
On the Parameterized Complexity of Red-Blue
Points Separation∗†

Édouard Bonnet1, Panos Giannopoulos2, and Michael Lampis3

1 Middlesex University, Department of Computer Science, London, UK
edouard.bonnet@dauphine.fr

2 Middlesex University, Department of Computer Science, London, UK
p.giannopoulos@mdx.ac.uk

3 Université Paris-Dauphine, PSL Research University, CNRS, LAMSADE,
Paris, France
michail.lampis@dauphine.fr

Abstract
We study the following geometric separation problem: Given a set R of red points and a set B
of blue points in the plane, find a minimum-size set of lines that separate R from B. We show
that, in its full generality, parameterized by the number of lines k in the solution, the problem is
unlikely to be solvable significantly faster than the brute-force nO(k)-time algorithm, where n is
the total number of points. Indeed, we show that an algorithm running in time f(k)no(k/ log k),
for any computable function f , would disprove ETH. Our reduction crucially relies on selecting
lines from a set with a large number of different slopes (i.e., this number is not a function of k).

Conjecturing that the problem variant where the lines are required to be axis-parallel is FPT
in the number of lines, we show the following preliminary result. Separating R from B with a
minimum-size set of axis-parallel lines is FPT in the size of either set, and can be solved in time
O∗(9|B|) (assuming that B is the smallest set).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases red-blue points separation, geometric problem, W[1]-hardness, FPT al-
gorithm, ETH-based lower bound

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.8

1 Introduction

We study the parameterized complexity of the following Red-Blue Separation problem:
Given a set R of red points and a set B of blue points in the plane and a positive integer
k, find a set of at most k lines that together separate R from B (or report that such a set
does not exist). Separation here means that each cell in the arrangement induced by the
lines in the solution is either monochromatic, i.e., contains points of one color only, or empty.
Equivalently, R is separated from B if every straight-line segment with one endpoint in R
and the other one in B is intersected by at least one line in the solution. Note here that we
opt for strict separation that is, no point in R∪ B is on a separating line. Let n := |R ∪ B|.

The variant where the separating lines sought must be axis-parallel will be simply referred
to as Axis-Parallel Red-Blue Separation.

∗ Research partially supported by EPSRC grant EP/N029143/1.
† A full version of the paper is available at https://arxiv.org/abs/1710.00637.

© Édouard Bonnet, Panos Giannopoulos, and Michael Lampis;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 8; pp. 8:1–8:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.8
https://arxiv.org/abs/1710.00637
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 On the Parameterized Complexity of Red-Blue Points Separation

Apart from being interesting in its own right, Red-Blue Separation is also directly
motivated by the problem of univariate discretization of continuous variables in the context of
machine learning [4, 8]. For example, its two-dimensional version models problem instances
with decision tables of two real-valued attributes and a binary decision function. The lines
to be found represent cut points determining a partition of the values into intervals and one
opts for a minimum-size set of cuts that is consistent with the given decision table. The
problem is also known as minimum linear classification; see [9] for an application in signal
processing. For the case where k = 1 and k = 2, Red-Blue Separation is solvable in
O(n) and O(n logn) time respectively [7]. When k is part of the input, it is known to be
NP-hard [10] and APX-hard [2] even for the axis-parallel variant. The latter also admits a
2-approximation [2].

Results. We first show that Red-Blue Separation is W[1]-hard in the solution size k and
that it cannot be solved in f(k)no(k/ log k) time (for any computable function f) unless ETH
fails. Our reduction is from Structured 2-Track Hitting Set, see Section 2, which
has been recently used for showing hardness for another classical geometric optimization
problem [1]. Then, in Section 3, we show that Axis-Parallel Red-Blue Separation is
FPT in the size of either of R and B. Our algorithm is simple and is based on reducing the
problem to 9|B|+2 instances of 2-SAT (assuming, w.l.o.g., that B is the smallest set).

Related work. The following monochromatic points separation problem has also been
studied: Given a set of points in the plane, find a smallest set of lines that separates every
point from every other point in the set (i.e., each cell in the induced arrangement must
contain at most one point). It has been shown to be NP-hard [5], APX-hard [2] and, in the
axis-parallel case, to admit a 2-approximation [2]. Very recently, the problem has been also
shown to admit an OPT logOPT-approximation [6]. Note here that it is trivially FPT in
the number of lines, as the number of cells in the arrangement of k lines is at most Θ(k2).
For results on several other related separation problems, see [7, 3].

2 Parameterized hardness for arbitrary slopes

We show that Red-Blue Separation is unlikely to be FPT with respect to the number
of lines k and establish that, unless the ETH fails, the nO(k)-time brute-force algorithm is
almost optimal. We reduce from Structured 2-Track Hitting Set [1], see below.

