
Polynomial-Time Algorithms for the Longest
Induced Path and Induced Disjoint Paths
Problems on Graphs of Bounded Mim-Width∗†

Lars Jaffke‡1, O-joung Kwon§2, and Jan Arne Telle3

1 Department of Informatics, University of Bergen, Norway
lars.jaffke@uib.no

2 Logic and Semantics, Technische Universität Berlin, Berlin, Germany
ojoungkwon@gmail.com

3 Department of Informatics, University of Bergen, Norway
jan.arne.telle@uib.no

Abstract
We give the first polynomial-time algorithms on graphs of bounded maximum induced matching
width (mim-width) for problems that are not locally checkable. In particular, we give nO(w)-time
algorithms on graphs of mim-width at most w, when given a decomposition, for the following
problems: Longest Induced Path, Induced Disjoint Paths andH-Induced Topological
Minor for fixed H. Our results imply that the following graph classes have polynomial-time
algorithms for these three problems: Interval and Bi-Interval graphs, Circular Arc, Per-
mutation and Circular Permutation graphs, Convex graphs, k-Trapezoid, Circular
k-Trapezoid, k-Polygon, Dilworth-k and Co-k-Degenerate graphs for fixed k.
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1 Introduction

Ever since the definition of the tree-width of graphs emerged from the Graph Minors project
of Robertson and Seymour, bounded-width structural graph decompositions have been a
successful tool in designing fast algorithms for graph classes on which the corresponding
width-measure is small. Over the past few decades, many more width-measures have been
introduced, see e.g. [8] for an excellent survey and motivation for width-parameters of
graphs. In 2012, Vatshelle [18] defined the maximum induced matching width (mim-width for
short) which measures how easy it is to decompose a graph along vertex cuts with bounded
maximum induced matching size on the bipartite graph induced by edges crossing the cut.
One interesting aspect of this width-measure is that its modeling power is much stronger than
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tree-width and clique-width and many well-known and deeply studied graph classes such as
Interval graphs and Permutation graphs have (linear) mim-width 1, with decompositions
that can be found in polynomial time [2, 18], while their clique-width can be proportional to
the square root of the number of vertices. Hence, designing an algorithm for a problem Π
that runs in XP time parameterized by mim-width yields polynomial-time algorithms for Π
on several interesting graph classes at once.

For Locally Checkable Vertex Subset and Vertex Partitioning (LC-VSVP)
problems, a class introduced [17] to capture many well-studied algorithmic problems in a
unified framework, Belmonte and Vatshelle [2] and Bui-Xuan et al. [3] provided XP-algorithms
on graphs of bounded mim-width. LC-VSVP problems include many NP-hard problems
such as Maximum Independent Set, Minimum Dominating Set, and q-Coloring. A
common feature of these problems is that they (as the name suggests) can be checked locally:
Take q-Coloring for example. Here, we want to determine whether there is a q-partition
of the vertex set of an input graph such that each part induces an independent set. The
latter property can be checked individually for each vertex by inspecting only its direct
neighborhood.

Until now, the only problems known to be XP-time solvable on graphs of bounded mim-
width were of the type LC-VSVP. It is therefore natural to ask whether similar results can be
shown for problems concerning graph properties that are not locally checkable. In this paper,
we study problems related to finding induced paths in graphs, namely Longest Induced
Path, Induced Disjoint Paths and H-Induced Topological Minor. Although their
‘non-induced’ counterparts are more deeply studied in the literature, also these induced
variants have received considerable attention. Below, we briefly survey results for exact
algorithms to these three problems on graph classes studied so far.

For the first problem, Gavril [5] showed that Longest Induced Path can be solved
in polynomial time for graphs without induced cycles of length at least q for fixed q (the
running time was improved by Ishizeki et al. [9]), while Kratsch et al. [13] solved the problem
on AT-free graphs in polynomial time. Kang et al. [11] recently showed that those classes
have unbounded mim-width. However, graphs of bounded mim-width are not necessarily
graphs without cycles of length at least k or AT-free graphs. The second problem derives
from the well-known Disjoint Paths problem which is solvable in O(n3) time if the number
of paths k is a fixed constant, as shown by Robertson and Seymour [15], while if k is part
of the input it is NP-complete on graphs of linear mim-width 1 (interval graphs) [14]. In
contrast, Induced Disjoint Paths is NP-complete already for k = 2 paths [12]. In this
paper we consider the number of paths k as part of the input. Under this restriction Induced
Disjoint Paths is NP-complete on claw-free graphs, as shown by Fiala et al. [4], while
Golovach et al. [7] gave a linear-time algorithm for circular-arc graphs. For the third problem,
H-Induced Topological Minor, we consider H to be a fixed graph. This problem, and
also Induced Disjoint Paths, were both shown solvable in polynomial time on chordal
graphs by Belmonte et al. [1], and on AT-free graphs by Golovach et al. [6].

