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Abstract
We introduce a general class of distances (metrics) between Markov chains, which are based on
linear behaviour. This class encompasses distances given topologically (such as the total variation
distance or trace distance) as well as by temporal logics or automata. We investigate which of the
distances can be approximated by observing the systems, i.e. by black-box testing or simulation,
and we provide both negative and positive results.
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1 Introduction

Behaviour of processes is traditionally compared using various notions of equivalence, such
as trace equivalence, bisimulation, etc. However, the concept of equivalence is often too
coarse for quantitative systems, such as Markov chains. For instance, probabilities of
failures of particular hardware components are typically only empirically estimated and
the slightest imprecision in the estimate may result in breaking the equivalence between
processes. Moreover, if the (possibly black-box) processes are indeed different we would like
to measure how much they differ. This has led to lifting the Boolean idea of behavioural
equivalence to a finer, quantitative notion of behavioural distance between processes. The
distance between processes s and t is typically formalized as supp∈C |p(s)− p(t)| where C is a
class of properties of interest and p(s) is a quantitative value of the property p in process s
[13]. This notion has been introduced in [13] for Markov chains and further developed in
various settings, such as Markov decision processes [16], quantitative transition systems [12],
or concurrent games [11].

Several kinds of distances have been investigated for Markov chains. On the one hand,
branching distances, e.g. [1, 13, 26, 25, 4, 3, 2, 18], lift the equivalence given by the probabilistic
bisimulation of Larsen and Skou [22]. On the other hand, there are linear distances, in
particular the total variation distance [8, 6] and trace distances [20, 5]. Linear distances
are particularly appropriate when (i) we are interested in linear-time properties, and (ii) we
want to estimate the distance based only on simulation runs from the initial distribution of
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the system, i.e. in a black-box setting. (Recall that for branching distances, the underlying
probabilistic bisimulation corresponds to testing equivalence where not only runs from the
initial distribution can be observed, but it is also possible to dump the current state of the
system, and later restart the simulation from this state [22].)

In this paper, we introduce a simple framework for linear distances between Markov
chains, using the formula above, where p(s) is the probability of satisfying p when starting
a simulation run in state s (when p is seen as a language of ω-words it is the probability
to generate a trace belonging to p). We consider several classes C of languages of interest,
characterized from several points of view, e.g. topologically, by linear-time logics, or by
automata, thus rendering our framework versatile.

We investigate when a given distance can be estimated in a black-box setting, i.e. only
from simulations. One of the main difficulties is that the class C typically includes properties
with arbitrarily long horizon or even infinite-horizon properties, whereas every simulation run
is necessarily finite. Note that we do not employ any simplifications such as imposed fixed
horizon or discounting, typically used for obtaining efficient algorithms, e.g., [13, 26, 3], and
the undiscounted setting is fundamentally more complex [25]. Since even simpler tasks are
impossible for unbounded horizon in the black-box setting without any further knowledge,
we assume we only know a lower bound on the minimum transition probability pmin. Note
that knowledge of pmin has been justified in [10].

Our contribution is the following:

We introduce a systematic linear-distance framework and illustrate it with several ex-
amples, including distances previously investigated in the literature.
The main technical contributions are (i) a negative result stating that the total variation
distance cannot be estimated by simulating the systems, and (ii) a positive result that
the trace distance can be estimated.
These results are further exploited to provide both negative and positive results for each
of the settings where the language class is given topologically, by LTL (linear temporal
logic) fragments, and by automata. We also show that the negative result on the total
variation distance can be turned into a positive result if the transition probabilities have
finite precision.

1.1 Related work
There are two main linear distances considered for Markov chains: the total variation distance
and trace distance. Several algorithms have been proposed for both of them in the case when
the Markov chains are known (white-box setting). We are not aware of any work where the
distances are estimated only from simulating the systems (black-box setting).

Firstly, for the total variation distance in the white-box setting, [8] shows that deciding
whether it equals one can be done in polynomial time, but computing it is NP-hard and
not known to be decidable, however, it can be approximated; [6] considers this distance
more generally for semi-Markov processes, provides a different approximation algorithm, and
shows it coincides with distances based on (i) metric temporal logic, and (ii) timed automata
languages.

