
Optimal Algorithms for Hitting (Topological)
Minors on Graphs of Bounded Treewidth∗†

Julien Baste1, Ignasi Sau2, and Dimitrios M. Thilikos3

1 Université de Montpellier, LIRMM, Montpellier, France
baste@lirmm.fr

2 AlGCo project-team, CNRS, LIRMM, France and Departamento de
Matemática, Universidade Federal do Ceará, Fortaleza, Brazil
ignasi.sau@lirmm.fr

3 AlGCo project-team, CNRS, LIRMM, France and Department of
Mathematics, National and Kapodistrian University of Athens, Greece
sedthilk@thilikos.info

Abstract
For a fixed collection of graphs F , the F-M-Deletion problem consists in, given a graph G

and an integer k, decide whether there exists S ⊆ V (G) with |S| ≤ k such that G \ S does not
contain any of the graphs in F as a minor. We are interested in the parameterized complexity
of F-M-Deletion when the parameter is the treewidth of G, denoted by tw. Our objective is
to determine, for a fixed F , the smallest function fF such that F-M-Deletion can be solved
in time fF (tw) · nO(1) on n-vertex graphs. Using and enhancing the machinery of boundaried
graphs and small sets of representatives introduced by Bodlaender et al. [J ACM, 2016], we
prove that when all the graphs in F are connected and at least one of them is planar, then
fF (w) = 2O(w·logw). When F is a singleton containing a clique, a cycle, or a path on i vertices,
we prove the following asymptotically tight bounds:

f{K4}(w) = 2Θ(w·logw).

f{Ci}(w) = 2Θ(w) for every i ≤ 4, and f{Ci}(w) = 2Θ(w·logw) for every i ≥ 5.

f{Pi}(w) = 2Θ(w) for every i ≤ 4, and f{Pi}(w) = 2Θ(w·logw) for every i ≥ 6.
The lower bounds hold unless the Exponential Time Hypothesis fails, and the superexponential
ones are inspired by a reduction of Marcin Pilipczuk [Discrete Appl Math, 2016]. The single-
exponential algorithms use, in particular, the rank-based approach introduced by Bodlaender et
al. [Inform Comput, 2015]. We also consider the version of the problem where the graphs in F
are forbidden as topological minors, and prove essentially the same set of results holds.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases parameterized complexity, graph minors, treewidth, hitting minors, to-
pological minors, dynamic programming, Exponential Time Hypothesis

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.4

∗ This work has been supported by project DEMOGRAPH (ANR-16-CE40-0028).
† A full version of this article is permanently available at https://arxiv.org/abs/1704.07284.

© Julien Baste, Ignasi Sau and Dimitrios M. Thilikos;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 4; pp. 4:1–4:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.4
https://arxiv.org/abs/1704.07284
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 Optimal Algorithms for Hitting Minors on Graphs of Bounded Treewidth

1 Introduction

Let F be a finite non-empty collection of non-empty graphs. In the F-M-Deletion (resp.
F-TM-Deletion) problem, we are given a graph G and an integer k, and the objective
is to decide whether there exists a set S ⊆ V (G) with |S| ≤ k such that G \ S does not
contain any of the graphs in F as a minor (resp. topological minor). These problems have
a big expressive power, as instantiations of them correspond to several notorious problems.
For instance, the cases F = {K2}, F = {K3}, and F = {K5,K3,3} of F-M-Deletion (or
F-TM-Deletion) correspond to Vertex Cover, Feedback Vertex Set, and Vertex
Planarization, respectively.

For the sake of readability, we use the notation F-Deletion in statements that apply to
both F-M-Deletion and F-TM-Deletion. Note that if F contains a graph with at least
one edge, then F-Deletion is NP-hard by the classical result of Lewis and Yannakakis [15].

In this article we are interested in the parameterized complexity of F-Deletion when
the parameter is the treewidth of the input graph. Since the property of containing a graph
as a (topological) minor can be expressed in Monadic Second Order logic (see [14] for explicit
formulas), by Courcelle’s theorem [5], F-Deletion can be solved in time O∗(f(tw)) on
graphs with treewidth at most tw, where f is some computable function1. Our objective is
to determine, for a fixed collection F , which is the smallest such function f that one can
(asymptotically) hope for, subject to reasonable complexity assumptions.

This line of research has attracted some interest during the last years in the parameterized
complexity community. For instance, Vertex Cover is easily solvable in time O∗(2O(tw)),
called single-exponential, by standard dynamic-programming techniques, and no algorithm
with running time O∗(2o(tw)) exists unless the Exponential Time Hypothesis (ETH)2 fails [12].

For Feedback Vertex Set, standard dynamic programming techniques give a running
time of O∗(2O(tw·log tw)), while the lower bound under the ETH [12] is again O∗(2o(tw)). This
gap remained open for a while, until Cygan et al. [6] presented an optimal algorithm running
in time O∗(2O(tw)), using the celebrated Cut&Count technique. This article triggered several
other techniques to obtain single-exponential algorithms for so-called connectivity problems
on graph of bounded treewidth, mostly based on algebraic tools [2, 8].

Concerning Vertex Planarization, Jansen et al. [13] presented an algorithm of time
O∗(2O(tw·log tw)) as a crucial subroutine in an FPT algorithm parameterized by k. Marcin
Pilipczuk [19] proved that this running time is optimal under the ETH, by using the framework
introduced by Lokshtanov et al. [17] for proving superexponential lower bounds.