We show that Longest Induced Path, Induced Disjoint Paths and H-Induced
Topological Minor for fixed H can be solved in time nO(w) given a branch decomposition
of mim-width w. Since bounded mim-width decompositions, usually mim-width 1 or 2, can be
computed in polynomial-time for all well-known graph classes having bounded mim-width [2],
our results thus provide unified polynomial-time algorithms for these problems on the following
classes of graphs: Interval and Bi-Interval graphs, Circular Arc, Permutation and
Circular Permutation graphs, Convex graphs, k-Trapezoid, Circular k-Trapezoid,
k-Polygon, Dilworth-k and Co-k-Degenerate graphs for fixed k, all graph classes of
bounded mim-width [2].
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The problem of computing the mim-width of general graphs was shown to be W[1]-
hard [16] and no algorithm for computing the mim-width of a graph in XP time is known.
Furthermore, there is no polynomial-time constant-factor approximation for mim-width
unless NP = ZPP [16].

What makes our algorithms work is an analysis of the structure induced by a solution to
the problem on a cut in the branch decomposition. There are two ingredients. First, in all
the problems we investigate, we are able to show that for each cut induced by an edge of the
given branch decomposition of an input graph, it is sufficient to consider induced subgraphs
of size at most O(w) as intersections of solutions and the set of edges crossing the cut, where
w is the mim-width of the branch decomposition. For instance, in the Longest Induced
Paths problem, an induced path is a target solution. We argue that an induced path cannot
cross a cut many times if there is no large induced matching between vertex sets A and B of
the cut (A,B). Such an intersection is always a disjoint union of paths. Thus, we enumerate
all subgraphs of size at most O(w), which are disjoint unions of paths, and these will be used
as indices of our table.

However, a difficulty arises if we recursively ask for a given cut and such an intersection
of size at most O(w), whether there is an induced disjoint union of paths of certain size in
the union of one part and edges crossing the cut, whose intersection on the crossing edges
is the given subgraph. The reason is that there are unbounded number of vertices in each
part of the cut that are not contained in the given subgraph of size O(w) but still have
neighbors in the other part. We need to control these vertices in such a way that they do
not further create an edge in the solution. We control these vertices using vertex covers of
the bipartite graph induced by edges crossing the cut. Roughly speaking, if there is a valid
partial solution, then there is a vertex cover of such a bipartite graph, which meets all other
edges not contained in the given subgraph. The point is that there are only nO(w) many
minimal vertex covers of such a bipartite graph with maximum matching size w. We discuss
this property in Section 2. Based on these two results, each table will consist of a subgraph
of size O(w) and a vertex cover of the remaining part of the bipartite graph, and we check
whether there is a (valid) partial solution to the problem with respect to given information.
We can argue that we need to store at most nO(w) table entries in the resulting dynamic
programming scheme and that each of them can be computed in time nO(w) as well.

The strategy for Induced Disjoint Paths is very similar to the one for Longest
Induced Path. The only thing to additionally consider is that in the disjoint union of paths,
which is guessed as the intersection of a partial solution and edges crossing a cut, we need to
remember which path is a subpath of the path connecting a given pair. We lastly provide
a one-to-many reduction from H-Induced Topological Minor to Induced Disjoint
Paths, that runs in polynomial time, and show that it can be solved in time nO(w). Similar
reductions have been shown earlier (see e.g. [1, 6]) but we include it here for completeness.

Throughout the paper, proofs of statements marked with ‘F’ are deferred to the full
version [10].

2 Preliminaries

For integers a and b with a ≤ b, we let [a..b] ..= {a, a+ 1, . . . , b} and if a is positive, we define
[a] ..= [1..a]. Throughout the paper, a graph G on vertices V (G) and edges E(G) ⊆

(
V (G)

2
)

is assumed to be finite, undirected and simple. For graphs G and H we say that G is a
subgraph of H, if V (G) ⊆ V (H) and E(G) ⊆ E(H) and we write G ⊆ H. For a vertex set
X ⊆ V (G), we denote by G[X] the subgraph induced by X, i.e. G[X] ..= (X,E(G) ∩

(
X
2
)
). If
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H ⊆ G and X ⊆ V (G) then we let H[X] ..= H[X ∩ V (H)]. We use the shorthand G −X
for G[V (G) \ X]. For two (disjoint) vertex sets X,Y ⊆ V (G), we denote by G[X,Y ] the
bipartite subgraph of G with bipartition (X,Y ) such that for x ∈ X, y ∈ Y , x and y are
adjacent in G if and only if they are adjacent in G[X,Y ]. A cut of G is a bipartition (A,B)
of its vertex set. For a vertex v ∈ V (G), we denote by N [v] the set of neighbors of v in G,
i.e. N [v] ..= {w ∈ V (G) | {v, w} ∈ E(G)}. A set M of edges is a matching if no two edges
in M share an end vertex, and a matching {a1b1, . . . , akbk} is induced if there are no other
edges in the subgraph induced by {a1, b1, . . . , ak, bk}. For an edge e = {v, w} ∈ E(G), the
operation of contracting e is to remove the edge e from G and merging its endpoints v and w.