Secondly, the trace distance is based on the notion of trace equivalence, which can be
decided in polynomial time [15] (however, trace refinement of Markov decision processes is
already undecidable [17]). Several variants of trace distance are considered in [20] where
it is taken as a limit of finite-trace distances, possibly using discounting or averaging. In
[5] the finite-trace distance is shown to coincide with distances based on (i) LTL, and (ii)
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LTL without the U operator, i.e., only using the X operator and Boolean connectives. This
distances is also shown to be NP-hard and not known to be decidable, similarly to the total
variation distance. Finally, an approximation algorithm is shown (again in the white-box
setting), where the over-approximates are branching-time distances, showing an interesting
connection between the branching and linear distances.

In [21] the distinguishability problem is considered, i.e. given two Markov chains whether
there is a monitor that reads a single sample and with high probability decides which chain
produced the sequence. This is indeed possible when the total variation distance between
the chains equals one, and [21] shows how to construct such monitors. In contrast, our
negative results shows that it is not possible to decide with high probability whether the
total variation distance equals one when the two Markov are black-box.

Linear distances have been proposed also for quantitative transition systems, e.g. [11].
Moreover, there are other useful distances based on different fundaments; for instance, the
Skorokhod distance [7, 23, 14] measures the discrete differences between systems while
allowing for timing distortion; Kullback-Leibler divergence [20] is useful from the information-
theoretic point of view. Finally, distances have been also studied with respect to applications
in linear-time model checking [24, 5].

1.2 Outline
After recalling the basic notions in Section 2, we introduce our framework and illustrate it
with examples in Section 3. We define our problem formally in Section 4. In Sections 5 and 6
we provide the proofs of our technically principal negative and positive result, respectively.
Section 7 extends the results in the settings of topology, logics and automata, and discusses
general conditions for estimability. We conclude in Section 8.

Proofs omitted due to space constraints can be found in [9].

2 Preliminaries

We consider a finite set Ap of atomic propositions and denote Σ = 2Ap.

I Definition 1 (Markov chain). A (labelled) Markov chain (MC) is a tupleM = (S,P, µ, L),
where

S is a finite set of states,
P : S × S → [0, 1] is a transition probability matrix, such that for every s ∈ S it holds∑
s′∈S P(s, s′) = 1,

µ is an initial probability distribution over S,
L : S → Σ is a labelling function.

A run ofM is an infinite sequence ρ = s1s2 · · · of states, such that µ(s1) > 0 and P(si, si+1) >
0 for all i ≥ 1; we let ρ[i] denote the state si. A path in M is a finite prefix of a run of
M. An ω-word is an infinite sequence a1a2 · · · ∈ Σω of symbols from Σ; a word is a finite
prefix w ∈ Σ∗ of an ω-word. We extend the labelling notation so that for a path π ∈ Sk, the
projected sequence L(π) is the word w ∈ Σk, where w[i] = L(π[i]), and the inverse map is
L−1(w) = {π ∈ Sk | L(π) = w}. Given a path π = s1 · · · sn, we denote the k-prefix of π by
π ↓ k = s1 · · · sk, and similarly for prefixes of words.

Each path π inM determines the set of runs Cone(π) consisting of all runs that start
with π. ToM we assign the probability space (Runs,F ,PM), where Runs is the set of all
runs inM, F is the σ-algebra generated by all Cone(π), and PM is the unique probability
measure such that PM(Cone(s1 · · · sn)) = µ(s1) ·

∏n−1
i=1 P(si, si+1), where the empty product

CONCUR 2016
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equals 1. We will omit the subscript in PM if the Markov chain is clear from the context.
Further, we write PsM for the probability measure, where µ(s) = 1 and µ(s′) = 0 for s′ 6= s.
Finally, we overload the notation and for a path π write P(π) meaning P(Cone(π)), and for a
(ω)-word w, we write P(w) meaning P(L−1(w)).

3 Framework for Linear Distances

In this section we introduce our framework for linear distances. For i ∈ {1, 2}, let Mi =
(S,Pi, µi, L) denote a Markov chain1 and (Runs,F ,Pi) the induced probability space. Since
single runs of Markov chains typically have measure 0, we introduce linear distances using
measurable sets of runs:

I Definition 2 (L-distance). For a class L ⊆ F of measurable ω-languages2, the L-distance
DL is defined by

DL(M1,M2) = sup
X∈L
|P1(X)− P2(X)| .

Note that every DL is a pseudo-metric3. However, two different MCs can have distance 0,
for instance, when they induce the same probability space.

The definition of L-distances can be instantiated either (i) by a direct topological
description of L, or indirectly (ii) by a class A of automata inducing the class of recognized
languages L = {L(A) | A ∈ A}, or (iii) by a set of formulae L of a linear-time logic inducing
the languages of models L = {L(ϕ) | ϕ ∈ L} where L(ϕ) denotes the language of ω-words
satisfying the formula ϕ.

