorem on subexponential parameterized algorithms
(Theorem 7).

Another, somehow more technical, application of bidimensionality is kernelization. A
kernelization algorithm for a parameterized graph problem Π is a polynomial-time algorithm
that reduces every instance (G, k) to an equivalent one (a kernel) whose size is bounded
only by a function of k. When this function is linear on k, we say that Π admits a linear
kernel (see Subsection 5 for the formal definitions). Kernelization has been a vibrant field
of parameterized complexity and a lot of research has been oriented to the derivation of
linear kernels for parameterized problems. Bidimensionality theory has meta-algorithmic
applications in the derivation of linear kernels. It follows that, given a parameterized problem
Π ⊆ G × N where G satisfies certain (topological) conditions, a linear kernel is automatically
derived when Π is bidimensional, is expressible in Counting Monadic Second Order Logic,
and satisfies some separability condition. We describe this result in Section 5. For this, we
present the basic tools supporting it, namely, the notions of protrusion decomposition and
protrusion replacement. We also point out some methodological analogies with the previous
case of subexponential algorithms, mainly in what concerns the classification of the required
tools into algorithmic and combinatorial ones.

In our exposition we present the contributions of bidimensionality theory to parameterized
algorithms in their most general, up to now, version. In contrast to previous surveys on this
topic [34, 52], we preferred to insist on the rigorous mathematical formalization of this theory
which may require (not only for the unexperienced reader) to go through the definitions of
Sections 3 and 4. The exposition concludes by some open problems and further directions
in Section 6.

2 Basic concepts

In this section we give some basic definitions that are necessary for the exposition of the rest
of the paper.
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2.1 Graphs
All graphs in this paper are undirected and without multiple edges or loops. Given a
graph G, we use the notation V (G) and E(G) for the vertex set and the edge set of G
respectively. We say that a graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
Given a set S ⊆ V (G) we denote by G[S] the subgraph G′ of G where V (G′) = S and
E(G′) = {{x, y} ∈ E(G) | {x, y} ⊆ S} and we call G′ the subgraph of G induced by S or we
simply say that G′ is an induced subgraph of G. Given a set S ⊆ V (G), we denote by ∂G(S)
the set of all vertices in S that are adjacent in G with vertices not in S. We also define the
neighborhood of S in G by NG(S) = ∂G(V (G) \ S).

Treewidth. A tree decomposition of a graph G is a pair T = (T, {Xt}t∈V (T )), where T is a
tree whose every node t is assigned a vertex subset Xt ⊆ V (G), called a bag, such that the
following three conditions hold:⋃

t∈V (T )Xt = V (G), i.e., every vertex of G is in at least one bag.
For every {u, v} ∈ E(G), there exists a node t of T such that u, v ∈ Xt.
For every u ∈ V (G), the graph T [{t ∈ V (T ) : u ∈ Xt}] is connected.

The width of a tree decomposition T = (T, {Xt}t∈V (T )) equals maxt∈V (T ) |Xt| − 1. The
treewidth of a graph G, denoted by tw(G), is the minimum possible width of a tree decom-
position of G.

Minors and contractions. Given an edge e = {x, y} of a graph G, the graph G/e is obtained
from G by contracting the edge e, that is, the endpoints x and y are replaced by a new vertex
vx,y which is adjacent to the old neighbors of x and y (except from x and y). A graph H
obtained by a sequence of edge-contractions is said to be a contraction of G. We denote it by
H ≤c G. A graph H is a minor of a graph G if H is the contraction of some subgraph of
G and we denote it by H ≤m G. We say that a graph G is H-minor-free when it does not
contain H as a minor. We also say that a graph class G is H-minor-free (or, excludes H as a
minor) when all its members are H-minor-free. A graph G is an apex graph if there exists a
vertex v such that G \ v is planar. A graph class G is apex-minor-free if there exists an apex
graph H that is not in G.

Figure 1 The graph Γ9.