Our results. We present a number of upper and lower bounds for F-Deletion parameter-
ized by treewidth, several of them being tight. Namely, we prove the following results, all
the lower bounds holding under the ETH:
1. For every F , F-Deletion can be solved in time O∗

(
22O(tw·log tw)

)
.

2. For every connected3 F containing at least one planar graph (resp. subcubic planar graph),
F-M-Deletion (resp. F-TM-Deletion) can be solved in time O∗

(
2O(tw·log tw)).

3. For any connected F , F-Deletion cannot be solved in time O∗(2o(tw)).
4. When F = {Ki}, the clique on i vertices, {Ki}-Deletion cannot be solved in time
O∗(2o(tw·log tw)) for i ≥ 4. Note that {Ki}-Deletion can be solved in time O∗(2O(tw))
for i ≤ 3 [6], and that the case i = 4 is tight by item 2 above (as K4 is planar).

1 We use the notation O∗(·) that suppresses polynomial factors depending on the size of the input graph.
2 The ETH states that 3-SAT on n variables cannot be solved in time 2o(n); see [12] for more details.
3 A connected collection F is a collection containing only connected graphs.

J. Baste, I. Sau and D.M.Thilikos 4:3

Table 1 Summary of our results when F equals {Ki}, {Ci}, or {Pi}. If only one value ‘x’ is
written in the table (like ‘tw’), it means that the corresponding problem can be solved in time
O∗(2O(x)), and that this bound is tight. An entry of the form ‘x ? y’ means that the corresponding
problem cannot be solved in time O∗(2o(x)) and that it can be solved in time O∗(2O(y)). We interpret
{C2}-Deletion as Feedback Vertex Set. Grey cells correspond to known results.

HH
HHHF

i 2 3 4 5 ≥ 6

Ki tw tw tw · log tw tw · log tw ? 2O(tw·log tw) tw · log tw ? 2O(tw·log tw)

Ci tw tw tw tw · log tw tw · log tw
Pi tw tw tw tw ? tw · log tw tw · log tw

5. When F = {Ci}, the cycle on i vertices, {Ci}-Deletion can be solved in time O∗(2O(tw))
for i ≤ 4, and cannot be solved in time O∗(2o(tw·log tw)) for i ≥ 5. Note that, by items 2
and 3 above, this settles completely the complexity of {Ci}-Deletion for every i ≥ 3.

6. When F = {Pi}, the path on i vertices, {Pi}-Deletion can be solved in time O∗(2O(tw))
for i ≤ 4, and cannot be solved in time O∗(2o(tw·log tw)) for i ≥ 6. Note that, by items 2
and 3 above, this settles completely the complexity of {Pi}-Deletion for every i ≥ 2,
except for i = 5, where there is still a gap.

The results discussed in the last three items are summarized in Table 1. Note that the
cases with i ≤ 3 were already known [6,12], except when F = {P3}.

Our techniques. The algorithm running in time O∗
(

22O(tw·log tw)
)
uses and, in a sense,

enhances, the machinery of boundaried graphs, equivalence relations, and representatives
originating in the seminal work of Bodlaender et al. [3], and which has been subsequently
used in [9, 10, 14]. For technical reasons, we use branch decompositions instead of tree
decompositions, whose associated widths are equivalent from a parametric point of view [20].

In order to obtain the faster algorithm running in time O∗
(
2O(tw·log tw)) when F is a

connected collection containing at least a (subcubic) planar graph, we combine the above
ingredients with additional arguments to bound the number and the size of the representatives
of the equivalence relation defined by the encoding that we use to construct the partial
solutions. Here, the connectivity of F guarantees that every connected component of a
minimum-sized representative intersects its boundary set (cf. the full version). The fact that
F contains a (subcubic) planar graph is essential in order to bound the treewidth of the
resulting graph after deleting a partial solution (cf. Lemma 11).

We present these algorithms for the topological minor version and then it is easy to adapt
them to the minor version within the claimed running time (cf. Lemma 9).

The single-exponential algorithms when F ∈ {{P3}, {P4}, {C4}} are ad hoc. Namely, the
algorithms for {P3}-Deletion and {P4}-Deletion use standard (but nontrivial) dynamic
programming techniques on graphs of bounded treewidth, exploiting the simple structure of
graphs that do not contain P3 or P4 as a minor (or as a subgraph, which in the case of paths
is equivalent). The algorithm for {C4}-Deletion is more involved, and uses the rank-based
approach introduced by Bodlaender et al. [2], exploiting again the structure of graphs that
do not contain C4 as a minor (cf. Lemma 14). It might seem counterintuitive that this
technique works for C4, and stops working for Ci with i ≥ 5 (see Table 1). A possible reason
for that is that the only cycles of a C4-minor-free graph are triangles and each triangle is
contained in a bag of a tree decomposition. This property, which is not true anymore for
Ci-minor-free graphs with i ≥ 5, permits to keep track of the structure of partial solutions
with tables of small size.

IPEC 2017

4:4 Optimal Algorithms for Hitting Minors on Graphs of Bounded Treewidth

As for the lower bounds, the general lower bound of O∗(2o(tw)) for connected collections
is based on a simple reduction from Vertex Cover. The superexponential lower bounds,
namely O∗(2o(tw·log tw)), are strongly based on the ideas presented by Marcin Pilipczuk [19]
for Vertex Planarization. We present a general hardness result (cf. Theorem 20) that
applies to wide families of connected collections F . Then, our superexponential lower bounds,
as well as the result of Marcin Pilipczuk [19] itself, are corollaries of this general result.
Combining Theorem 20 with 2, it easily follows that the running time O∗(2O(tw·log tw)) is
tight for a wide family of F , for example, when all graphs in F are planar and 3-connected.