For positive integers x, y, let [x] be the set of integers between 1 and x, and [x, y] the set
of integers between x and y. For a totally ordered (finite) set X, an X-interval is any subset
of X of consecutive elements. In the 2-Track Hitting Set problem, the input consists
of an integer k, two totally ordered ground sets A and B of the same cardinality, and two
sets SA of A-intervals and SB of B-intervals. The elements of A and B are in one-to-one
correspondence φ : A→ B and each pair (a, φ(a)) is called a 2-element. The goal is to decide
if there is a set S of k 2-elements such that the first projection of S is a hitting set of SA,
and the second projection of S is a hitting set of SB. We will refer to the interval systems
(A,SA) and (B,SB) as track A and track B.

Structured 2-Track Hitting Set (S2-THS for short) is the same problem with
color classes over the 2-elements and a restriction on the one-to-one mapping φ. Given two
integers k and t, A is partitioned into (C1, C2, . . . , Ck) where Cj = {aj1, a

j
2, . . . , a

j
t} for each

j ∈ [k]. A is ordered: a1
1, a

1
2, . . . , a

1
t , a

2
1, a

2
2, . . . , a

2
t , . . . , a

k
1 , a

k
2 , . . . , a

k
t . We define C ′j := φ(Cj)

and bji := φ(aji) for all i ∈ [t] and j ∈ [k]. We now impose that φ is such that, for each

É. Bonnet, P. Giannopoulos, and M. Lampis 8:3

j ∈ [k], the set C ′j is a B-interval. That is, B is ordered: C ′σ(1), C
′
σ(2), . . . , C

′
σ(k) for some

permutation on [k], σ ∈ Sk. For each j ∈ [k], the order of the elements within C ′j can be
described by a permutation σj ∈ St such that the ordering of C ′j is: b

j
σj(1), b

j
σj(2), . . . , b

j
σj(t).

In what follows, it will be convenient to see an instance of S2-THS as a tuple I = (k ∈
N, t ∈ N, σ ∈ Sk, σ1 ∈ St, . . . , σk ∈ St,SA,SB), where SA is a set of A-intervals and SB is a
set of B-intervals. We denote by [aji , a

j′

i′] (resp. [bji , b
j′

i′]) all the elements a ∈ A (resp. b ∈ B)
such that aji ≤A a ≤A a

j′

i′ (resp. bji ≤B b ≤B bj
′

i′).
If one deconstructs S2-THS, one finds intervals, a permutation of the color classes

σ, and k permutations σj ’s of the elements within the classes. Intervals, thanks to their
geometric nature, can be realized by two red points which have to be separated from a
diagonal of blue points (see Figure 2), while permutation σ, being on k elements, can be
designed straightforwardly without blowing-up the size of the solution (see Figure 3). For
these gadgets, we would like to force the chosen lines to be axis-parallel. We obtain this by
surrounding them with long alleys made off long red paths parallel and next to long blue
paths (see Figure 1). The main challenge is to get the permutations σj ’s on t elements. To
attain this, we match a selected line Li (corresponding to an element of index i ∈ [t]) to a
specific angle αi, which leads to the intended position of the element of index σj(l) = i, for
some l ∈ [t] (see Figure 4). Note that the depicted gadget actually links the element of index
i to elements equal to or smaller than the element indexed at σj(l). By combining two of
these gadgets we can easily obtain only the intended position (see Figure 5).

I Theorem 1. Red-Blue Separation is W [1]-hard w.r.t. the number of lines k, and
unless ETH fails, cannot be solved in time f(k)no(k/ log k) for any computable function f .

Proof. We reduce from S2-THS, which is W [1]-hard and has the above lower bound under
ETH [1]. Let I = (k ∈ N, t ∈ N, σ ∈ Sk, σ1 ∈ St, . . . , σk ∈ St,SA,SB) be an instance of
S2-THS. We build an instance J = (R,B, 6k + 14) of Red-Blue Separation such that I
is a YES-instance for S2-THS if and only if R and B can be separated with 6k + 14 lines.

The points in R and B will have rational coordinates. More precisely, most points
will be pinned to a z-by-z grid where z is polynomial in the size of I. The rest will have
rational coordinates with nominator and denominator polynomial in z. Let Γ be the z-by-z
grid corresponding to the set of points with coordinates in [z] × [z]. We call horizontally
(resp. vertically) consecutive points a set of points of Γ with coordinates (a, y), (a+1, y), . . . (b−
1, y), (b, y) for a, b, y ∈ [z] and a < b (resp. (x, a), (x, a+ 1), . . . (x, b− 1), (x, b) for a, b, x ∈ [z]
and a < b). We denote those points by C(a→ b, y) (resp. C(x, a→ b)).