We now discuss several particularly interesting instantiations:

I Example 3 (Total variation). One extreme choice is to consider all measurable languages,
resulting in the total variation distance DTV(M1,M2) = supX∈F(Σ) |P1(X)− P2(X)|.

I Example 4 (Trace distances). The other extreme choices are to consider (i) only the
generators of F(Σ), i.e. the cones {wΣω | w ∈ Σ∗}, resulting in the finite-trace distance
DFT(M1,M2) = supw∈Σ+ |P1(w) − P2(w)|; or (ii) only the elementary events, i.e. Σω,
resulting in the infinite-trace distance DIT(M1,M2) = supw∈Σω |P1(w)− P2(w)|.

I Example 5 (Topological distances). There are many possible choices for L between the two
extremes above, such as clopen sets ∆1, which are finite unions of cones (being both closed
and open), open sets Σ1, which are infinite unions of cones, closed sets Π1, or classes higher
in the Borel hierarchy such as the class of ω-regular languages (within ∆3), or languages
given by thresholds for a long-run average reward (within Σ3).

I Example 6 (Automata distances). The class of ω-regular languages can also be given in
terms of automata, for instance by the class of all deterministic Rabin automata (DRA).
Similarly, the closed sets Π1 correspond to the class of deterministic Büchi automata with
all states final. Further, we can restrict the class of all DRA to those of size at most k for a
fixed k ∈ N, denoting the resulting distance by DDRA≤k.

1 To avoid clutter, the chains are defined over the same state space with the same labelling, which can be
w.l.o.g. achieved by their disjoint union.

2 Formally, the measurable space of ω-languages is given by the set Σω equipped with a σ-algebra F(Σ)
generated by the set of cones {wΣω | w ∈ Σ∗}. This ensures, for every measurable ω-language X, that
L−1(X) is measurable in every MC.

3 It is symmetric, it satisfies the triangle inequality, and the distance between identical MCs is 0.
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I Example 7 (Logical distances). The class of ω-regular languages can also be given in terms
of logic, by the monadic second-order logic (with order). Further useful choices include
the first-order logic with order, corresponding to the star-free languages and to the linear
temporal logic (LTL), or its fragments such as LTL with only X or only F and G operators
etc.

I Remark. The introduced distances can also be considered in the discrete setting, resulting
in various notions of equivalence. For instance, the finite-trace equivalence EFT can be derived
from the finite-trace distance by the following discretization:

EFT(M1,M2) =
{

0 if DFT(M1,M2) = 0
1 otherwise, i.e., DFT(M1,M2) > 0.

4 Problem Statement

Linear distances can be very useful when we want to compare a black-box system with
another system, e.g. a white-box specification or a black-box previous version of the system.
Indeed, in such a setting we can typically obtain simulation runs of the system and we
must establish a relation between the systems based on these runs only. This is in contrast
with branching distances where either both systems are assumed white-box or there are
strong requirements on the testing abilities, such as dumping the current state of the system,
arbitrary many restarts from there, and nesting this branching arbitrarily. Therefore, we
focus on the setting where we can obtain only finite prefixes of runs and we use statistics
to (i) deduce information on the whole infinite runs, and (ii) estimate the distance of the
systems.

For a given distance function DL, the goal is to construct an almost-surely terminating
algorithm that given

any desired finite number of sampled simulation run from Markov chainsM1 and
M2 of any desired finite length,
lower bound pmin > 0 on the minimum (non-zero) transition probability,
confidence α ∈ (0, 1),
interval width δ ∈ (0, 1),

computes an interval I such that |I| ≤ δ and Pr[DL(M1,M2) ∈ I] ≥ 1− α.

A distance function is called estimable, if there exists an algorithm in the above sense,
and inestimable otherwise.

5 Inestimability: Total variation distance

We show that for the total variation distance DTV there exists no “statistical” algorithm (in
the above sense) which is correct for all inputs (M1,M2, α, δ). Our argument consists of
two steps:

1. We construct two chains such that DTV(M1,M2) = 1, namely the two MCs shown in
Figure 1 (similar to [20]): one with τ = 0 and the other with small τ > 0.

2. We show that any potentially correct algorithm will give with high probability an incorrect
output for some choice of τ, α, δ.