Further research. In order to complete the dichotomy for cliques and paths (see Table 1),
it remains to settle the complexity when F = {Ki} with i ≥ 5 and when F = {P5}. An
ultimate goal is to establish the tight complexity of F-Deletion for all collections F , but
we are still very far from it. In particular, we do not know whether there exists some F
for which a double-exponential lower bound can be proved, or for which the complexities of
F-M-Deletion and F-TM-Deletion differ.

Note that the connectivity of F was relevant in previous work on the F-M-Deletion
problem taking as the parameter the size of the solution [7, 14]. Getting rid of connectivity
in both the lower and upper bounds we presented is an interesting avenue. We did not focus
on optimizing either the degree of the polynomials involved or the constants involved in our
algorithms. Concerning the latter, one could use the framework presented by Lokshtanov et
al. [16] to prove lower bounds based on the Strong Exponential Time Hypothesis.

Finally, let us mention that Bonnet et al. [4] recently studied generalized feedback vertex
set problems parameterized by treewidth, and obtained independently that excluding C4
plays a fundamental role in the existence of single-exponential algorithms, similarly to our
dichotomy for cycles summarized in Table 1.

Organization of the paper. In Section 2 we provide some preliminaries. The algorithms
based on boundaried graphs are presented in Section 3, and the single-exponential algorithms
for hitting paths and cycles are presented in Section 4. The superexponential lower bounds
are presented in Section 5. The general lower bound for connected collections and the proofs
of all the results marked with ‘(?)’ can be found in the full version.

2 Preliminaries

In this section we provide some preliminaries to be used in the following sections. We include
here only the “non-standard” definitions; the other ones can be found in the full version.

Block-cut trees. A connected graph G is biconnected if for any v ∈ V (G), G \ {v} is
connected (notice that K2 is the only biconnected graph that it is not 2-connected). A
block of a graph G is a maximal biconnected subgraph of G. We name block(G) the set of
all blocks of G and we name cut(G) the set of all cut vertices of G. If G is connected, we
define the block-cut tree of G to be the tree bct(G) = (V,E) such that V = block(G)∪ cut(G)
and E = {{B, v} | B ∈ block(G), v ∈ cut(G) ∩ V (B)}. Note that L(bct(G)) ⊆ block(G).
The block-cut tree of a graph can be computed in linear time using depth-first search [11].
Let F be a set of connected graphs such that for each H ∈ F , |V (H)| ≥ 2. Given H ∈ F
and B ∈ L(bct(H)), we say that (H,B) is an essential pair if for each H ′ ∈ F and each
B′ ∈ L(bct(H ′)), |E(B)| ≤ |E(B′)|. Given an essential pair (H,B) of F , we define the
first vertex of (H,B) to be, if it exists, the only cut vertex of H contained in V (B), or an

J. Baste, I. Sau and D.M.Thilikos 4:5

arbitrarily chosen vertex of V (B) otherwise. We define the second vertex of (H,B) to be an
arbitrarily chosen vertex of V (B) that is a neighbor in H[B] of the first vertex of (H,B).
Note that, given an essential pair (H,B) of F , the first vertex and the second vertex of
(H,B) exist and, by definition, are fixed. Moreover, given an essential pair (H,B) of F , we
define the core of (H,B) to be the graph H \ (V (B) \ {a}) where a is the first vertex of
(H,B). Note that a is a vertex of the core of (H,B).

Topological minors and graph separators. For the statement of our results, we need to
consider the class K containing every connected graph G such that for each B ∈ L(bct(G))
and for each r ∈ N, B 6�tm K2,r (or equivalently, B 6�m K2,r). Let H be a graph. We define
the set of graphs tpm(H) as follows: among all the graphs containing H as a minor, we
consider only those that are minimal with respect to the topological minor relation.

I Observation 1. There is a function f1 : N → N such that for every h-vertex graph H,
every graph in tpm(H) has at most f1(h) vertices.

I Observation 2. Given two graphs H and G, H is a minor of G if and only if some of the
graphs in tpm(H) is a topological minor of G.

Let G be a graph and S ⊆ V (G). Then for each connected component C of G \ S, we
define the cut-clique of the triple (C,G, S) to be the graph whose vertex set is V (C)∪ S and
whose edge set is E(G[V (C) ∪ S]) ∪

(
S
2
)
.

I Lemma 3 (?). Let i ≥ 2 be an integer, let H be an i-connected graph, let G be a graph,
and let S ⊆ V (G) such that |S| ≤ i− 1. If H is a topological minor (resp. a minor) of G,
then there exists a connected component G′ of G \ S such that H is a topological minor (resp.
a minor) of the cut-clique of (G′, G, S).

I Lemma 4 (?). Let G be a connected graph, let v be a cut vertex of G, and let V be the
vertex set of a connected component of G \ {v}. If H is a connected graph such that H �tm G

and for each leaf B of bct(H), B 6�tm G[V ∪ {v}], then H �tm G \ V .

Graph collections. Let F be a collection of graphs. From now on instead of “collection
of graphs” we use the shortcut “collection”. If F is a collection that is finite, non-empty,
and all its graphs are non-empty, then we say that F is a proper collection. For any proper
collection F , we define size(F) = max{{|V (H)| | H ∈ F} ∪ {|F|}}. Note that if the size of
F is bounded, then the size of the graphs in F is also bounded. We say that F is a planar
collection (resp. planar subcubic collection) if it is proper and at least one of the graphs in F
is planar (resp. planar and subcubic). We say that F is a connected collection if it is proper
and all the graphs in F are connected. We say that F is an (topological) minor antichain if
no two of its elements are comparable via the (topological) minor relation.