Branch Decompositions and Mim-Width. A pair (T,L) of a subcubic tree T and a bijection
L from V (G) to the set of leaves of T is called a branch decomposition. For each edge e of
T , let T e1 and T e2 be the two connected components of T − e, and let (Ae1, Ae2) be the vertex
bipartition of G such that for each i ∈ {1, 2}, Aei is the set of all vertices in G mapped to
leaves contained in T ei by L. The mim-width of (T,L), denoted by mimw(T,L), is defined
as maxe∈E(T ) mim(Ae1), where for a vertex set A ⊆ V (G), mim(A) denotes the maximum
size of an induced matching in G[A, V (G) \ A]. The minimum mim-width over all branch
decompositions of G is called the mim-width of G. If |V (G)| ≤ 1, then G does not admit a
branch decomposition, and the mim-width of G is defined to be 0.

To avoid confusion, we refer to elements in V (T ) as nodes and elements in V (G) as
vertices throughout the rest of the paper. Given a branch decomposition, one can subdivide
an arbitrary edge and let the newly created vertex be the root of T , in the following denoted
by r. Throughout the following we assume that each branch decomposition has a root
node of degree two. For two nodes t, t′ ∈ V (T ), we say that t′ is a descendant of t if t
lies on the path from r to t′ in T . For t ∈ V (T ), we denote by Gt the subgraph induced
by all vertices that are mapped to a leaf that is a descendant of t, i.e. Gt = G[Xt], where
Xt = {v ∈ V (G) | L−1(t′) = v where t′ is a descendant of t in T}. We use the shorthand
‘Vt’ for ‘V (Gt)’ and let V̄t ..= V (G) \ Vt.

The following definitions which we relate to branch decompositions of graphs will play a
central role in the design of the algorithms in Section 3.

I Definition 1 (Boundary). Let G be a graph and A,B ⊆ V (G) such that A ∩B = ∅. We
let bdB(A) be the set of vertices in A that have a neighbor in B, i.e. bdB(A) ..= {v ∈ V (A) |
N(v) ∩B 6= ∅}. We define bd(A) ..= bdV (G)\A(A) and call bd(A) the boundary of A in G.

I Definition 2 (Crossing Graph). Let G be a graph and A,B ⊆ V (G). If A ∩ B = ∅, we
define the graph GA,B ..= G[bdB(A),bdA(B)] to be the crossing graph from A to B.

If (T,L) is a branch decomposition of G and t1, t2 ∈ V (T ) such that the crossing graph
GVt1 ,Vt2

is defined, we use the shorthand Gt1,t2 ..= GVt1 ,Vt2
. We use the analogous shorthand

notations Gt1,t̄2 ..= GVt1 ,V̄t2
and Gt̄1,t2 ..= GV̄t1 ,Vt2

(whenever these graphs are defined). For
the frequently arising case when we consider Gt,t̄ for some t ∈ V (T ), we refer to this graph
as the crossing graph w.r.t. t.

We furthermore use the following notation. Let G be a graph, v ∈ V (G) and A ⊆ V (G).
We denote by NA[v] the set of neighbors of v in A, i.e. NA[v] ..= N [v] ∩A. For X ⊆ V (G),
we let NA[X] ..=

⋃
v∈X NA[v]. If (T,L) is a branch decomposition of G and t ∈ V (T ), we

use the shorthand notations Nt[X] ..= NVt [X] and Nt̄[X] ..= NV̄t
[X].

The Minimal Vertex Covers Lemma. Let G be a graph. We now prove that given a set
A ⊆ V (G), the number of minimal vertex covers in G[A, V (G) \A] is bounded by nmim(A).
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This observation is crucial to argue that we only need to store nO(w) entries at each node
in the branch decomposition in all algorithms we design, where w is the mim-width of the
given branch decomposition.

I Corollary 3 (Minimal Vertex Covers Lemma, F). Let H be a bipartite graph on n vertices
with a bipartition (A,B). The number of minimal vertex covers of H is at most nmim(A),
and the set of all minimal vertex covers of H can be enumerated in time nO(mim(A)).

3 Algorithms

In all algorithms presented in this section, we assume that we are given as input an undirected
graph G together with a branch decomposition (T,L) of G of mim-width w, rooted at a
degree two vertex obtained from subdividing an arbitrary edge in T . We do bottom-up
dynamic programming over (T,L). To obtain our algorithms, we study the structure a
solution induces across a cut in the branch decomposition and argue that the size of this
structure is bounded by a function only depending on the mim-width. The table entries at
each node t ∈ V (T ) are then indexed by all possible such structures and contain the value
1 if and only if the structure used as the index of this entry constitutes a solution for the
respective problem. After applying the dynamic programming scheme, the solution to the
problem can be obtained by inspecting the table values associated with the root of T .