CONCUR 2016
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a b

0.5 + τ

0.5− τ

0.5− τ 0.5 + τ

Figure 1 A Markov chain with labelling displayed in states.

Maximizing event. We start by showing that even an arbitrarily small difference in trans-
ition probabilities between two Markov chains may result in total variation distance of 1.
Consider two Markov chains as in Figure 1, whereM1 has τ = 0, andM2 has τ > 0. We
assume that the initial distribution for each chain is its stationary distribution. In this
setting, every simulation step is like an independent trial with probability 0.5 − τ (resp.
0.5 + τ) of seeing a (resp. b).

Let Xn (resp. Yn) denote the number of b symbols in a random path of length n sampled
from M1 (resp. M2). By the central limit theorem the distributions of Xn and Yn are
converging to the normal distribution when n→∞:

Xn ≈ N (0.5n, 0.52n) Yn ≈ N ((0.5 + τ)n, n(0.25− τ2)).

For n ∈ N let the event En mean “there is at most cn = (0.5 + τ/2)n symbols b in the
path prefix of length n.” The probabilities of event En in the two Markov chains are:

PM1(En) = PM1(Xn ≤ cn) = Φ(τ
√
n) PM1(En) = PM1(Yn ≤ cn) = Φ( −0.5τ

√
n√

0.25− τ2
),

where Φ is the CDF of the standard normal distribution. For n→∞ the probability of En
inM1 andM2 converges to 1 and 0, respectively, so the total variation distance converges
to 1.

Negative result for total variation distance. Now we show that there is no statistical
procedure for estimating total variation distance that would almost-surely terminate.

I Theorem 8. For any δ < 1 and α < 1
2 , there is no algorithm for computing a 1 − α

confidence interval of size δ for the total variation distance that almost-surely terminates.

Proof. Let us write M(τ) for a Markov chain in Figure 1 with the parameter τ and the
initial distribution being stationary.

For α < 1
2 we define the following decision problem Bα:

The input to Bα is a single path fromM(τ) of arbitrary length, where τ is unknown,
The task of Bα is to output answer Yes with probability ≥ 1−α if DTV(M(0),M(τ))) = 1,
output answer No with probability ≥ 1 − α if DTV(M(0),M(τ)) = 0. Note that
DTV(M(0),M(τ)) can equal only 0 or 1.

The remaining part of proof is done in two parts. In the first part, we show that there is
no algorithm that solves Bα and almost-surely terminates. In the second part we reduce the
problem Bα to computing a confidence interval for the total variation distance.

Part I. Suppose the opposite of the claim: that for some α < 1
2 there is an algorithm which

solves Bα and almost-surely terminates. We represent the algorithm for solving Bα as a
deterministic Turing machine TM, which works as follows:
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1. The input tape of TM contains a (single) randomly sampled run ofM(τ),
2. TM reads a part of the run from the tape and eventually returns Yes/No answer.

The input to the TM is random, therefore we can assign a probability distribution to the
computations of TM. To this end, we represent the answer of TM by the random variable
X : Runs 7→ {Yes, No}, and we use the random variable Y : Runs 7→ N ∪ {∞} to represent
the number of path symbols TM reads before terminating, where ∞ means that TM does
not terminate.

Suppose we run TM on the Markov chainM(0). We write P1 for the probability measure
of TM on this input. The total variation distance between the two Markov chainsM(0) is 0,
so with probability ≥ 1− α TM returns answer No, i.e. P1(X = No) ≥ 1− α.

By assumption TM almost-surely terminates on every input, so P1(Y ∈ N) = 1. Let q be
the following quantile:

q = min{c ∈ N : P1(Y ≤ c) ≥ 0.5 + α}.

I Claim. q ∈ N.
It follows that:

P1(X = No∧Y ≤ q) = 1−P1(X = Yes∨Y > q) ≥ 1−P1(X = Yes)−P1(Y > q) ≥ 0.5. (1)

Turing machine TM is deterministic, so if it terminates after reading prefix π of some run
ρ, then it terminates after reading prefix π of any run. As a consequence, the event Y ≤ q
can be represented as a union of ` cones where ` ≤ |Σ|q = 2q since Σ = {a, b} inM:

{ρ : Y (ρ) ≤ q} =
⋃̀
i=1

Cone(πi),

where all πi ∈ Σq are distinct. The event X = No ∧ Y ≤ q is a refinement of the event
Y ≤ q, so it may also be represented as

{ρ : X = No ∧ Y (ρ) ≤ q} =
m⋃
i=1

Cone(πi), (2)

where m ≤ ` ≤ 2q. Since every path inM(0) of length q has probability 0.5q, we get by (2)

P1(X = No ∧ Y (ρ) ≤ q) = P1(
m⋃
i=1

Cone(πi)) =
m∑
i=1

P1(πi) = m0.5q.