Let F be a proper collection. We extend the (topological) minor relation to F such that,
given a graph G, F �tm G (resp. F �m G) if and only if there exists a graph H ∈ F such
that H �tm G (resp. H �m G). We also denote extm(F) = {G | F �tm G}, i.e., extm(F)
is the class of graphs that do not contain any graph in F as a topological minor. The set
exm(F) is defined analogously.

Definition of the problems. Let F be a proper collection. We define the parameter tmF
as the function that maps graphs to non-negative integers as follows:

tmF (G) = min{|S| | S ⊆ V (G) ∧G \ S ∈ extm(F)}. (1)

IPEC 2017

4:6 Optimal Algorithms for Hitting Minors on Graphs of Bounded Treewidth

The parameter mF is defined analogously. The main objective of this paper is to study
the problem of computing the parameters tmF and mF for graphs of bounded treewidth
under several instantiations of the collection F . Note that in both problems, we can always
assume that F is an antichain with respect to the considered relation. Indeed, this is the case
because if F contains two graphs H1 and H2 where H1 �tm H2, then tmF (G) = tmF ′(G)
where F ′ = F \ {H2} (similarly for the minor relation).

Throughout the article, we let n and tw be the number of vertices and the treewidth of
the input graph of the considered problem, respectively. In some proofs, we will also use
w to denote the width of a (nice) tree decomposition that is given together with the input
graph (which will differ from tw by at most a factor 5).

3 Dynamic programming algorithms for computing tmF

The purpose of this section is to prove the following results.

I Theorem 5. If F is a proper collection, where d = size(F), then there exists an algorithm
that solves F-TM-Deletion in 22Od(tw·log tw) · n steps.

I Theorem 6. If F is a connected and planar subcubic collection, where d = size(F), then
there exists an algorithm that solves F-TM-Deletion in 2Od(tw·log tw) · n steps.

I Theorem 7. If F is a proper collection, where d = size(F), then there exists an algorithm
that solves F-M-Deletion in 22Od(tw·log tw) · n steps.

I Theorem 8. If F is a connected and planar collection, where d = size(F), then there exists
an algorithm that solves F-M-Deletion in 2Od(tw·log tw) · n steps.

The following lemma is a direct consequence of Observation 2.

I Lemma 9. Let F be a proper collection. Then, for every graph G, it holds that mF (G) =
tmF ′(G) where F ′ =

⋃
F∈F tpm(F).

It is easy to see that for every (planar) graph F , the set tpm(F) contains a subcubic
(planar) graph. Combining this observation with Lemma 9 and Observation 1, Theorems 7
and 8 follow directly from Theorems 5 and 6, respectively. The rest of this section is dedicated
to the proofs of Theorems 5 and 6. For this, we need a number of definitions about boundaried
graphs, their equivalence classes, and their branch decompositions. Many of these definitions
were introduced in [3, 9] (see also [10, 14]), and can be found in the full version. We present
here only the most fundamental definitions in order to be able to state our results.

Basic definitions about boundaried graphs. Let t ∈ N. A t-boundaried graph is a triple
G = (G,R, λ) where G is a graph, R ⊆ V (G), |R| = t, and λ : R → N+ is an injective
function. We call R the boundary of G and we call the vertices of R the boundary vertices of
G. We also call G the underlying graph of G. Moreover, we call t = |R| the boundary size of
G and we define the label set of G as Λ(G) = λ(R). We also say that G is a boundaried graph
if there exists an integer t such that G is an t-boundaried graph. We say that a boundary
graph G is consecutive if Λ(G) = [1, |R|]. We define B(t) as the set of all t-boundaried graphs.

Let G1 = (G1, R1, λ1) and G2 = (G2, R2, λ2) be two t-boundaried graphs. We define the
gluing operation ⊕ such that (G1, R1, λ1)⊕ (G2, R2, λ2) is the graph G obtained by taking
the disjoint union of G1 and G2 and then, for each i ∈ [1, t], identifying the vertex ψ−1

G1
(i)

and the vertex ψ−1
G2

(i).

J. Baste, I. Sau and D.M.Thilikos 4:7

Let F be a proper collection and let t be a non-negative integer. We define an equivalence
relation ≡(F,t) on t-boundaried graphs as follows: Given two t-boundaried graphs G1 and
G2, we write G1 ≡(F,t) G2 to denote that ∀G ∈ B(t), F �tm G⊕G1 ⇐⇒ F �tm G⊕G2.
We set up a set of representatives R(F,t) as a set containing, for each equivalence class C
of ≡(F,t), some consecutive t-boundaried graph in C with minimum number of edges and
no isolated vertices out of its boundary (if there are more than one such graphs, pick one
arbitrarily). Given a t-boundaried graph G we denote by rep(F)(G) the t-boundaried graph
B ∈ R(F,t) where B ≡(F,t) G and we call B the F-representative of G.

Given t, r ∈ N, we define A(t)
F,r as the set of all pairwise non-isomorphic boundaried graphs

that contain at most r non-boundary vertices, whose label set is a subset of [1, t], and whose
underlying graph belongs in extm(F). Given a t-boundaried graph B and an integer r ∈ N,
we define the (F , r)-folio of B, denoted by folio(B,F , r), as the set containing all boundaried
graphs in A(t)

F,r that are topological minors of B.

I Lemma 10 (?). There exists a function h1 : N×N→ N such that if F is a proper collection
and t ∈ N, then |R(F,t)| ≤ h1(d, t) where d = size(F). Moreover h1(d, t) = 22Od(t·log t) .