The rest of this section is organized as follows. In Section 3.1 we present an nO(w)-time
algorithm for Longest Induced Path, and in Section 3.2 we give an algorithm for Induced
Disjoint Paths with the same asymptotic runtime bound. We give a polynomial-time
one-to-many reduction from H-Induced Topological Minor (for fixed H) to Induced
Disjoint Paths in Section 3.3, yielding an nO(w) for the former problem as well.

3.1 Longest Induced Path
For a disjoint union of paths P , we refer to its size as the number of its vertices, i.e. |P | ..=
|V (P )|. If P has only one component, we use the terms ‘size’ and ‘length’ interchangeably.
We now give an nO(w) time algorithm for the following parameterized problem.

Longest Induced Path (LIP)/Mim-Width
Input: A graph G with branch decomposition (T,L) and an integer k
Parameter: w ..= mimw(T,L)
Question: Does G contain an induced path of length at least k?

Before we describe the algorithm, we observe the following. Let G be a graph and
A ⊆ V (G) with mim(A) = w and let P be an induced path in G. Then the subgraph induced
by edges of P in GA,Ā and vertices incident with these edges has size linearly bounded by w.
The following lemma provides a bound of this size.

I Lemma 4. Let p be a positive integer and let F be a disjoint union of paths such that each
component of F contains an edge. If |V (F )| ≥ 4p, then F contains an induced matching of
size at least p.

Proof. We prove the lemma by induction on p. If p = 1, then it is clear. We may assume
p ≥ 2. Suppose F contains a connected component C with at most 4 vertices. Then F −V (C)
contains at least 4(p− 1) vertices, and thus it contains an induced matching of size at least
p−1 by the induction hypothesis. As C contains an edge, F contains an induced matching of
size at least p. Thus, we may assume that each component of F contains at least 5 vertices.

IPEC 2017
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P

I

Vt

V̄t

Figure 1 The intersection of an induced path P with G[Vt ∪ bd(V̄t)], which is an induced disjoint
union of paths I. The subgraph S to be used as an index for the corresponding table entry consists
of the boldface vertices and edges in I.

Let us choose a leaf v of F , and let v1 be the neighbor of v, and v2 be the neighbor of v1
other than v. Since each component of F − {v, v1, v2} contains at least one edge, we can
apply induction to conclude that F −{v, v1, v2} contains an induced matching of size at least
p− 1. Together with vv1, F contains an induced matching of size at least p. J

Before we give the description of the dynamic programming algorithm, we first observe
how a solution P, i.e. an induced path in G, interacts with the graph G[Vt ∪ bd(V̄t)], for
some t ∈ V (T ). The intersection of P with G[Vt ∪ bd(V̄t)] is an induced disjoint union of
paths which we will denote by I in the following. To keep the number of possible table
entries bounded by nO(w), we have to focus on the interaction of I with the crossing graph
Gt,t̄ w.r.t. t, in particular the intersection of I with its edges. Note that after removing
isolated vertices, I induces a disjoint union of paths on Gt,t̄ which throughout the following
we will denote by S. For an illustration see Figure 1. There cannot be any additional edges
crossing the cut (Vt, V̄t) between vertices in I on opposite sides of the boundary that are
not contained in V (S). This property of I can be captured by considering a minimal vertex
cover M of the bipartite graph Gt,t̄ − V (S). We remark that the vertices in M play different
roles, depending on whether they lie in M ∩ Vt or M ∩ V̄t. We therefore define the following
two sets.

M in
t

..= M ∩ Vt is the set of vertices that must be avoided by I.
Mout
t

..= M ∩ V̄t is the set of vertices that must be avoided by a partial solution (e.g. the
intersection of P with G[V̄t]) to be combined with I to ensure that their combination
does not use any edges in Gt,t̄ − V (S).

Furthermore, I also indicates how the vertices in S[Vt] that have degree one in S are joined
together in the graph Gt (possibly outside bd(Vt)). This gives rise to a collection of vertex
pairs Q, which we will refer to as pairings, with the interpretation that (s, t) ∈ Q if and only
if there is a path from s to t in I[Vt].