Then by (1) it follows that m ≥ 2q−1.
Now, we run TM on the Markov chainM(ε) where ε = 0.5−α

1
q 2

1−q
q if q > 0 and ε = 0.25

in the degenerated case of q = 0.
I Claim. ε > 0.

Let us write P2 for the probability measure of TM on the input M(ε). The distance
betweenM(0) andM(ε) is 1, since ε > 0. As a consequence, TM should return answer Yes
on this input with probability ≥ 1− α, or equivalently answer No with probability < α. We
show, however, that the probability of No is ≥ α:

P2(X = No ∧ Y ≤ q) =
m∑
i=1

P2(πi) by (2)

CONCUR 2016
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=
m∑
i=1

(0.5 + ε)ui(0.5− ε)q−ui ui is number of b’s in πi

≥
m∑
i=1

(0.5− ε)q = m(0.5− ε)q

≥ 2q−1(0.5− ε)q = α. by m ≥ 2q−1..

We obtain a contradiction, thus the assumed machine TM does not exist.

Part II. Suppose for a contradiction that for some α < 1
2 , δ < 1 there exists an algorithm

Algα,δ that solves the problem defined in the theorem and almost-surely terminates. Then
then this algorithm can solve the problem Bα in the following way:

1. Use Algα,δ to compute a confidence interval I for the total variation distance between
M(0) andM(τ). Algorithm Algα,δ can sample any number of paths fromM(0). Observe
that in M(τ) probability of seeing states a and b remains constant over time. Thus,
sampling multiple paths fromM(τ) by Algα,δ can be replaced by sampling a single path
fromM(τ).

2. Output Yes if 1 ∈ I, No if 0 ∈ I.
We have shown that for any α < 1

2 the problem Bα cannot by solved by an algorithm that
almost-surely terminates. As a consequence, the algorithm Algα,δ cannot exist. J

From Part II, it follows that there is no statistical algorithm even for fixed α and δ.

6 Estimability: Finite-trace distance

In Section 6.1 we show how to estimate the distance given by traces of a fixed length.
In Section 6.2 we show how to reduce the problem of computing the finite-trace distance
DFT (where traces of arbitrary lengths are considered) to computing a constant number of
fixed-length distances.

6.1 Estimates for fixed length
Given two Markov chainsM1 andM2 we wish to estimate the finite-trace distance for fixed
length k ∈ N

DkFT = sup
w∈Σk

|P1(w)− P2(w)|.

There is m = |Σ|k words in Σk (we enumerate them as w1, · · · , wm), so the traces of length
k follow a multinomial distribution, i.e. for i = 1, 2

∑m
j=1,Pi(wj) = 1.

We present a statistical procedure that estimates Dk
FT with arbitrary precision. For

j ≤ |Σ|k we call a contrast ∆j the difference in probabilities of trace wj betweenM1 and
M2: ∆j = |P1(wj) − P2(wj)|. The distance Dk

FT is the maximum over all such contrasts
Dk

FT = maxj≤m ∆j . We use the statistical procedure of [19] to simultaneously estimate all
contrasts. We sample random paths from both Markov chains, and let nji denote the number
of observations of trace wj in a Markov chain Mi. We write ni =

∑
j≤m n

j
i for the sum

of all observations inMi. The estimator of Pi(wj) is p̃ji = nj
i

ni
, and the estimator of ∆j is

∆̃j = |p̃j1 − p̃
j
2|.
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a a a b1 1 1

0.5
0.5

Figure 2 Markov chain with 4 states. The leftmost state is 6-deterministic, but not deterministic.

I Theorem 9 ([19]). As n1, n2 →∞ the probability approaches 1− α that simultaneously
for all contrasts

|∆j − ∆̃j | ≤ SjM where Sj =

√
p̃j1 − (p̃j1)2

n1
+ p̃j2 − (p̃j2)2

n2
,

and M is the square root of the 1−α
100 percentile of the χ2 distribution with |Σ|k degrees of

freedom.

The procedure for estimating DkFT works as follows. For ε, α > 0 we sample paths fromM1
andM2 until, by Theorem 9, with probability 1− α for all contrasts |∆j − ∆̃j | ≤ ε. Then
with probability 1− α it holds that |DkFT −maxj≤m ∆̃j | ≤ ε.