I Lemma 11 (?). There exists a function µ : N → N such that for every planar subcubic
collection F , every graph in extm(F) has branchwidth at most y = µ(d) where d = size(F).

We already have all the main ingredients to prove Theorem 5; the proof can be found in
the full version. In order to prove Theorem 6, we need Lemma 13 below, which should be
contrasted with Lemma 10. Its proof, which can be found in the full version, uses, among
others, the following result of Baste et al. [1] on the number of labeled graphs of bounded
treewidth.

I Proposition 12 (Baste et al. [1]). Let n, y ∈ N. The number of labeled graphs with at most
n vertices and branchwidth at most q is 2Oq(n·logn).

I Lemma 13 (?). Let t ∈ N and F be a connected and planar collection, where d = size(F),
and let R(F,t) be a set of representatives. Then |R(F,t)| = 2Od(t·log t). Moreover, there exists
an algorithm that given F and t, constructs a set of representatives R(F,t) in 2Od(t·log t) steps.

The proof of Theorem 6 can be found in the full version. The main difference with
respect to the proof of Theorem 5 is an improvement on the size of the tables of the dynamic
programming algorithm, namely |Pe|, where the fact that F is a connected and planar
subcubic collection is exploited.

4 Single-exponential algorithms for hitting paths and cycles

In this section we show that if F ∈ {{P3}, {P4}, {C4}}, then F-TM-Deletion can also
be solved in single-exponential time. It is worth mentioning that the {Ci}-TM-Deletion
problem has been studied in digraphs from a non-parameterized point of view [18].

The algorithms we present for {P3}-TM-Deletion and {P4}-TM-Deletion use stand-
ard dynamic programming techniques, and can be found in the full version. The definition
of nice tree decomposition can also be found there.

We proceed to use the dynamic programming techniques introduced by Bodlaender et
al. [2] to obtain a single-exponential algorithm for {C4}-TM-Deletion. The algorithm we
present solves the decision version of {C4}-TM-Deletion: the input is a pair (G, k), where
G is a graph and k is an integer, and the output is the boolean value tmF (G) ≤ k.

Given a graph G, we denote by n(G) = |V (G)|, m(G) = |E(G)|, c3(G) the number of
C3’s that are subgraphs of G, and cc(G) the number of connected components of G. We

IPEC 2017

4:8 Optimal Algorithms for Hitting Minors on Graphs of Bounded Treewidth

say that G satisfies the C4-condition if G does not contain the diamond as a subgraph
and n(G)−m(G) + c3(G) = cc(G). As in the case of P3 and P4, we state in Lemma 14 a
structural characterization of the graphs that exclude C4 as a (topological) minor.

I Lemma 14 (?). Let G be a graph. C4 6�tm G if and only if G satisfies the C4-condition.

I Lemma 15 (?). If G is a non-empty graph such that C4 6�tm G, then m(G) ≤ 3
2 (n(G)− 1).

We are now going to restate the tools introduced by Bodlaender et al. [2] that we need
for our purposes. Let U be a set. We define Π(U) to be the set of all partitions of U . Given
two partitions p and q of U , we define the coarsening relation v such that p v q if for each
S ∈ q, there exists S′ ∈ p such that S ⊆ S′. (Π(U),v) defines a lattice with minimum
element {{U}} and maximum element {{x} | x ∈ U}. On this lattice, we denote by u the
meet operation and by t the join operation. Let p ∈ Π(U). For X ⊆ U we denote by
p↓X = {S ∩X | S ∈ p, S ∩X 6= ∅} ∈ Π(X) the partition obtained by removing all elements
not in X from p, and analogously for U ⊆ X we denote p↑X = p∪ {{x} | x ∈ X \U} ∈ Π(X)
the partition obtained by adding to p a singleton for each element in X \U . Given a subset S
of U , we define the partition U [S] = {{x} | x ∈ U \S}∪{S}. A set of weighted partitions is a
set A ⊆ Π(U)× N. We also define rmc(A) = {(p, w) ∈ A | ∀(p′, w′) ∈ A : p′ = p⇒ w ≤ w′}.

We now define some operations on weighted partitions. Let U be a set and A ⊆ Π(U)×N.

Union. Given B ⊆ Π(U)× N, we define A ∪↓ B = rmc(A ∪ B).
Insert. Given a set X such that X ∩U = ∅, we define ins(X,A) = {(p↑U∪X , w) | (p, w) ∈ A}.
Shift. Given w′ ∈ N, we define shft(w′,A) = {(p, w + w′) | (p, w) ∈ A}.
Glue. Given a set S, we define Û = U ∪ S and glue(S,A) ⊆ Π(Û)× N as

glue(S,A) = rmc({(Û [S] u p↑Û , w | (p, w) ∈ A}).
Given w : Û × Û → N , we define gluew({u, v},A) = shft(w(u, v), glue({u, v},A)).

Project. Given X ⊆ U , we define X = U \X and proj(X,A) ⊆ Π(X)× N as
proj(X,A) = rmc({(p↓X , w) | (p, w) ∈ A,∀e ∈ X : ∀e′ ∈ X : p v U [ee′]}).

Join. Given a set U ′, B ⊆ Π(U)× N, and Û = U ∪ U ′, we define join(A,B) ⊆ Π(Û)× N as
join(A,B) = rmc({(p↑Û u q↑Û , w1 + w2) | (p, w1) ∈ A, (q, w2) ∈ B}).