Grids and triangulated grids. Given a positive integer
k, we denote by �k the (k × k)-grid. Formally, for a
positive integer k, a (k × k)-grid �k is a graph with
vertex set {(x, y) : x, y ∈ {1, . . . , k}}. Thus �k has
exactly k2 vertices. Two different vertices (x, y) and
(x′, y′) are adjacent if and only if |x− x′|+ |y − y′| = 1.

For an integer t > 0, the graph Γt is obtained from
the grid �t by adding, for all 1 ≤ x, y ≤ t− 1, the edge
(x+ 1, y), (x, y+ 1), and additionally making vertex (t, t)
adjacent to all the other vertices (x, y) with x ∈ {1, t}
or y ∈ {1, t}, i.e., to the whole border of �t. Graph Γ9
is shown in Fig. 1.

2.2 Properties of graph classes
A graph class G is said to be minor-closed/contraction-closed if every minor/contraction of a
graph in G also belongs to G.

IPEC’15



4 Bidimensionality and Parameterized Algorithms

In general, it is known that there exists a constant c such that any graph G which excludes
a �t as a minor has treewidth at most O(tc). The exact value of c remains unknown, but it
is more than 2 and at most 36 [15, 20], while it is believed that c ≤ 3 [36]. We will restrict
our attention to graph classes on which c < 2 as it is then when bidimensionality theory
applies. In particular we say that a graph class G has the subquadratic grid minor property
(SQGM property for short) if there exist constants λ > 0 and 1 ≤ c < 2 such that any graph
G ∈ G which excludes �t as a minor has treewidth at most λtc.

Problems that are contraction-closed but not minor-closed are considered on more
restricted classes of graphs. We say that a graph class G has the subquadratic gamma
contraction (SQGC property for short) if there exist constants λ > 0 and 1 ≤ c < 2 such
that any connected graph G ∈ G excluding Γt as a contraction has treewidth at most λtc.

The following proposition, for the case of SQGM, follows directly from the linearity of
excluded grid-minor in H-minor-free graphs proven by Demaine and Hajiaghayi [35], while
for the case if SQGC it follows from [54].
I Proposition 1. For every graph H, H-minor-free graph class G has the SQGM property
for some λ depending on H and with c = 1. If H is an apex graph, then G has the SQGC
property for some λ depending on H and with c = 1.

Notice hat every graph class G with the SQGC property has the SQGM property.
Clearly, the class of planar graphs has both above properties as there is an apex graph
containing both K5 and K3,3 as a minor.

Recently, graph classes with the SQGM property that are not defined in the context of
minor exclusion where detected. In [57] it was proven that unit disk graphs with maximum
degree ∆ have the SQGM property for some λ depending on ∆ and with c = 1/2. This
result has been extended for more general families of geometric intersection graphs in [67].

2.3 Parameterized problems on graphs
Parameterized problems. A parameterized problem Π can be seen as a subset of Σ∗×N (we
denote by N the set of all non-negative integers). We say that two instances (x, k) and (x′, k′)
of some parameterized problem Π are equivalent if and only if (x, k) ∈ Π ⇐⇒ (x′, k′) ∈ Π.

Parameterized tractable problems. Let Π be a parameterized problem. We say that Π
is fixed parameter tractable if there exists a function f : N→ N and an algorithm deciding
whether (x, k) ∈ Π (i.e., whether (x, k) is a yes-instance of Π) in f(k) · |x|O(1) steps. We call
such an algorithm FPT-algorithm. A parameterized problem belongs to the parameterized
class FPT if it can be solved by an FPT-algorithm. (See the monographs [46, 77, 50, 23] on
parameterized algorithms and complexity.)