The description given above immediately tells us how to index the table entries in the
dynamic programming table T to keep track of all possible partial solutions in the graph
G[Vt ∪ bd(V̄t)]: We set the table entry T [t, (S,M,Q), i, j] = 1, where i ∈ [0..n] and j ∈ [0..2],
if and only if the following conditions are satisfied. For an illustration of the table indices,
see Figure 2.
(i) There is a set of induced paths I of total size i in G[Vt ∪ bd(V̄t)] such that I has j

degree one endpoints in Gt.
(ii) E(I) ∩ E(Gt,t̄) = E(S).
(iii) M is a minimal vertex cover of Gt,t̄ − V (S) such that V (I) ∩M = ∅.
(iv) Let D denote the vertices in S[Vt] that have degree one in S. Let Q = (s1, t1), . . . , (s`, t`)

be a partition of all but j vertices of D into pairs, throughout the following called a
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Mout
t

M in
tQ

S V̄t

Vt

Figure 2 A crossing graph Gt,t̄ and the structures associated with the table indices of the
algorithm for Longest Induced Path. Note that by (1) and (4) it follows that if the table entry
corresponding to the above structures is 1, then j = 0: Since both degree one endpoints in S[Vt] are
paired, the corresponding set of induced paths I has zero degree one endpoints in G[Vt].

pairing, such that if we contract all edges in I − E(Gt,t̄) from I incident with at least
one vertex not in S (we denote the resulting graph as S �Q) we obtain the same graph
as when adding {sk, tk} to S, for each k ∈ [`].
Regarding (4), observe that |D| = 2` + j and that there are j unpaired vertices in Q,

each of which is connected to a degree one endpoint of I in Gt. For notational convenience,
we will denote by Tt all table entries that have the node t ∈ V (T ) as the first index.

We now show that the solution to Longest Induced Path can be obtained from a
table entry corresponding to the root r of T and hence ensure that the information stored in
T is sufficient.

I Proposition 5 (F). G contains an induced path of length i if and only if T [r, (∅, ∅, ∅), i, 2] =
1.

Throughout the following, we denote by St the set of all sets of induced disjoint paths in
Gt,t̄ on at most 4w vertices (which includes all possible intersections of partial solutions with
Gt,t̄ by Lemma 4), for S ∈ St byMt,S the set of all minimal vertex covers of Gt,t̄ − V (S)
and by Qt,S the set of all pairings of degree one vertices in S[bd(Vt)]. We now argue that
the number of such entries is bounded by a polynomial in n whose degree is O(w).

I Proposition 6. For each t ∈ V (T ), there are at most nO(w) table entries in Tt and they
can be enumerated in time nO(w).

Proof. Note that each index is an element of St×Mt,S ×Qt,S × [0..n]× [0..2]. Since the size
of each maximum induced matching in Gt,t̄ is at most w, we know by Lemma 4 that the size
of each index S is bounded by 4w, so |St| ≤ O(n4w). By the Minimal Vertex Covers Lemma
(Corollary 3), |Mt,S | ≤ nO(w). Since the number of vertices in S is bounded by 4w, we know
that |Qt,S | ≤ wO(w) and since i ∈ [0..n] and j ∈ [0..2], we can conclude that the number of
table entries for each t ∈ V (T ) is at most O(n4w) ·nO(w) ·wO(w) · (n+ 1) · 3 = nO(w). Clearly,
all elements in St and Qt,S can be enumerated in time nO(w) and by the Minimal Vertex
Covers Lemma, we know that all elements inMt,S can be enumerated in time nO(w) as well.
The claimed time bound on the enumeration of the table indices follows. J

In the remainder of the proof we will describe how to fill the table entries from the
leaves of T to its root, asserting the correctness of the updates in the table. Together with
Proposition 5, this will yield the correctness of the algorithm. The description of how the
tables are filled at a leaf node are deferred to the full version [10].

Internal nodes of T . Let t ∈ V (T ) be an internal node of T , let (S,M,Q) ∈ St×Mt,S×Qt,S ,
let i ∈ [0..n] and j ∈ [0..2]. We show how to compute the table entry T [t, (S,M,Q), i, j] from

IPEC 2017
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table entries corresponding to the children a and b of t in T . To do so, we have to take into
account the ways in which partial solutions for G[Va ∪ bd(V̄a)] and G[Vb ∪ bd(V̄b)] interact.
We therefore try all pairs of indices Ia = ((Sa,Ma, Qa), ia, ja), Ib = ((Sb,Mb, Qb), ib, jb) and
for each such pair, first check whether it is ‘compatible’ with It: We say that Ia and Ib are
compatible with It if and only if any partial solution Ia represented by Ia for G[Va ∪ bd(V̄a)]
and Ib represented by Ib for G[Vb ∪ bd(V̄b)] can be combined to a partial solution It for
G[Vt ∪ bd(V̄t)] that is represented by the index It. We then set Tt[It] ..= 1 if and only if we
can find a compatible pair of indices Ia, Ib as above such that Ta[Ia] = 1 and Tb[Ib] = 1.