Long alley gadgets. In the gadgets encoding the intervals (see next paragraph), we will
need to restrict the selected separating lines to be almost horizontal or almost vertical. To
enforce that, we use the long alley gadgets. A horizontal long alley gadget is made of `
horizontally consecutive red points C(a→ a+ `− 1, y) and ` horizontally consecutive blue
points C(a → a + ` − 1, y′) with a, a + ` − 1, y 6= y′ ∈ [z] (see Figure 1a). A vertical long
alley is defined analogously. Long alleys are called so because `� |y − y′| thus, separating
the red points from the blue points of a horizontal (resp. vertical) long alley with a budget
of only one line, requires the line to be almost horizontal (resp. vertical). The use of the
long alleys will be the following. Let G be a gadget for which we wish the separating lines to
be almost horizontal or vertical. Say, G occupies a g-by-g subgrid of Γ (with g � z). We
place four long alley gadgets to the left, top, right, and bottom of G: horizontal ones to
the left and right, vertical ones to the top and bottom (as depicted in Figure 1c). The left
horizontal (resp. bottom vertical) long alley starts at the x-coordinate (resp. y coordinate)

IPEC 2017

8:4 On the Parameterized Complexity of Red-Blue Points Separation

(a) A horizontal long alley. Separating this
subset of points with one line requires the line
to be almost horizontal.

G

(b) Zoom in gadget G. The horizontal (resp.
vertical) lines are entering the gadget to the
left (resp. at the top) and exiting it to the
right (resp. at the bottom) with almost
the same y-coordinates (resp. x-coordinates).
Possible lines are thin dotted while an actual
choice of two lines is shown in bold.

G

(c) We put four long alleys to the left, top,
right, and bottom of gadget G where we want
the selected lines to be almost axis parallel.

Figure 1 The long alley gadget and its use in combination with another gadget.

of 1, whereas the right horizontal (resp. top vertical) long alley ends at the x-coordinate
(resp. y coordinate) of z; see Figure 5, where the long alleys are depicted by thin rectangles.

Note that we will not surround each and every gadget of the construction by four long
alleys. At some places, it will indeed be crucial that the lines can have arbitrary slopes.

Interval gadgets and encoding track A. The elements of A are represented by a diagonal
of kt−1 blue points. More precisely, we add the points (xA0 , yA0), (xA0 +4, yA0 +4), (xA0 +8, yA0 +
8), . . . , (xA0 + 4kt− 8, yA0 + 4kt− 8) to B for some offset xA0 , yA0 ∈ [z] that we will specify later.
We think those points as going from the first (xA0 , yA0) to the last (xA0 + 4kt− 8, yA0 + 4kt− 8).
An almost horizontal (resp. vertical) line just below (resp. just to the left of) the s-th blue
point of this diagonal translates as selecting the s-th element of A in the order fixed by ≤A.
The almost horizontal (resp. vertical) line just above (resp. just to the right of) the last blue
point corresponds to selecting the kt-th, i.e., last, element of A.

For each interval [aji , a
j′

i′] in SA (for some i, i′ ∈ [k], j, j′ ∈ [t]), that is, the interval
between the s := ((j − 1)t+ i)-th and the s′ := ((j′ − 1)t+ i′)-th elements of A, we add two
red points: one at (xA0 + 4s − 7, yA0 + 4s′ − 5) and one at (xA0 + 4s′ − 5, yA0 + 4s − 7) (see
Figure 2a for one interval gadget and Figure 2b for track A). Let R([aji , a

j′

i′]) be this pair of
red points. Informally, one red point has its projection along the x-axis just to the left of
the s-th blue point and its projection along the y-axis just above the s′-th blue point; the
other one has its projection along the x-axis just to the right of the s′-th blue point and its
projection along the y-axis just below the s-th blue point. For technical reasons, we add,
for every j ∈ [k], the pair R([aj1, a

j
t]) encoding the interval formed by all the elements of the

j-th color class of A. Adding these intervals to SA does not constrain the problem more.
We surround this encoding of track A, which we denote by G(A), with 4k long alleys,

whose width is 4t − 4, from x-coordinates xA0 + 4(j − 1)t − 2 to xA0 + 4jt − 6 for vertical
alleys (from y-coordinates yA0 + 4(j − 1)t − 2 to yA0 + 4jt − 6 for horizontal alleys). We

É. Bonnet, P. Giannopoulos, and M. Lampis 8:5

a1
a2
a3
a4
a5
a6
a7
a8
a9

(a) The interval gadget corresponding to
[a1, a9] = {a1, . . . , a9}. In thin dotted, the
mapping between elements and potential lines.
In bold, the choice of the lines corresponding
to picking a4. If one wants to separate these
points with two lines, one almost horizontal
and one almost vertical, the choice of the
former imposes the latter.