Parameterized graph problems. We say that a parameterized problem Π is a parameterized
graph problem when in each instance (x, k) ∈ Π, x encodes a graph. From now on, we deal
with parameterized graph problems as subsets of Gall × N where Gall is the set of all graphs.
Let G be a class of graphs, i.e, G ⊆ Gall. The restriction of a parameterized problem Π to G
is defined as Π e G = {(G, k) | (G, k) ∈ Π and G ∈ G}.

2.4 Counting Monadic Second Order Logic
The syntax of Monadic Second Order Logic (MSO) of graphs includes the logical connectives
∨, ∧, ¬, ⇔, ⇒, variables for vertices, edges, sets of vertices, and sets of edges, the quantifiers
∀, ∃ that can be applied to these variables, and the following five binary relations:
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1. u ∈ U where u is a vertex variable and U is a vertex set variable;
2. d ∈ D where d is an edge variable and D is an edge set variable;
3. inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation is

that the edge d is incident with the vertex u;
4. adj(u, v), where u and v are vertex variables and the interpretation is that u and v are

adjacent;
5. equality of variables representing vertices, edges, sets of vertices, and sets of edges.

In addition to the usual features of monadic second-order logic, if we have atomic formulas
testing whether the cardinality of a set is equal to q modulo r, where q and r are integers
such that 0 ≤ q < r and r ≥ 2, then this extension of the MSO is called counting monadic
second-order logic. Thus CMSO is MSO enriched with the following atomic formula for a set
S: cardq,r(S) = true if and only if |S| ≡ q (mod r). We refer to [4, 21, 22] for a detailed
introduction on CMSO and its algorithmic consequences.

3 Bidimensionality

In this section we define all concepts that are necessary for the definition of the bidimension-
ality property of parameterized graph problems.

3.1 Subset problems

A vertex subset (resp. edge subset) certifying function φ is a computable function which takes
as input a graph G and a set S ⊆ V (G) (resp. a set S ⊆ E(G)) and outputs true or false.

A vertex (resp. edge) subset minimization/maximization problem Π is a parameterized
problem on graphs for which there exists a vertex (resp. edge) certifying function φ such that
for every (G, k) ∈ G × N it holds that (G, k) ∈ Π if and only if there exists a set S ⊆ V (G)
(resp. S ⊆ E(G)) such that |S| ≤ k for minimization problems (or |S| ≥ k for maximization
problems) so that φ(G,S) = true. If, additionally, there exists a CMSO formula ψ such that
φ(G,S) = true if and only if (G,S) |= ψ, then we say that Π is a min-CMSO problem (or a
max-CMSO problem).

For an example, for the Dominating Set problem we have that φ(G,S) = true if and
only if ∀v ∈ V (G)(v ∈ S ∨ ∃u ∈ V (G) : adj(v, u)). Therefore Dominating Set is a vertex
subset minimization problem that is also as min-CMSO problem.

For simplicity, we will also use the term subset problems instead of vertex or edge subset
minimization/optimization problems. Let us remark that there are many subset problems
which at a first glance do not look as if they could be captured by this definition. An example
is the Cycle Packing problem. Here the input is a graph G and integer k, and the task is
to determine whether G contains k pairwise vertex-disjoint cycles C1, C2, . . . , Ck. This is a
vertex subset maximization problem because G has k vertex-disjoint cycles if and only if there
exists a set S ⊆ V (G) of size at least k and φ(G,S) is true, where φ(G,S) is defined such
that φ(G,S) = true ⇐⇒ G contains a subgraph G′ such that each connected component of
G′ is a cycle and each connected component of G′ contains exactly one vertex from S.

The above definition of Cycle Packing may seem bizarre, since checking whether φ(G,S)
is true for a given graph G and set S is NP-complete. In fact this problem is considered
as a more difficult problem than Cycle Packing. Nevertheless, this definition shows that
Cycle Packing is indeed a subset problem.