Step 0 (Valid Index). We first check whether the index It can represent a valid partial
solution of G[Vt ∪ bd(V̄t)]. The definition of the table entries requires that S�Q is a disjoint
union of paths, so if S �Q is not a disjoint union of paths, we set Tt[It] ..= 0 and skip the
remaining steps. In general, the number of degree one vertices in V (S �Q) ∩ Vt has to be
equal to j and we can proceed as described in Steps 1-4, except for the following special
cases, the details of which can be found in the full version [10].
Special Case 1 (j = 2, V (S �Q) ∩ Vt has 0 deg. 1 vertices).
Special Case 2 (j = 2, V (S �Q) ∩ Vt has 2 deg. 1 vertices in same component).
Special Case 3 (j = 0 and S = ∅).
Step 1 (Induced disjoint unions of paths). We now check whether Sa and Sb are compat-
ible with S. We have to ensure that S ∩ Ga,t̄ = Sa ∩ Ga,t̄, S ∩ Gb,t̄ = Sb ∩ Gb,t̄ and
Sa ∩Ga,b = Sb ∩Ga,b. If these conditions are not satisfied, we skip the current pair of indices
Ia, Ib. In the following, we use the notation R = Sa ∩Ga,b (= Sb ∩Ga,b).
Step 2 (Pairings of degree one vertices and j). First, we deal with Special Case 1, i.e.
j = 2 and S = ∅. We then check whether the graph obtained from taking R and adding an
edge (and, if not already present, the corresponding vertices) for each pair in Qa and Qb is
a single induced path. Note that we require the values of the integers ja and jb to be the
number of endpoints of the resulting path in Va and Vb, respectively.
Since the case j = 0 and S = ∅ is dealt with in Special Case 3 and S cannot be empty
whenever j = 1, we may from now on assume that S 6= ∅ and hence S �Q 6= ∅.1
Consider the graph on vertex set V (S) ∪ V (R) whose edges consist of the edges in S and R
together with the pairs in Qa and Qb. We then contract all edges in R and all edges that
were added due to the pairings Qa and Qb and incident with a vertex not in S, and denote
the resulting graph by H. Then, Qa and Qb are compatible if and only if H = S �Q. By
the definition of the table entries (and since by Step 0, S �Q is a disjoint union of paths) we
can then see that Qa, Qb together with the edges of R connect the paired degree one vertices
of Q as required. We furthermore need to ensure that the values of the integers ja and jb
are the number of degree one endpoints in H[Va] and H[Vb], respectively. For an illustration
see Figure 3.
Step 3 (Minimal vertex covers). We now describe the checks we have to perform to ensure
that Ma and Mb are compatible with M , which from now on we will denote by Mt to avoid
confusion. For ease of exposition, we denote by It, Ia and Ib (potential) partial solutions
corresponding to It, Ia and Ib, respectively.
Recall that the purpose of the minimal vertex cover Mt is to ensure that no unwanted
edges appear between vertices used by the partial solution It and any partial solution of
G[V̄t \ bd(V̄t)] that can be combined with It. Hence, when checking whether Ia and Ib can

1 Note that it could still happen that Q = ∅ but since this does not essentially influence the following
argument, we assume that Q 6= ∅.
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R

Sa \R Sb \R

V̄t

Va Vb
Q

Qa Qb

Figure 3 Step 3 of the join operation. Recall that Sa ∩ Ga,b = Sb ∩ Ga,b = R by Step 1.

be combined to It without explicitly having access to these sets of induced disjoint paths,
we have to make sure that the indices Ia and Ib assert the absence of unwanted edges — for
any intersection of a partial solution with Ga,ā and Gb,b̄, as well as with Ga,b. Recall that
Ga,ā = Ga,t̄ ∪Ga,b and Gb,b̄ = Gb,t̄ ∪Ga,b.
We distinguish several cases, depending on where the unwanted edge might appear: First,
between two intermediate vertices of partial solutions and second, between a vertex in Sa or
Sb and an intermediate vertex. Step 3.1 handles the former and Step 3.2 the latter. In Step
3.1, we additionally have to distinguish whether the edge might appear in Ga,b or in Ga,t̄
(respectively, in Gb,t̄). In the following, we letMout(b)

a
..= Mout

a ∩Vb andMout(a)
b

..= Mout
b ∩Va.

Step 3.1.1 (intermediate-intermediate, Ga,b). Mout(b)
a ⊆M in

b and Mout(a)
b ⊆M in

a : A ver-
tex v ∈Mout(b)

a can have a neighbor w ∈ Va which is used as an intermediate vertex in Ia.
Hence, to avoid that the unwanted edge {v, w} appears in the combined solution Ia ∪ Ib, we
have to make sure that v is not used by Ib, which is asserted if v ∈M in

b . By a symmetric
argument we justify that Mout(a)

b ⊆M in
a .

Step 3.1.2 (intermediate-intermediate, Ga,t̄ or Gb,t̄). We have to check the following two
conditions, the first one regarding M in

t and the second one regarding Mout
t .