(b) The interval gadgets put together. A rep-
resentation of one track. Separating these
points with the fewest axis-parallel lines re-
quires taking the horizontal and vertical lines
associated to a minimum hitting set.

Figure 2 To the left, one interval. To the right, several put together to form one track.

alternate red-blue1 alleys and blue-red alleys for two contiguous alleys so that there is no
need to separate one from the other. We start with a red-blue alley for the left horizontal and
top vertical groups of alleys, and with a blue-red alley for the right horizontal and bottom
vertical. This last detail is not in any way crucial but permits the construction to be defined
uniquely and consistently with the choices of Figure 1c. This, together with the description
of long alleys in the previous paragraph, fully defines the 4k long alleys (see Figure 5).

The general intention is that in order to separate those two red points from the blue
diagonal with a budget of two almost axis-parallel lines, one should take two lines (one almost
horizontal and one almost vertical) corresponding to the selection of the same element of
A which hits the corresponding interval. In particular, taking two almost horizontal lines
(resp. two almost vertical lines) is made impossible due to those vertical (resp. horizontal) long
alleys. More precisely, the intended pairs of lines separating the red points R([aji , a

j′

i′]) from
the blue diagonal are of the form x = xA0 + 4ŝ−6, y = yA0 + 4ŝ−6 for ŝ ∈ [s, s′]. Furthermore,
the 4k long alleys force a pair of (almost) horizontal and vertical lines corresponding to one
element per color class to be taken.

For any s ∈ [tk], i ∈ [t], and j ∈ [k], such that s = (j− 1)t+ i, let HL(s) be the horizontal
line of equation y = yA0 + 4s − 6 and VL(s) the vertical line of equation x = xA0 + 4s − 6.
They correspond to selecting aji , the i-th element in the j-th color class of A. The goal of the
remaining gadgets is to ensure that when the lines HL(s) and VL(s) (with s = (j − 1)t+ i)
are chosen, additional lines corresponding to selecting element bji of B have to be expressly
selected. We define HL := {HL(s) | s ∈ [tk]} and VL := {VL(s) | s ∈ [tk]}.

Encoding inter-class permutation σ. To encode the permutation σ of the k color classes
of I, we allocate a square subgrid of the same dimension as the space used for the encoding
of track A, roughly 4tk-by-4tk, and we place it to the right of A right as depicted in Figure 5.
This square subgrid is naturally and regularly split into k2 smaller square subgrids of equal
dimension (roughly 4t-by-4t). This decomposition can be seen as the k color classes of

1 i.e., for horizontal (resp. vertical) alleys, the red points are above (resp. to the left of) the blue points.

IPEC 2017

8:6 On the Parameterized Complexity of Red-Blue Points Separation

1

2

3

4

5

3 1 4 5 2

Figure 3 Encoding permutation σ = 31452. The choices within the five color classes are
transferred from almost horizontal lines to almost vertical ones. This way, we obtain the desired
reordering of the color classes.

I, or equivalently, the k-by-k crossing2 obtained by drawing horizontal lines between two
contiguous horizontal long alleys and vertical lines between two contiguous vertical long
alleys. We only put points in exactly one smaller square subgrid per column and per row.
Let σ := σ(1)σ(2) . . . σ(k) and Cell(a, b) be the smaller square subgrid in the a-th row and
b-th column of the k-by-k crossing. For each j ∈ [k], we put in Cell(j, σ(j)) a diagonal of
t− 1 blue points and two red points corresponding to the full interval [aj1, a

j
t] (see Figure 3).

We denote by G(σ) those sets of red and blue points in the encoding of σ. We surround G(σ)
by 2k vertical long alleys similar to the 2k long alleys surrounding G(A). Notice that G(σ)
and G(A) share the same 2k surrounding horizontal long alleys.

The way the gadget G(σ) works is quite intuitive. Given k choices of horizontal lines
originating from a separation in G(A) and a budget of k extra lines for the separation within
G(σ), the only option is to copy with the vertical line the choice of the horizontal line. It
results in a vertical propagation of the initial choices accompanied by the desired reordering
of the color classes. The vertical line matching the choice of HL(s) in the corresponding cell
of G(σ) is denoted by VL′(s). Let VL′ := {VL′(s) | s ∈ [tk]}. Note that corresponding lines
in VL and in VL′ have a different order from left to right.