6.2 Estimates for unbounded length
Intuitively, the longer the path, the less probable it is, and the less distance it can cause.
However, this is only true if along the path probabilistic choices are made repeatedly.

I Definition 10. In a Markov chainM, a state s ∈ S is k-deterministic, if there exists a
word w of length k, such that Ps(w) = 1. Otherwise, s is k-branching. A state s ∈ S is
deterministic, if it is k-deterministic for all k ∈ N.

I Lemma 11. If s ∈ S is k-branching, it is also (k + 1)-branching. Dually, if it is k-
deterministic, it is also (k − 1)-deterministic.

I Example 12. Every state is trivially 1-deterministic.
In Figure 3, the leftmost state is 3-deterministic and 4-
branching. The states of the MC on the right are determin-
istic.

a a0.5

0.5

1

I Lemma 13. Consider a state s in a Markov chain M with n states. If state s is n2-
deterministic, then it is deterministic.

Before proceeding to the proof, notice that even though it may seem that every branching
state must be n+ 1 branching, this is not the case in general. Observe the counterexample
in Figure 2. The leftmost state is 6-deterministic (only the word aaabaa can be generated),
while n = 4.

Proof. Consider state s that is n2-deterministic and assume for contradiction that s is not
deterministic. Let N > n2 be the smallest number such that s is N -branching, and thus not
(N − 1)-branching. Then there exist two paths π = s1, s2, . . . , sN and π′ = s1, s

′
2, . . . , s

′
N

such that s1 = s and for i = 1, 2, . . . , N − 1, we have L(si) = L(s′i) and L(sN ) 6= L(s′N ).
Looking at a sequence of pairs (s1, s1), (s2, s

′
2), . . . , (sN−1, s

′
N−1), since there are at most

n2 possible pairs of states over S, by the pigeon-hole principle at least two pairs will be

CONCUR 2016
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a a a b1− pmin pmin pmin pmin

1− pmin 1− pmin 1− pmin

pmin

Figure 3 Markov chain, s.t. P(a) = P(aa) = P(aaa) = 1, P(aaab) = p3
min, P(aaaa) = 1− p3

min.

repeating in the observed sequence, say (si, s′i) = (sj , s′j), where i < j. But then the paths
π′′ = s1, s2, . . . , si, sj+1, . . . , sN and π′′′ = s1, s2, . . . , si, sj+1, . . . , sN haveM < N states and
they witness that s1 is M -branching, which by Lemma 11 is in contradiction with s being
(N − 1)-deterministic. J

I Lemma 14. If a state s ∈ S is k-branching, then any word of length k starting from s has
probability at most (1− pk−1

min ), i.e., ∀w ∈ Σk : Ps(w) ≤ 1− pk−1
min .

To illustrate this, observe the Markov chain in Figure 3 with leftmost initial state.

Proof. Let w ∈ Σk. Since s is k-branching, there exists a word w′ ∈ Σk such that w′ 6= w

and Ps(w′) > 0. Hence there exists at least one path with k − 1 transitions, producing the
trace w′, and thus Ps(w′) ≥ pk−1

min . Finally, Ps(w) ≤ 1− Ps(w′) ≤ 1− pk−1
min . J

We show that, for estimating the finite trace distance with the required precision ε, it
suffices to infer probabilities of the words up to some finite length k, which depends on ε. The
idea is that paths that become deterministic before step k do not change their probability
afterwards, while all other paths together have the probability bounded by ε.

I Lemma 15. Let s be a n2-deterministic state in a Markov chainM with n states. Then
there are words u, z, such that |z|+ |u| ≤ n, |u| ≥ 1, and Ps(zuω) = 1 .

This motivates the following definition, where pref(w) denotes the set of all prefixes of
the (ω-)word w.

I Definition 16. A word w ∈ Σ+ is called k-ultimately periodic in a Markov chain M if
P(w) > 0 and there exists a word u such that w ∈ pref(Σkuω) and 1 ≤ |u| ≤ n, where n is
the number of states inM. J

Intuitively, for sufficiently long word w and large ε, if P(w) > ε and w is k-ultimately
periodic, then it enters within k steps a BSCC, which is bisimilar to a cycle (all transition
probabilities are 1). One can also prove that this is the only way for a ω-word to achieve a
probability greater than ε.