(a) M in
t ⊆M in

a ∪M in
b : By the definition of M in

t , It has to avoid the vertices in M in
t . Hence,

Ia and Ib have to avoid the vertices in M in
t as well, which is ensured if for v ∈M in

t ∩ Va,
we have that v ∈M in

a and for w ∈M in
t ∩ Vb, we have that w ∈M in

b .
(b) For each vertex v ∈ Mout

t having a neighbor x in Va such that x is also contained in
Va \ (V (Sa) ∪M in

a ), we have that v ∈ Mout
a : Recall that by the definition of Mout

t ,
It could use the vertex x as an intermediate vertex. If x /∈ V (Sa) ∪M in

a , this means
that x might be used by Ia as an intermediate vertex as well. Now, in a table entry
representing a partial solution Ia using x, this is signalized by having v ∈ Mout

a . We
check the analogous condition for Mout

b .
Step 3.2 (intermediate-(Sa or Sb)). Na[V (Sb) \ V (Sa)] ⊆ M in

a and Nb[V (Sa) \ V (Sb)] ⊆
M in
b : We justify the first condition and note that the second one can be argued for symmetric-

ally. Clearly, Ia cannot have a neighbor x of any vertex v ∈ V (Sb) as an intermediate vertex,
if Ia is to be combined with Ib. However, if v ∈ V (Sa), then Ia does not use x by Part (2)
of the definition of the table entries. Note that this includes all vertices in V (R) ⊆ V (Sa). If
on the other hand, v ∈ V (Sb) \ V (Sa) then the neighbors of v have not been accounted for
earlier, since v is not a vertex in the partial solution Ia. Hence, we now have to assert that
Ia does not use x, the neighbor of v, and so we require that x ∈M in

a .

Step 4 (i). We consider all pairs of integers ia, ib such that i = ia + ib − |V (R)|. By Step 2,
all vertices in R are used in the partial solution It. They are counted twice, since they are
both accounted for in Ia and in Ib.
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Now, we let Tt[It] = 1 if and only if there is a pair of indices Ia = ((Sa,Ma, Qa), ia, ja)
and Ib = ((Sb,Mb, Qb), ib, jb) passing all checks performed in Steps 1-4 above, such that
Ta[Ia] = 1 and Tb[Ib] = 1. This finishes the description of the algorithm.

I Proposition 7 (F). Let t ∈ V (T ). The table entries Tt[It] computed according to Steps
0-4 above are correct.

By Propositions 5 and 7 and the fact that in the leaf nodes of T , we enumerate all
possible partial solutions, we know that the algorithm we described is correct. Since by
Proposition 6, there are at most nO(w) table entries at each node of T (and they can be
enumerated in time nO(w)), the value of each table entry in Tt as above can be computed in
time nO(w) · nO(w) · nO(1) = nO(w), since each check described in Steps 0-4 can be done in
time polynomial in n. Since additionally, |V (T )| = O(n), the total runtime of the algorithm
is nO(w) · nO(w) · O(n) = nO(w) and we have the following theorem.

I Theorem 8. There is an algorithm that given a graph G on n vertices and a branch
decomposition (T,L) of G, solves Longest Induced Path in time nO(w), where w denotes
the mim-width of (T,L).

3.2 Induced Disjoint Paths
In this section, we build upon the ideas of the algorithm for Longest Induced Path
presented above to obtain an nO(w)-time algorithm for the following parameterized problem.

Induced Disjoint Paths (IDP)/Mim-Width
Input: A graph G with branch decomposition (T,L) and pairs of vertices (x1, y1),
. . ., (xk, yk) of G.
Parameter: w ..= mimw(T,L)
Question: Does G contain a set of vertex-disjoint induced paths P1, . . . , Pk, such
that for i ∈ [k], Pi is a path from xi to yi and for i 6= j, Pi does not contain a vertex
adjacent to a vertex in Pj?

Throughout the remainder of this section, we refer to the vertices {xi, yi}, where i ∈ [k] as
the terminals and we denote the set of all terminals by X ..=

⋃
i∈[k]{xi, yi}. We furthermore

use the following notation: We denote by C(G) the set of all connected components of G and
for a vertex v ∈ V (G), CG(v) refers to the connected component containing v.

We observe how a solution P = (P1, . . . ,Pk) interacts with the graph G[Vt ∪ bd(V̄t)], for
some t ∈ V (T ). In this case, for each i ∈ [k], Pi is an (xi, yi)-path and additionally for j 6= i,
there is no vertex in Pi adjacent to a vertex of Pj . The intersection of P with G[Vt ∪ bd(V̄t)]
is a subgraph I = (I1, . . . , Ik), where each Ii is a (possibly empty) induced disjoint union of
paths which is the intersection of the (xi, yi)-path Pi with G[Vt ∪ bd(V̄t)]. Note that each
terminal vi ∈ {xi, yi} that is contained in Vt ∪ bd(V̄t) is also contained in V (Ii).