I Proposition 16 (Bodlaender et al. [2]). Each of the operations union, insert, shift, glue, and
project can be carried out in time s · |U |O(1), where s is the size of the input of the operation.
Given two weighted partitions A and B, join(A,B) can be computed in time |A| · |B| · |U |O(1).

Given a weighted partition A ⊆ Π(U)×N and a partition q ∈ Π(U), we define opt(q,A) =
min{w | (p, w) ∈ A, p u q = {U}}. Given two weighted partitions A,A′ ⊆ Π(U) × N, we
say that A represents A′ if for each q ∈ Π(U), opt(q,A) = opt(q,A′). Given a set Z and a
function f : 2Π(U)×N × Z → 2Π(U)×N, we say that f preserves representation if for each two
weighted partitions A,A′ ⊆ Π(U)× N and each z ∈ Z, it holds that if A′ represents A then
f(A′, z) represents f(A, z).

I Proposition 17 (Bodlaender et al. [2]). The union, insert, shift, glue, project, and join
operations preserve representation.

I Theorem 18 (Bodlaender et al. [2]). There exists an algorithm reduce that, given a set of
weighted partitions A ⊆ Π(U)× N, outputs in time |A| · 2(ω−1)|U | · |U |O(1) a set of weighted
partitions A′ ⊆ A such that A′ represents A and |A′| ≤ 2|U |, where ω denotes the matrix
multiplication exponent.

J. Baste, I. Sau and D.M.Thilikos 4:9

We now have all the tools needed to describe our algorithm. This algorithm is based on
the one given in [2, Section 3.5] and E0 = {{v0, v} | v ∈ V (G)}. The role of v0 is to artificially
guarantee the connectivity of the solution graph, so that the machinery of Bodlaender et
al. [2] can be applied. In the following, for each subgraph H of G, for each Z ⊆ V (H), and
for each Z0 ⊆ E0 ∩ E(H), we denote by H〈Z,Z0〉 the graph

(
Z,Z0 ∪

(
E(H) ∩

(
Z\{v0}

2
)))

.
Given a nice tree decomposition of G of width w, we define a nice tree decomposition

((T,X), r,G) of G0 of width w + 1 such that the only empty bags are the root and the
leaves and for each t ∈ T , if Xt 6= ∅ then v0 ∈ Xt. Note that this can be done in linear
time. For each bag t, each integers i, j, and `, each function s : Xt → {0, 1}, each function
s0 : {v0} × s−1(1) → {0, 1}, and each function r : E(Gt

〈
s−1(1), s−1

0 (1)
〉
) → {0, 1}, if

C4 6�tm Gt
〈
s−1(1), s−1

0 (1)
〉
, we define:

Et(p, s, s0, r, i, j, `) = {(Z, Z0) | (Z, Z0) ∈ 2Vt × 2E0∩E(Gt)

|Z| = i, |E(Gt〈Z, Z0〉)| = j, c3(Gt〈Z, Z0〉) = `,

Gt〈Z, Z0〉 does not contain the diamond as a subgraph,
Z ∩Xt = s−1(1), Z0 ∩ (Xt ×Xt) = s−1

0 (1), v0 ∈ Xt ⇒ s(v0) = 1,

∀u ∈ Z \Xt : either t is the root or
∃u′ ∈ s−1(1) : u and u′ are connected in Gt〈Z, Z0〉,

∀v1, v2 ∈ s−1(1) : p v Vt[{v1, v2}]⇔ v1 and v2 are
connected in Gt〈Z, Z0〉,

∀e ∈ E(Gt〈Z, Z0〉) ∩
(

s−1(1)
2

)
: r(e) = 1⇔ e is an

edge of a C3 in Gt〈Z, Z0〉}
At(s, s0, r, i, j, `) = {p | p ∈ Π(s−1(1)), Et(p, s, s0, r, i, j, `) 6= ∅}.

Otherwise, i.e., if C4 �tm Gt
〈
s−1(1), s−1

0 (1)
〉
, we define At(s, s0, r, i, j, `) = ∅.

Note that we do not need to keep track of partial solutions if C4 �tm Gt
〈
s−1(1), s−1

0 (1)
〉
, as

we already know they will not lead to a global solution. Moreover, if C4 6�tm Gt

〈
s−1(1), s−1

0 (1)
〉
,

then by Lemma 15 it follows that m(Gt
〈
s−1(1), s−1

0 (1)
〉
) ≤ 3

2 (n(Gt
〈
s−1(1), s−1

0 (1)
〉
)− 1).

Using the definition of Ar, Lemma 14, and Lemma 15 we have that tm{C4}(G) ≤ k if and
only if for some i ≥ |V (G)∪{v0}|−k and some j ≤ 2

3 (i−1), we haveAr(∅,∅,∅, i, j, 1+j−i) 6=
∅. For each t ∈ V (T), we assume that we have already computed At′ for each children t′ of t,
and in the full version we show how to compute At, distinguishing several cases depending on
the type of node t. The proof of the following theorem can also be found in the full version.

I Theorem 19 (?). {C4}-TM-Deletion can be solved in time 2O(tw) · n7.

5 Superexponential lower bound for specific cases

In this section, we focus on the graph classes P = {Pi | i ≥ 6} and K, and we show the
following theorem. Let us recall that K is the set containing every connected graph G such
that for each leaf B ∈ L(bct(G)) and r ∈ N, B 6�tm K2,r (or B 6�m K2,r, which is equivalent).

I Theorem 20. Let F be a proper collection such that F ⊆ P or F ⊆ K. Unless the ETH
fails, neither F-TM-Deletion nor F-M-Deletion can be solved in time 2o(tw log tw) ·nO(1).