IPEC’15



6 Bidimensionality and Parameterized Algorithms

3.2 Optimality functions

For any vertex or edge subset minimization problem Π we have that (G, k) ∈ Π implies that
(G, k′) ∈ Π for all k′ ≥ k. Similarly, for a vertex or edge subset maximization problem we
have that (G, k) ∈ Π implies that (G, k′) ∈ Π for all k′ ≤ k. Thus the notion of “optimality”
is well defined for subset problems.

I Definition 2. For a vertex or edge subset minimization problem Π, we define

OPTΠ(G) = min {k : (G, k) ∈ Π} .

If no k such that (G, k) ∈ Π exists, OPTΠ(G) returns +∞. For a vertex or edge subset
maximization problem Π,

OPTΠ(G) = max {k : (G, k) ∈ Π} .

If no k such that (G, k) ∈ Π exists, OPTΠ(G) returns −∞. We define SOLΠ(G) to be a
function that, given as an input a graph G, returns a set S of size OPTΠ(G) such that
φ(G,S) = true, and returns null if no such set S exists.

I Definition 3. A subset problem Π is contraction-closed (resp. minor-closed) if for any two
graphs G1 and G2 it holds that G1 ≤c G2 ⇒ OPTΠ(G1) ≤ OPTΠ(G1) (resp. G1 ≤m G2 ⇒
OPTΠ(G1) ≤ OPTΠ(G2)).

3.3 Bidimensional problems

We are now ready to introduce the concept of bidimensionality.

I Definition 4 (Bidimensional problem). A subset problem Π is

minor-bidimensional if
Π is minor-closed, and
limk→∞

OPTΠ(�k)
k2 = δ > 0

contraction-bidimensional if
Π is contraction-closed, and
limk→∞

OPTΠ(Γk)
k2 = δ > 0

In each of the above cases (when applicable), we say that the positive real δ is the density of the
problem Π. A subset problem Π is bidimensional if it is minor or contraction bidimensional.

Examples of bidimensional subset problems are (Connected) Vertex Cover, (Con-
nected) Feedback Vertex Set, Induced Matching, Longest Cycle, (Induced)
Cycle Packing, d-Scattered Set, Longest Path, (Connected) r-Dominating
Set, Diamond Hitting Set, Face Cover, (Connected) Edge Dominating Set, and
Unweighted TSP Tour.

It is usually quite easy to determine whether a problem is contraction (or minor) bidi-
mensional. Take as an example Independent Set. Contracting an edge may never increase
the size of the maximum independent set, so the problem is contraction-closed. Furthermore
it is easy to verify that Γk contains an independent set of size (k−1)2

4 . Thus Independent
Set is contraction-bidimensional with density 1/4. On the other hand deleting edges may
increase the size of a maximum-size independent set in G. Thus Independent Set is not
minor-bidimensional.
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4 Subexponential parameterized algorithms

A central problem in parameterized algorithm design is to investigate in which cases and
under which input restrictions a parameterized problem belongs to FPT and, if so, to find
algorithms with the simplest possible parameter dependence.

Let Π be a parameterized graph problem in FPT that can be solved in f(k) · nO(1) steps1.
When f(k) = 2o(k) we say that Π admits a subexponential parameterized algorithm (see [44]
for a survey on subexponential parameterized algorithms).

In [14], Cai and Juedes proved that several parameterized problems do not admit subex-
ponential parameterized algorithms, unless 3-SAT can be solved in time subexponential
in the number of its variables2. Among them, one can distinguish core problems such as
the standard parameterizations of Vertex Cover, Dominating Set, and Feedback
Vertex Set. However, it appears that many parameterized problems admit subexponential
parameterized algorithms running in 2O(

√
k) · nO(1) steps when their inputs are restricted to

planar graphs or other classes of surface embeddable graphs. Moreover, the results of [14]
indicated that the parameterized dependence 2O(

√
k) is the best we may expect when the

planarity restriction is imposed. The first subexponential parameterized algorithm on planar
graphs appeared in [1] for Dominating Set, Independent Dominating Set, and Face
Cover. After that, subexponential parameterized algorithms where designed for many other
problems [85, 31, 1, 71, 19, 29, 48, 49, 70, 62, 72, 37, 24, 58]. Most of these results are now
covered by the main result of this section (Theorem 7).