For a word w we write Bk(w) for the set of paths that are labelled by w, have a positive
probability and where all states up to step k are n2-branching:

Bk(w) = {π = s1 · · · s|w| ∈ L−1(w) | P(π) > 0 ∧ ∀i ≤ min(k, |w|). si is n2-branching} .

In a similar way, we write Dk(w) for the set of paths that enter a (n2-)deterministic state
before step k

Dk(w) = {π = s1 · · · s|w| ∈ L−1(w) | P(π) > 0∧ ∃i ≤ min(k, |v|). si is n2-deterministic} .

For any k, we can partition paths labeled by w into Bk-paths and Dk-paths:

P(w) =
∑

π∈L−1(w)

P(π) =
∑

π∈Bk(w)

P(π) +
∑

π∈Dk(w)

P(π) . (3)

Now we show that the probability of Bk-paths diminishes exponentially with length k:
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I Lemma 17. Consider a Markov chainM with n states. For every k ∈ N and word w, if
|w| > k then∑

π∈Bk(w)

P(π) ≤ (1− pn
2

min)b
k

n2 c .

I Lemma 18. Let w be a word in a Markov chain M with n states. For every ε > 0, if
P(w) > ε and |w| > k then w is k-ultimately periodic inM, where k = n2d log ε

log(1−pn2
min)
e+ n.

Proof. Assume that |w| > k. We split paths labelled by w into Bk−n(w) and Dk−n(w) as
in (3):

P(w) =
∑

s1···s|w|∈L−1(w)

P(s1 · · · s|w|) =
∑

s1···s|w|∈
Bk−n(w)

P(s1 · · · s|w|) +
∑

s1···s|w|∈
Dk−n(w)

P(s1 · · · s|w|) . (4)

By Lemma 17 we get∑
s1···s|w|∈Bk−n(w)

P(s1 · · · s|w|) ≤ ε . (5)

Now, from the assumption P(w) > ε, (4) and (5), it follows that∑
s1···s|w|∈Dk−n(w)

P(s1 · · · s|w|) > 0 .

This implies that there is a path π = s1 · · · s|w| ∈ Dk−n(w). By definition of Dk−n(w),
π has a n2-deterministic state before step k − n, and w.l.o.g. let sk−n be that state. By
Lemma 15, every positive word from state sk−n is a prefix of zuω for some words z, u such
that |z|+ |u| ≤ n. Therefore w ∈ pref(yzuω), where y = L(s1 · · · sk−n), i.e. w is |k|-ultimately
periodic. J

I Lemma 19. Consider a Markov chainM with n states. Let w be a k-ultimately periodic
word inM, and x be a prefix of w such that |x| > k + n. Then

P(x)− P(w) ≤ (1− pn
2

min)b
k−n

n2 c .

I Theorem 20. Consider Markov chainsM1 andM2 that have at most n states. For ε > 0
it holds that

|DFT(M1,M2)−max
i≤k

DiFT(M1,M2)| ≤ ε, where k = n2d log ε
log(1− pn2

min)
e+ 2n.

Proof. We show that for any word w ∈ Σ+:

∣∣∣|P1(w)− P2(w)| − |P1(w ↓ k)− P2(w ↓ k)|
∣∣∣ ≤ ε . (6)

For |w| ≤ k (6) holds trivially. Suppose that |w| ≥ k and consider two cases.

1. If Pi(w ↓ k) > ε, then by Lemma 18 w ↓ k is (k − n)-ultimately periodic. Then by
Lemma 19 Pi(w ↓ k) ≤ Pi(w) + ε.

CONCUR 2016



20:12 Linear Distances between Markov Chains

2. If Pi(w ↓ k) ≤ ε, then clearly Pi(w ↓ k) ≤ Pi(w) + ε.

Both cases can be summarised by

Pi(w) ≤ Pi(w ↓ k) ≤ Pi(w) + ε . (7)

W.l.o.g assume that P1(w) ≥ P2(w). Then by (7)

P1(w ↓ k)− P2(w ↓ k) ≥ P1(w)− P2(w)− ε,

which implies (6). J

7 Consequences and Discussion

We now discuss the consequences of the (in)estimability results for several specific subclasses
of ω-regular languages, captured topologically, logically, or by automata. We also remark on
the estimability in case when the transition probabilities have finite precision.

7.1 Topology

Negative result for clopen sets. Note that the proof of inestimability was based on the
ability to express the events En for any n ∈ N:

En = “there is at most cn = (0.5 + τ/2)n symbols b in the prefix path of length n.”