Encoding of the intra-class permutations σj ’s and track B. If the encoding of permutation
σ is conceptually simple, the number of intended lines separating red and blue points in G(σ)
has to be linear in the number of permuted elements. Since we wish to encode a permutation
σj (for every j ∈ [k]) on t elements, we cannot use the same mechanism as it would blow-up
our parameter dramatically and would not result in an FPT reduction.

For the gadget G≈v(σj) partially encoding the permutation σj , we will crucially use the
fact that separating lines can have arbitrary slopes. Slightly to the right (at distance at
least `) of the vertical line bounding the right end of G(σ) and far in the south direction,
we place a gadget G(B) encoding track B similarly to the encoding of track A up to some
symmetry that we will make precise later. We also incline the whole encoding of track B with
a small, say 5, degree angle, in a way that its top-left corner is to the right of its bottom-left
corner. We round up the real coordinates that this rotation incurs to rationals at distance

2 we use this term informally to avoid confusion with what we have been calling grids so far.

É. Bonnet, P. Giannopoulos, and M. Lampis 8:7

less than, say, (kt)−10. We denote by v̂ the distance along the y-axis between G(σ) and G(B).
Eventually v̂ will be chosen much larger than Θ(kt), which is the size of G(A), G(B), G(σ).
Below G(σ) at a distance 2v̂ along the y-axis, we place gadgets G≈v(σj)’s; from left to right,
we place G≈v(σσ(1)), G≈v(σσ(2)), . . . , G≈v(σσ(k)) such that for every i ∈ [k], G≈v(σσ(i)) falls
below the i-th column of the k-by-k crossing of G(σ). Gadgets G≈v(σj)’s are represented by
small round shapes in Figure 5. Notwithstanding what is drawn on the overall picture, the
G≈v(σj)’s can be all placed at the same y-coordinates. Let y1 := y0 − 2v̂ (the exact value of
y1 is not crucial). Also, we represent track B slanted by a 45 degree angle, instead of the
actual 5 degree angle, to be able to fit everything on one page and convey the main ideas
of the construction. In general, for the figure to be readable, the true proportions are not
respected. The size of every gadget is much smaller than the distance between two different
groups of gadgets, so that every line entering a gadget traverses it in an axis-parallel fashion.

Gadget G≈v(σj) is built as follows. For each i ∈ [t] and j ∈ [k], we draw a fictitious
points pji corresponding to the intersection of a close to vertical line corresponding to picking
element bji in gadget G(B) with the bottom end of G(B). From left to right, the pji ’s have
the same order as the bji ’s in (B,≤B). For every s = (j − 1)t+ i (with j ∈ [k] and i ∈ [t]),
let qji be the point of y-coordinate y1 on the line VL′(s). We define the line SL(s) as going
through pji and qji , and set SL := {SL(s) | s ∈ [tk]}. We add two blue points just to the left
and just to the right of qji at distance ε := z−10. We add two blue points on line SL(s), one
to the left of qji and one to the right of qji . Finally, we place two red points for each G≈v(σj)
at the bottom-left and top-right of the gadget (see Figure 4). In the figure, the lines in SL
form a large angle with the y-axis, while in fact they are quite close to a 5 degree angle and
behave like relatively vertical3 lines within G(B) (since G(B) is also inclined by 5 degrees).

Assuming that line VL′(s = (j − 1)t + i) has been selected, it can be observed from
Figure 4 that separating the red points from the blue points in G≈v(σj) with a budget of
one additional line requires to take a line crossing VL′(s) at (or very close to) qji and with a
higher or equal slope to SL(s). It is not quite what we wanted. What we achieved so far is
only to link the choice of aji with the choice of an element smaller or equal to bji . We will
use a symmetry G≈h(σj) of gadget G≈v(σj) to get the other inequality so that choosing some
lines corresponding to aji actually forces to take some lines corresponding to bji .

We add a gadget G(id) below the G≈v(σj)’s. G(id) is obtained by mimicking G(σ)
for the identity permutation. We surround G(id) by 2k new horizontal long alleys. The
horizontal line matching the choice of VL′(s) in G(id) is denoted by HL′(s). At a distance
ĥ ≈ v̂/(cos(5◦) · sin(5◦)) to the right of G(id) we place gadgets G≈h(σj)’s analogously to the
G≈v(σj)’s. The fictitious points p′ji , p

j
i used for the construction of the lines SL′(s), SL(s)

are located at the right end of G(B) and ordered as B when read from top to bottom. The
difference in the construction of G(B) from the B-intervals (compared to G(A) from the
A-intervals) is that the diagonal of blue points go from the top-left corner to the bottom-right
corner (instead of bottom-left to top-right). Similarly to our previous definitions, we define
HL′ := {HL′(s) | s ∈ [tk]} and SL′ := {SL′(s) | s ∈ [tk]}. The choice of ĥ makes the lines of
SL′ form a close to 5 degree angle with the x-axis and so enter G(B) relatively horizontal.