4.1 Singly exponentially solvable problems w.r.t. treewidth
Let Π be a subset problem Π. We say that Π is singly exponentially solvable with respect to
treewidth if there exists an algorithm that computes OPTΠ(G) in 2O(tw(G))nO(1) steps.

Typically, to prove that a subset problem Π is singly exponentially solvable with respect
to treewidth requires the design of dynamic programming algorithms on tree decompositions
of width at most w whose tables are of singly exponential size on w. The design of such
algorithms has occupied a lot of research in parameterized complexity [8, 87, 83, 13, 3, 5,
40, 6, 25, 45, 42, 43, 84]. In most of the cases, such algorithms run in 2O(tw(G))n steps. A
general meta-algorithmic condition implying that a problem is singly exponentially solvable
with respect to treewidth was given in [78] and is a model of Modal Logic called Existential
Counting Modal Logic (ECM-Logic).

4.2 Bidimensionality and subexponential parameterized algorithms
Let Π be a vertex/edge subset minimization (resp. maximization) problem. Consider the
following two conditions for Π.
A [Algorithmic] Π is singly exponentially solvable with respect to treewidth.
B [Combinatorial] If (G, k) is a yes- (resp. no-) instance of Π, then tw(G) = o(k).

I Proposition 5. If Π is a vertex/edge subset minimization (resp. maximization) problem
satisfying conditions A and B, then Π admits a subexponential parameterized algorithm.

Proof. Let (G, k) be an input for Π. If the treewidth of the input graph exceeds the upper
bound of the combinatorial condition B, then we can safely report that (G, k) is a no- (resp.

1 From now on, we use n to denote the number of vertices of the input graph G, i.e., n = |V (G)|.
2 This is hypothesis is also known as the Exponential Time Hypothesis (ETH).
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8 Bidimensionality and Parameterized Algorithms

yes-) instance and we are done. This step can be supported by the algorithm in [9] that, given
a graph G and an integer w, either returns that tw(G) > w, or outputs a tree-decomposition
of G of width ≤ 5w. If now the bound of the combinatorial condition B holds, we have a
tree-decomposition of G of width 5 · tw(G) = o(k) and the result follows directly from the
algorithmic condition A. J

The following is an important combinatorial consequence of bidimensionality. It reflects
the original idea of [27].

I Proposition 6. If Π is a subset problem that is minor (resp. contraction) bidimensional
and G is a graph class with the SQGM (resp. SQGC) property, then Π e G satisfies the
combinatorial condition B.

Proof. We give the proof in the case where Π is a vertex/edge subset minimization problem.
For this, we have to show that if (G, k) is a yes-instance of Π e G, then tw(G) = o(k).
Indeed, if (G, k) ∈ Π then

OPTΠ(G) ≤ k. (1)
If �r ≤m G, then OPTΠ(�r) ≤ OPTΠ(G). (2)

As Π is minor (resp. contraction) bidimensional, then

OPTΠ(�r) = Ω(r2). (3)

From (1), (2), and (3), it follows that if �r ≤m G, then r = O(
√
k) which, from the SQGM

(resp. SQGC) property of G implies that tw(G) = o(k). J

Using Propositions 5 and 6, we easily conclude with the following.

I Theorem 7. Let Π be a vertex/edge subset minimization (resp. maximization) problem
that
i. is singly exponentially solvable with respect to treewidth and
ii. is minor- (resp. contraction-) bidimensional

and let G be a graph class with the SQGM (resp. SQGC) property. Then the restriction of
Π to G admits a subexponential parameterized algorithm.