Again our goal is to bound the number of table entries at each node t ∈ V (T ) by nO(w),
so we focus on the intersection of I with the crossing graph Gt,t̄. There are several reasons
why Ii can have a nonempty intersection with the crossing graph Gt,t̄: If precisely one of xi
and yi is contained in Vt, then the path Pi must cross the boundary of Gt. If both xi and yi
are contained in Vt (V̄t), yet Pi uses a vertex of V̄t (Vt), then it crosses the boundary of Gt.

We now turn to the definition of the table indices. Let us first point out what table
indices in the resulting algorithm for Induced Disjoint Paths have in common with the
indices in the algorithm for Longest Induced Path and we refer to Section 3.1 for the
motivation and details. These similarities arise since in both problems, the intersection of a
solution with a crossing graph Gt,t̄ is an induced disjoint union of paths.
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The intersection of I with the edges of Gt,t̄ is S, an induced disjoint union of paths where
each component contains at least one edge.
M is a minimal vertex cover of Gt,t̄ − V (S) such that M ∩ V (S) = ∅.

The first important observation to be made is that by Lemma 4, the number of components
of S is linearly bounded in w and hence at most O(w) paths of P can have a nonempty
intersection with Gt,t̄. We need to store information about which path Pi (resp., to which
Ii) the components of S correspond to. To do so, another part of the index will be a labeling
function λ : C(S) → [k], whose purpose is to indicate that each component C ∈ C(S) is
contained in Iλ(C). We just observed that each such λ contains at most O(w) entries.

Let i ∈ [k]. Again, we need to indicate how (some of) the components of S are connected
via Ii in G[Vt]. As before, we do so by considering a pairing of the vertices in S[Vt] that
have degree one in S, however in this case we also have to take into account the labeling
function λ. That is, two such vertices s and t can only be paired if they belong to the same
induced disjoint union of paths Ii.

In accordance with the above discussion, we define the table entries as follows. We let
T [t, (S,M, λ,Qλ)] = 1 if and only if the following conditions are satisfied.
(i) There is an induced disjoint union of paths I = (I1, . . . , Ik) in G[Vt ∪ bd(V̄t)], such that

for i 6= j, Ii does not contain a vertex adjacent (in G) to a vertex in Ij . For each i ∈ [k],
we have that if vi ∈ {xi, yi} ∩ Vt, then vi ∈ Ii. Furthermore, vi has degree one in Ii.

(ii) (a) E(I) ∩ E(Gt,t̄) = E(S).
(b) λ : C(S)→ [k] is a labeling function of the connected components of S, such that

for each component C ∈ C(S), λ(C) = i if and only if C ⊆ Ii.
(iii) M is a minimal vertex cover of Gt,t̄ − V (S) such that V (I) ∩M = ∅.
(iv) Let D denote the set of vertices in S[Vt] that have degree one in S and let Xt = X ∩ Vt.

Then, Qλ is a pairing (i.e. a partition into pairs) of the vertices in D4Xt with the
following properties.2
1. (s, t) ∈ Qλ if and only if there is a path from s to t in I[Vt]. Note that this implies

that (s, t) ∈ Qλ only if both s and t belong to the same Ii for some i ∈ [k] and in
particular only if s, t ∈ V (λ−1(i)) ∪ {xi, yi}.

2. For each i ∈ [k], (xi, yi) ∈ Qλ only if λ−1(i) = ∅, i.e. no component of S has label i.
Using this definition of the table indices, one can design an algorithm solving Induced

Disjoint Paths in time nO(w) analogously to the algorithm for Longest Induced Path.
We give further details in the full version [10] and we have the following theorem.

I Theorem 9. There is an algorithm that given a graph G on n vertices, pairs of ter-
minal vertices (x1, y1), . . . , (xk, yk) and a branch decomposition (T,L) of G, solves Induced
Disjoint Paths in time nO(w), where w denotes the mim-width of (T,L).

3.3 H-Induced Topological Minor
Let G be a graph and uv ∈ E(G). We call the operation of replacing the edge uv by a new
vertex x and edges ux and xv the edge subdivision of uv. We call a graph H a subdivision
of G if it can be obtained from G by a series of edge subdivisions. We call H an induced
topological minor of G if a subdivision of H is isomorphic to an induced subgraph of G.

2 We denote by ‘4’ the symmetric difference, i.e. D4Xt = (D ∪ Xt) \ (D ∩ Xt). Qλ is a pairing on
D4Xt, since if a terminal vi is contained in D, it is supposed to be paired ‘with itself’: Since vi has
degree one in Ii by (1) and is incident to an edge in S, vi cannot be paired with another vertex.
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H-Induced Topological Minor/Mim-Width
Input: A graph G with branch decomposition (T,L)
Parameter: w ..= mimw(T,L)
Question: Does G contain H as an induced topological minor?

I Theorem 10 (F). There is an algorithm that given a graph G on n vertices and a branch
decomposition (T,L) of G, solves H-Induced Topological Minor in time nO(w), where
H is a fixed graph and w the mim-width of (T,L).
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