Putting the pieces together. We already hinted at how the different gadgets are combined
together. We choose the different typical values so that: kt � v̂ < ĥ � z. For instance,
v̂ := 100((kt)2 + 1) and z := 100(ĥ5 + 1). An important and somewhat hidden consequence of
z being much greater than v̂ and ĥ is that the bulk of the construction (say, all the gadgets

3 By that, we mean that the lines are close to vertical for axes aligned with the encoding of track B.

IPEC 2017

8:8 On the Parameterized Complexity of Red-Blue Points Separation

1 2 3 4 5 6 7 8 123 45 67 8

Figure 4 Half-encoding of permutation σj = 73285164 of the j-th color class. Observe that the
choice of the, say, sixth almost horizontal candidate line only forces to take the slanted line depicted
in bold or a line having the same intersection with the almost horizontal line but a larger slope. For
the sake of legibility, the angles between the vertical lines and the slanted lines are exaggerated.

which are not long alleys) occupies a tiny space in the top-left corner of Γ. We set the length
` of the long alleys to 100(k2 + 1). Point (xA0 , yA0) corresponds to the bottom-left corner of
the square in bold with a diagonal close to the overall top-left corner.

Slightly outside grid Γ we place 14 pairs of long alleys (7 horizontal and 7 vertical) of
width, say, (kt)−10 to force the 14 lines in bold in Figure 5. Note that, on the figure, we do
not explicitly represent those long alleys but only the lines they force. The purpose of those
new long alleys is to separate groups of gadgets from each other. Going clockwise all around
the grid Γ, we alternate red-blue and blue-red alleys so that two consecutive long alleys do
not need a further separation. The even parity of those alleys make this alternation possible.
Each one of the 64 faces that those 14 lines define is called a super-cell.

The four lines in bold surrounding G(B) are close (say, at distance 10t) to the north,
south, west, and east ends of that gadget. On the four super-cells adjacent to the super-cell
containing G(B), shown in gray, we place 4k long alleys each of width 4t− 4, analogously to
what was done for G(A), but slanted by a 5 degree angle (as the gadget G(B)). As for track
A, these alleys force, relatively to the orientation of G(B), one close to horizontal line and
one close to vertical line per color class. The long alleys are placed just next to G(B) and
are not crossed by any other candidate lines.

This finishes the construction. We ask for a separation of R and B with 6k + 14 lines.
The correctness of the reduction is deferred to the long version of the paper. J

3 FPT Algorithm Parameterized by Size of Smaller Set

We present a simple FPT algorithm for Axis-Parallel Red-Blue Separation para-
meterized by min{|R|, |B|}. In the following, w.l.o.g., we assume that B is the smaller
set.

I Theorem 2. An optimal solution of Axis-Parallel Red-Blue Separation can be
computed in O(n logn+ n|B|9|B|) time.

É. Bonnet, P. Giannopoulos, and M. Lampis 8:9

Figure 5 The overall picture. The thin rectangles are long alleys, the bold large squares with a
diagonal are the encoding of track A, in the top left corner, and track B, slanted by 45 degrees (for
the sake of fitting the whole construction on one page; in reality the encoding of B is only inclined
by 5 degrees). The smaller squares with a diagonal are simple interval gadgets and the small round
gadgets are half-encodings of the permutations σi’s. The four super-cells filled with grey contain 4k
long alleys slanted by 5 degrees. The (super-)cells filled with red and blue match their color, and
are monochromatic once the 14 lines imposed by the outermost long alleys have been selected.

We first give a high-level description of the algorithm. It begins by subdividing the plane
into at most |B|+ 1 vertical strips, each consisting of the area “between” two horizontally
successive blue points, and at most |B| + 1 horizontal strips, each consisting of the area
“between” two vertically successive blue points (see Figure 6a). Since each strip can contain
only red points in its interior, an optimal solution uses at most two lines inside a single
strip (Lemma 5(a)). We can therefore guess (by exhaustive enumeration) the number of
lines used in each strip in an optimal solution. This gives a running time of roughly 9|B|.
A second observation is that if an optimal solution uses two lines in a strip, these can be
placed as far away from each other as possible (Lemma 5(b)). To complete the solution
we must decide where to place the lines in strips that contain only one line of an optimal
solution. We consider every pair of blue and red points whose separation may depend on the
exact placement of these lines. The key idea is that the separation of two such points can
be expressed as a 2-CNF constraint. If the upcoming formal exposition seems a bit more
complicated than this informal idea, it is because we have to deal with points sharing the
same x- or y-coordinates.