Notice that the above theorem can become purely meta-algorithmic if we replace condi-
tion i. by the expressibility of Π in ECM-Logic, as indicated by the results in [78]. Clearly,
for the applicability of the above approach, it is important to detect graph classes with the
SQGM (resp. SQGC) property. Historically, this was first done for bounded genus graphs
in [27] and in [38], for H-minor free graphs in [35], [28], and [54], and for families of geometric
graphs in [57] and [67]. Finally, results that either use ideas similar to bidimensionality
o provide alternative techniques for the derivation of subexponential (or low-exponential)
parameterized algorithms have been examined in [47, 56, 79, 41, 80, 66].

5 Kernelization

Kernelization has been extensively studied in parameterized complexity. It can be seen as
the strategy of analyzing preprocessing or data reduction routines from a parameterized
complexity perspective.
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5.1 Kernelization algorithms
The notion of kernelization is formally defined as follows.

I Definition 8. A kernelization algorithm, or simply a kernel, for a parameterized problem
Π is an algorithm A that, given an instance (x, k) of Π, runs in polynomial, on |x|, time
and outputs an equivalent instance (x′, k′) of Π where |x′|+ k′ ≤ g(k) for some computable
function g : N→ N called the size of the kernel. In this case we say that Π admits a g kernel
and if the size g is a polynomial (resp. linear) function of the parameter k, then we say that
Π admits a polynomial (resp. linear) kernel. As we agreed for parameterized graph problems,
we will assume that x corresponds to a graph and we treat the size of a kernel as a function
on the number of vertices of the graph in the equivalent instance.

Notable examples of known kernels are a 2k kernel for Vertex Cover [18], a 355k kernel
for Dominating Set on planar graphs [2], which later was improved to a 67k kernel [17]
and an O(k2) kernel for Feedback Vertex Set [86] parameterized by the solution size.
One of the most intensively studied directions in kernelization is the study of problems on
planar graphs and other classes of sparse graphs. This study was initiated by Alber et al. [2]
who gave the first linear-sized kernel for the Dominating Set problem on planar graphs.
The work of Alber et al. [2] triggered an explosion of papers on kernelization, and kernels of
linear sizes were obtained for a variety of parameterized problems on planar graphs including
Connected Vertex Cover, Minimum Edge Dominating Set, Maximum Triangle
Packing, Efficient Edge Dominating Set, Induced Matching, Full-Degree
Spanning Tree, Feedback Vertex Set, Cycle Packing, Blue-Red Dominating
Set, and Connected Dominating Set [2, 11, 12, 17, 51, 68, 69, 75, 76, 64, 60]. Most of
these results are now covered by the main result of this section (Theorem 13). We refer to
the surveys [73, 74] for a detailed exposition of the area of kernelization.

5.2 Separability
We now restrict our attention to problems Π that are somewhat well-behaved in the sense
that whenever we have a small separator in the graph that splits the graph in two parts L
and R, the intersection |X ∩ L| of L with any optimal solution X to the entire graph is a
good estimate of OPTΠ(G[L]). This behavior is called separability and variants of it have
been used, combined with bidimensionality, for the derivation of Efficient Polynomial Time
Approximation Schemes (EPTAS), see [33, 55].

I Definition 9 (Separability). Let f : N→ N. We say that a subset problem Π is f -separable
if for any graph G and L ⊆ V (G) such that |∂G(L)| ≤ t, it holds that

|SOLΠ(G) ∩ L| − f(t) ≤ OPTΠ(G[L]) ≤ |SOLΠ(G) ∩ L|+ f(t).

Π is called separable if there exists a function f such that Π is f -separable. Π is called linearly
separable if it is f -separable for some linear function f .

5.3 Protrusion decompositions and replacements
We introduce the notions of protrusion, protrusion decomposition, and protrusion replacement.