Observe that each En can be expressed as finite union of cones, each expressing exact positions
of a’s and b’s in the first n steps. For instance, for τ = 0.2, the event E2, “there is at most 1
symbol b in the first 2 steps,” can be described by the union Cone(aa)∪Cone(ab)∪Cone(ba).

Since finite unions of cones form exactly the clopen sets, the lowest class ∆1 in the Borel
hierarchy, it follows that distances based on any class in the hierarchy are inestimable.

Positive result for the infinite-trace distance. Using the result on finite-trace distance, we
can prove that the infinite-trace distance DIT of Example 4 is also estimable. Indeed, the
distance is non-zero only due to k-ultimately periodic ω-words with positive probability. By
Lemma 19 we can provide confidence intervals for these probabilities through the k-prefixes
using the fixed-length distance DkFT.

7.2 Logic

Negative result for LTL. The LTL distance as in Example 7 is again inestimable since
we can express the event En in LTL by a finite composition of operators X,∧,∨ (notably
this fragment induces the same distance as LTL [5]). Indeed, for instance, for τ = 0.2, the
event E10, “there is at most 6 symbols b in the path prefix of length 10,” is equivalent to “at
least 4 symbols a in the path prefix of length n,” and it can be described by a disjunction of(10

4
)
formulae, each determining the possible position of symbols a, resulting in a formula

(a ∧Xa ∧X2a ∧X3a) ∨ (a ∧Xa ∧X2a ∧X4a) ∨ . . . ∨ (X7a ∧X8a ∧X9a ∧X10a).
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Positive result for LTL(FG,GF). The distance generated by the fragment of LTL described
by combining operators FG and GF and Boolean operators is estimable. Notice that the
probability of the property ϕ ≡ FGϕ′ equals the probability of reaching a BSCC such that ϕ′
holds in all of its states, while the probability of property ϕ ≡ GFϕ′ equals the probability
that every BSCC contains a state which satisfies ϕ′. Hence, properties expressed in this
fragment of LTL can be checked by inferring all BSCCs of a chain and a simple analysis of
them. The statistical estimation of all BSCCs for labelled Markov chains where only the
minimal transition probability is known is possible and is shown in [10].

7.3 Automata
Negative result for automata distances. For the class of all deterministic Rabin automata
(DRA), the distance (as in Example 6) is inestimable. This is implied by the inestimability
for clopen sets or for LTL. Further, we can also directly encode the event En that “at least
k symbols a are observed in the path of length n” by an automaton: the DRA counts how
many symbols a are seen in the prefix up to length n; this can be done with k · n states
where the automaton is in a state sk′,n′ if and only if in the n′ ≤ n prefix of the input word,
there are k′ ≤ k symbols a.

Positive result for fixed-size automata. When restricting to the class of DRA of size
at most k ∈ N, the distance DDRA≤k can be estimated. A naive algorithm amounts to
enumerating all automata up to given size k, then applying statistical model checking to
infer the probability of satisfying the automata in each of the Markov chains, and checking
for which automaton the probability difference in the two chains is maximized. Statistically
inferring the probability of whether a (black-box) Markov chain satisfies a property given
by a DRA is a subroutine of the procedure for statistical model checking Markov chains for
LTL, described in [10].

7.4 Finite Precision
When the transition probabilities have finite precision, e.g. are given by at most two decimal
digits, several negative results turn positive. Finite precision allows us to learn the MCs
exactly with high probability, by rounding the learnt transition probabilities to the closest
multiple of the precision. Subsequently, we can approximate the distance by the algorithms
applicable in the white-box setting. In case of the total variation distance, one can apply the
approximation algorithm of [8]; for trace distances, the approximation algorithm of [5] is also
available. In particular, for the special case of the trace equivalence EFT we can leverage the
fact that Markov chains are equivalent when all their traces up to length |M1|+ |M2| − 1
have equal probability. With the assumption of finite precision one can get by sampling the
exact distribution of such traces with high confidence. Note that the same algorithm can
not be applied without assuming finite precision, since arbitrarily small difference in chains
cannot be detected.

8 Conclusions and Future Work

We have introduced a linear-distance framework for Markov chains and considered estimating
the distances in the black-box setting from simulation runs. We investigated several distances,
delimiting the (in)estimability boarder for distances given topologically, logically, and by
automata. As the next step, it is desirable to look for practical algorithms that would
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converge fast on practical benchmarks. Another direction is to characterize the largest
language for which the distance can be estimated, and, dually, the smallest language that
cannot be estimated.
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