IPEC 2017

8:10 On the Parameterized Complexity of Red-Blue Points Separation

pb

p

(a) The cell decomposition (solid lines), a guess of how
S intersects it (dashed lines), and an interesting cell
(in gray) for a point pb (bottom-right corner). The red
point p cannot be in the south-east quadrant of this
cell which translates to the 2-clause y2

p ∨ ¬x4
p. Indeed,

it should be that the horizontal line of S is below it or
that the vertical line is to its right.

p
p′

(b) Two consecutive red points in a
horizontal strip Rh(i). If the corres-
ponding line of S is below p, then it
is also below p′ which translates to
yi

p → yi
p′ .

p

p′

(c) Two consecutive red points in a
vertical strip Rv(j). If the correspond-
ing line of S is to the left of p, then it
is also to the left of p′ which translates
to xi

p → xi
p′ .

Figure 6 Illustration of the algorithm and the two kinds of clauses of the 2-SAT instance.

We now proceed to a formal description of our algorithm, beginning with some definitions.
For a point p ∈ R2, let p(x) and p(y) be its x-coordinate and y-coordinate, respectively. Also,
let X,Y be the sets of x, y coordinates of the points in B. In order to ease presentation later
on, with a slight terminology abuse, we add −∞,+∞ to both X and Y . Let X(i), Y (i) be
the respective i-th elements of these sets in increasing order with 0 6 i, and let k = |X| − 2
and l = |Y | − 2; k 6 |B| and l 6 |B|.

I Definition 3. The vertical strips are defined as Vi = {p ∈ R2 | X(i) 6 p(x) 6 X(i+ 1)}
for i ∈ [0, k].

I Definition 4. The horizontal strips are defined as Hi = {p ∈ R2 | Y (i) 6 p(y) 6 Y (i+ 1)}
for i ∈ [0, l].

The horizontal and vertical strips defined above essentially partition the plane into open
monochromatic (red) or empty regions, while the boundaries of the strips may contain both
red and blue points. As a result, we have the following properties of an optimal solution.

I Lemma 5. (a) An optimal solution of Axis-Parallel Red-Blue Separation contains
at most two lines in each horizontal or vertical strip. (b) In the case where a strip has two
lines, these lines can be assumed to be placed in a way such that all red points in the interior
of the strip lie between them.

Proof of Theorem 2. We describe an FPT algorithm which first guesses how many lines an
optimal solution uses in each strip and then produces a 2-SAT instance of size O(|B|n) in
order to check if its guess is feasible. We assume that we have access to two lists containing
the input points sorted lexicographically by their (x, y) and (y, x) coordinates.

Let S be some optimal solution. We first guess how many lines of S are in each horizontal
and each vertical strip. Since, by Lemma 5, S contains at most two lines per strip, and there

É. Bonnet, P. Giannopoulos, and M. Lampis 8:11

are l + 1 6 |B| + 1 horizontal strips and k + 1 6 |B| + 1 vertical strips, there are at most
3|B|+1 possibilities to guess from for each direction thus, O(9|B|) in total.

In what follows, we assume that we have fixed how many lines of S are in each strip. We
give an algorithm deciding in polynomial time if such a specification gives a feasible solution.
Since a specification fully determines the number of lines of a solution, the algorithm simply
goes through all specifications and selects one with minimum cost among all feasible ones.

We produce a 2-SAT instance, which will be satisfiable if and only if a given specification
is feasible. We first define the variables: for each horizontal strip Hi that contains exactly
one line from S and for each red point p ∈ Hi, we define a variable yip. Its informal meaning
is “the line of S in Hi is below point p”. When p lies on the upper (lower) boundary of Hi, yip
is set to true (false) by default. Similarly, for each vertical strip Vj that contains exactly one
line from S and for each red point p ∈ Vj , we define a variable xjp. Its meaning is “the line of
S in Vj is to the left of p”. It is set to true (false) when p lies on the right (left) boundary of
Vj . We have constructed O(n) variables (at most four for each point of R).

Next, we construct 2-CNF clauses imposing the informal meaning described. For each
strip Hi that contains exactly one horizontal line from S and each pair of red points p, p′ ∈ Hi

that are consecutive in lexicographic (y, x) order, we add the clause (yip → yip′). We can skip
pairs that have a point lying on the upper or lower boundary of Hi as the corresponding
variable has been already set to true or false respectively and the clause is satisfied; see the
description in the previous paragraph. Similarly, for each strip Vj that contains exactly one
vertical line from S and each pair of red points p, p′ ∈ Vj that are consecutive in lexicographic
(x, y) order, we add the clause (xjp → xjp′); pairs that have a point lying on the left or right
boundary of Vj do not produce any clauses. Given any solution, we can construct from its
lines an assignment following the informal meaning described above that satisfies all clauses
added so far, while from any satisfying assignment we can find lines according to the informal
meaning. We call the O(n) clauses constructed so far the coherence part of our instance.