Protrusion decompositions. Given a graph G, we say that a set X ⊆ V (G) is an t-protru-
sion of G if |∂(X)| ≤ t and tw(G[X]) ≤ t. An (α, β)-protrusion decomposition of a graph G
is a partition P = {R0, R1, . . . , Rρ} of V (G) such that

IPEC’15



10 Bidimensionality and Parameterized Algorithms

max{ρ, |R0|} ≤ α,
each R+

i = NG[Ri], i ∈ {1, . . . , ρ}, is a β-protrusion of G, and
for every i ∈ {1, . . . , ρ}, NG(Ri) ⊆ R0.

Protrusion replacement algorithms. Let Π be a parameterized graph problem and let
f : Z+ → Z+ be a non-decreasing function. An f-protrusion replacement family for Π
is a collection A = {Ai | i ≥ 0} of algorithms, such that algorithm Ai receives as input a
pair (I,X), where I = (G, k) is an instance of Π and X is an i-protrusion of G with at
least f(i) vertices and outputs an equivalent instance I∗ = (G∗, k∗) where |V (G∗)| < |V (G)|
and k∗ ≤ k. We say that Π has a protrusion replacement family if it has a f -protrusion
replacement family for some f : Z+ → Z+.

5.4 Meta-algorithmic results for kernels
Let Π be a vertex/edge subset minimization (resp. maximization) problem. The following
two conditions for such a problem Π were defined in [10, 7]. They can be seen as the
“kernelization counterparts” of the properties A and B that we introduced in Subsection 4.2.

A [Algorithmic] Π has a protrusion replacement family.
B [Combinatorial ] If (G, k) is a yes- (resp. no-) instance of Π, then G has an (O(k), O(1))-

protrusion decomposition.
The next result is a special case of Theorem 4.6 in [10, 7].

I Proposition 10. If a parameterized graph problem Π has properties A and B, then Π
admits a linear kernel.

The following result is based on the property that a problem has Finite Integer Index
(FII). In [10, Lemma 5.19] it was proved that this problem property is able to yield property
A and, as it has recently been proved in [61], FII is a consequence of CMSO expressibility
and the separability property.

I Proposition 11. Every min/max-CMSO subset problem Π that is linearly separable has
property A.

We now present one of the main combinatorial consequences of bidimensionality. It has
been proved in [59, 61].

I Proposition 12. Let G be a graph class with the SQGM (resp. SQGC) property and let
Π be a subset problem that is minor- (resp. contraction-) bidimensional and linear-separable.
Then Π e G satisfies property B.

Using Propositions 10, 11, and 12, one can easily derive the following meta-algorithmic
result.

I Theorem 13. Let Π be a subset problem that
i. is a min/max-CMSO problem,
ii. is minor- (resp. contraction-) bidimensional,
iii. is linearly separable,
and let G is a graph class with the SQGM (resp. SQGC) property. Then the restriction of
Π to G admits a linear kernel.
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6 Further extensions

In this paper we presented two consequences of bidimensionality, namely Theorem 7 (subex-
ponential parameterized algorithms) and 13 (linear kernelization). Further applications of
bidimensionality on the automatic derivation of EPTAS can be found in [33] and [55]. It is
an interesting question whether this problem property can be exploited to other algorithmic
paradigms.

For the existing applications, there are two main directions. The first is to enlarge the
set of graph classes satisfying the SQGM or the SQGC property. A first step, escaping
from the graph minors framework, are the results of [57] and [67] on geometric graphs.
Another direction is to make the constants involved in Theorems 7 and 13 explicit so as to
optimize the running times of the derived algorithms. A step is this direction was taken
in [63] using dynamic programming for certain families of problems. It is also interesting to
build extensions of bidimensionality for problems that instead of being closed under minors
or contractions are closed under some other partial ordering on graphs such as topological
minors, immersions, induced minors and others. We believe that recent results such as those
in [65, 88, 16] might be helpful starting points in this direction.

Acknowledgments. I am thankful to Fedor V. Fomin, Stavros G. Kolliopoulos, and Spyros
Maniatis, for their helpful remarks on the manuscript.
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