In particular, this theorem implies the result of Pilipczuk [19] as a corollary. Indeed,
Vertex Planarization corresponds to F-Deletion where F = {K5,K3,3}, and note that
{K5,K3,3} ⊆ K. Note also that Theorem 20 also implies the results stated in items 4 and 5
of the introduction, as all these graphs are easily seen to belong in K.

IPEC 2017

4:10 Optimal Algorithms for Hitting Minors on Graphs of Bounded Treewidth

I Corollary 21. Unless the ETH fails, for each F ∈ {{Ci} | i ≥ 5} ∪ {{Ki} | i ≥ 4}, neither
F-TM-Deletion nor F-M-Deletion can be solved in time 2o(tw log tw) · nO(1).

In the following we prove Theorem 20 for F-TM-Deletion , and we explain in the
full version how to modify the proof to obtain the result for F-M-Deletion. To prove
Theorem 20, we reduce from k × k Permutation Clique (k × k P. Clique for short),
defined by Lokshtanov et al. [17]. In this problem, we are given an integer k and a graph G
with vertex set [1, k]× [1, k]. The question is whether there is a k-clique in G with exactly
one element from each row and exactly one element from each column. Lokshtanov et al. [17]
proved that k × k P. Clique cannot be solved in time 2o(k log k) unless the ETH fails.

We now present the common part of the construction for both P and K. Let F be a
proper collection such that F ⊆ P or F ⊆ K. Note that if F ⊆ P, then |F| = 1. Let us fix
(H,B) to be an essential pair of F . We first define some gadgets that generalize the K5-edge
gadget and the s-choice gadget introduced in [19]. Given a graph G and two vertices x and y
of G, by introducing an H-edge gadget between x and y we mean that we add a copy of H
where we identify the first vertex of (H,B) with y and the second vertex of (H,B) with x.
Using the fact that an H-edge gadget between two vertices x and y is a copy of H and that
{x, y} is a cut set, we have that the H-edge gadgets clearly satisfy the following.

I Proposition 22. If F-TM-Deletion has a solution on (G, k) then this solution intersects
every H-edge gadget, and there exists a solution S such that for each H-edge gadget A
between two vertices x and y, V (A) ∩ S ⊆ {x, y} and {x, y} ∩ S 6= ∅.

In the following, we will always assume that the solution that we take into consideration
is a solution satisfying the properties given by Proposition 22. Moreover, we will restrict the
solution to contain only vertices of H-edge gadgets by setting an appropriate budget to the
number of vertices we can remove from the input graph G.

Given a graph G and two vertices x and y of G, by introducing a B-edge gadget between
x and y we mean that we add a copy of B where we identify the first vertex of (H,B) with
y and the second vertex of (H,B) with x. Given a graph G and three vertices x, y, and z
of G, by introducing a double H-edge gadget between x and z through y we mean that we
introduce an H-edge gadget between z and y, and a B-edge gadget between x and y.

Given a set of s vertices {xi | i ∈ [1, s]}, by introducing an H-choice gadget connecting
{xi | i ∈ [1, s]}, we mean that we add 2s + 2 vertices zi, i ∈ [0, 2s+ 1], for each i ∈ [0, 2s],
we introduce an H-edge gadget between zi and zi+1, and for each i ∈ [1, s], we introduce
a B-edge gadget between xi and z2i−1 and another one between xi and z2i. We see the
H-choice gadget as a graph induced by {xi | i ∈ [1, s]}∪{zi | i ∈ [0, 2s]}, the B-edge gadgets,
and the H-edge gadgets. The following proposition is similar to [19, Lemma 5].

I Proposition 23 (?). For every H-choice gadget C connecting {xi | i ∈ [1, s]}, any solution
S of F-TM-Deletion satisfies |S ∩V (C)| ≥ 2s, for every i ∈ [1, s] there exists a solution S
such that xi 6∈ S, and for every solution S with |S ∩ V (C)| = 2s, ∃i ∈ [1, s] such that xi 6∈ S.

We now start the description of the general construction. Given an instance (G, k) of
k × k P. Clique, we construct an instance (G′, `) of F-TM-Deletion, which we call the
general H-construction of (G, k). We first introduce k2 + 2k vertices, namely {ci | i ∈ [1, k]},
{ri | i ∈ [1, k]}, and {ti,j | i, j ∈ [1, k]}. For each i, j ∈ [1, k], we add the edges {rj , ti,j} and
{ti,j , ci}. For each j ∈ [1, k], we introduce an H-choice gadget connecting {ti,j | i ∈ [1, k]}.
This part of the construction is illustrated in the full version.

We now describe how we encode the edges of G in G′. For each e ∈ E(G), we define
the integers p(e), γ(e), q(e), and δ(e) in [1, k], such that e = {(p(e), γ(e)), (q(e), δ(e))} with

J. Baste, I. Sau and D.M.Thilikos 4:11

p(e) ≤ q(e). Note that the edges e with p(e) = q(e) are not relevant to our construction
and hence we safely forget them. For each e ∈ E(G), we add to G′ three new vertices, d`e,
dme , and dre, and four edges {d`e, cp(e)}, {d`e, rγ(e)}, {dre, cq(e)}, and {dre, rδ(e)}. We introduce a
double H-edge gadget between d`e and dre through dme . The encoding of an edge e ∈ E(G) is
also illustrated in the full version. For each 1 ≤ p < q ≤ k, we define E(p, q) = {e ∈ E(G) |
(p(e), q(e)) = (p, q)} and we introduce an H-choice gadget connecting {d`e | e ∈ E(p, q)}.

For each e ∈ E(G), we increase the size of the requested solution in G′ by one, the initial
budget being the sum of the budget given by Proposition 23 over all the H-choice gadgets
introduced in the construction. Because of the double H-edge gadget, we need to take in
the solution either dme or both d`e and dre. The extra budget given for each edge permits to
include dme in the solution. If the H-choice gadget connected to d`e already chooses d`e to be
in the solution, then we can use the extra budget given for the edge e to choose dre instead of
dme . In the case dme is chosen, in the resulting graph cp(e) remains connected to rγ(e) and
cq(e) remains connected to rδ(e). In the following, we consider only a solution S such that
either {d`e, dme , dre} ∩ S = {d`e, dre} or {d`e, dme , dre} ∩ S = {dme } for each e ∈ E(G).

We set ` = 3|E(G)|+ 2k2. By construction, this budget is tight and permits to take only
a minimum-size solution in every H-choice gadget and one endpoint of each H-edge gadget
between dre and dme , e ∈ E(G). This concludes the general H-construction (G′, `) of (G, k).

Let us now discuss about the treewidth of G′. By deleting 2k vertices, namely the vertices
{ci | i ∈ [1, k]} and the vertices {rj | j ∈ [1, k]}, we obtain a graph where each connected
component is an H-choice gadget, with eventually some pendant H-edge gadgets or double
H-edge gadgets. As the treewidth of the H-choice gadget, the H-edge gadget, and the double
H-choice gadget is linear in |V (H)|, we obtain that tw(G) = Od(k) (recall that d = size(F)).

We explain in the full version that, given a permutation σ : [1, k] → [1, k] defining a
solution of k × k P. Clique on (G, k), we can define a so-called σ-general H-solution S

having nice properties. Conversely, given a set S ⊆ V (G′) of size at most 3|E(G)| + 2k2

satisfying the so-called permutation property, we can define (cf. the full version) a unique
permutation σ that defines a k-clique in G; we call σ the associated permutation of S.

To conclude the reduction, we deal separately with the cases F ⊆ P and F ⊆ K. For
each such F , we assume w.l.o.g. that F is a topological minor antichain, we fix (H,B) to be
an essential pair of F , and given an instance (G, k) of k × k P. Clique, we start from the
general H-construction (G′, `) and add some edges and vertices in order to build an instance
(G′′, `) of F-TM-Deletion. We show that if k × k P. Clique on (G, k) has a solution
σ, then the σ-general H-solution is a solution of F-TM-Deletion on (G′′, `). Conversely,
we show that if F-TM-Deletion on (G′′, `) has a solution S, then this solution satisfies
the permutation property. This allows to prove that the associated permutation σ of S is a
solution of k × k P. Clique on (G, k). The details can be found in the full version.

References

1 Julien Baste, Marc Noy, and Ignasi Sau. On the number of labeled graphs of bounded
treewidth. CoRR, abs/1604.07273, 2016. To appear in Proc. of WG 2017.

2 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth.
Information and Computation, 243:86–111, 2015.

3 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (meta) kernelization. Journal of the ACM, 63(5):44:1–44:69,
2016.

IPEC 2017

4:12 Optimal Algorithms for Hitting Minors on Graphs of Bounded Treewidth

4 Édouard Bonnet, Nick Brettell, O-joung Kwon, and Dániel Marx. Generalized feedback ver-
tex set problems on bounded-treewidth graphs: chordality is the key to single-exponential
parameterized algorithms. CoRR, abs/1704.06757, 2017.

5 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

6 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van
Rooij, and Jakub Onufry Wojtaszczyk. Solving Connectivity Problems Parameterized by
Treewidth in Single Exponential Time. In Proc. of the 52nd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 150–159, 2011.

7 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-
Deletion: Approximation, Kernelization and Optimal FPT Algorithms. In Proc. of the
53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 470–
479, 2012.

8 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient compu-
tation of representative families with applications in parameterized and exact algorithms.
Journal of the ACM, 63(4):29:1–29:60, 2016.

9 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimen-
sionality and kernels. In Proc. of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 503–510, 2010. Full version available at CoRR, abs/1606.05689,
2016.

10 Valentin Garnero, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. Explicit linear
kernels via dynamic programming. SIAM Journal on Discrete Mathematics, 29(4):1864–
1894, 2015.

11 John E. Hopcroft and Robert Endre Tarjan. Efficient algorithms for graph manipulation.
Communations of ACM, 16(6):372–378, 1973.

12 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

13 Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization
algorithm. In Proc. of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1802–1811, 2014.

14 Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi
Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion
decompositions. ACM Transactions on Algorithms, 12(2):21:1–21:41, 2016.

15 J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties is
NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980.

16 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the expo-
nential time hypothesis. Bulletin of the EATCS, 105:41–72, 2011.

17 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameter-
ized problems. In Proc. of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 760–776, 2011.

18 Doowon Paik, Sudhakar M. Reddy, and Sartaj Sahni. Deleting vertices to bound path
length. IEEE Trans. Computers, 43(9):1091–1096, 1994. doi:10.1109/12.312117.

19 Marcin Pilipczuk. A tight lower bound for Vertex Planarization on graphs of bounded
treewidth. Discrete Applied Mathematics, 231:211–216, 2017.

20 Neil Robertson and Paul D. Seymour. Graph minors. X. Obstructions to tree decomposition.
Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991.

http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1109/12.312117

	Introduction
	Preliminaries
	Dynamic programming algorithms for computing tm_F
	Single-exponential algorithms for hitting paths and cycles
	Superexponential lower bound for specific cases