What remains is to add some further clauses to our instance to ensure also that the
solution is feasible, that is, it separates all pairs of red and blue points.

Consider a cell Cij = Hi ∩ Vj , where i ∈ [0, l] and j ∈ [0, k]. A red point p ∈ Cij is called
Cij-separable for a point pb ∈ B, if p can be separated from pb by a vertical or horizontal line
running through the interior of Cij . We will sometimes call p just separable when Cij and pb
are obvious from the context. We say that Cij is interesting for a point pb ∈ B if the following
conditions hold: (i) Cij contains at least one red point that is Cij-separable for pb; (ii) at
least one of Hi or Vj contains at most one horizontal or one vertical line from S respectively;
(iii) if X(j + 1) < pb(x) or pb(x) < X(j), then there is no vertical line from S in a strip
between pb and Vj ; and (iv) if Y (i+ 1) < pb(y) or pb(y) < Y (i), then there is no horizontal
line from S in a strip between pb and Hi. Note that even if Cij is interesting for pb, it may
contain a red point p that is already separated from pb by a line going through Cij : this
happens exactly when Hi or Vj contains two horizontal or vertical lines from S respectively
and p lies either in the interior of Cij or on its boundary but not on the same side of Hi

or Vj as pb. The motivation for these definitions is that the cells that are interesting for pb
contain exactly the red points that need to be separated from pb by lines going through the
cells and whose positions cannot be predetermined. We therefore have to add some clauses
to express these constraints.

For each pb ∈ B and each cell Cij that is interesting for pb we construct a clause for every
red point p ∈ Cij that is separable and not already separated from pb. Initially, the clause is
empty. If the specification says that there is exactly one line from S in Hi, we add to the
clause a literal as follows: if y(pb) > Y (i+ 1), we add ¬yip (meaning that the horizontal line

IPEC 2017

8:12 On the Parameterized Complexity of Red-Blue Points Separation

is above p, and hence separates p from pb); if y(pb) 6 Y (i), we add yip. Furthermore, if the
specification says that there is exactly one line from S in Vj , we add to the clause a literal as
follows: if x(pb) > X(i + 1), we add the literal ¬xjp; if x(pb) 6 X(i), we add xjp. Observe
that this process produces clauses of size at most two. It may produce an empty clause,
rendering the 2-SAT unsatisfiable, in the case where there is no line of S in Hi or Vj , but
this is desirable since in this case no feasible solution matches the specification. Note that we
have constructed O(|B||R|) clauses in this way (at most four for each pair of a blue with a
red point). Hence, the 2-SAT formula we have constructed has O(n) variables and O(|B|n)
clauses. Since 2-SAT can be solved in linear time, we obtain the promised running time.

To complete the proof we rely on the informal correspondence between assignments to
the 2-SAT instance and Axis-Parallel Red-Blue Separation solutions. If there exists
a solution that agrees with the guessed specification, this solution can easily be translated
to an assignment that satisfies the coherence part of the 2-SAT formula. Furthermore, for
any blue point pb and any separable and not already separated red point p in a cell Cij
that is interesting for pb, the solution must be placing at least one line going through Cij
in a way that separates pb from p (this follows from the fact that the cell is interesting).
Hence, the corresponding 2-SAT clauses are also satisfied. Conversely, given an assignment
to the 2-SAT instance, we construct an Axis-Parallel Red-Blue Separation solution
following the informal meaning of the variables. Note that for every blue point pb, every red
point is Cij-separable for pb for at least one cell Cij . For any cell Cij that is not interesting
for pb and contains at least one separable point, we have that either all red points in the
cell are separated from pb by lines outside the cell or all separable red points in the cell are
separated from pb by the four lines running through the cell. If Cij is interesting for pb, then
all separable (and not already separated) red points in the cell are separated from pb because
of the additional 2-SAT clauses we added in the second part of the construction. J

4 Open problems

The most intriguing open problem is settling the complexity of Axis-Parallel Red-Blue
Separation w.r.t. the number of lines. We conjecture it to be FPT. Other problems include
the complexity of Red-Blue Separation when the lines can have three different slopes
and of Axis-Parallel Red-Blue Separation in 3-dimensions.

Acknowledgements. We thank Sergio Cabello and Christian Knauer for fruitful discussions.

References

1 Édouard Bonnet and Tillmann Miltzow. Parameterized hardness of art gallery problems.
In Piotr Sankowski and Christos D. Zaroliagis, editors, 24th Annual European Symposium
on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs,
pages 19:1–19:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/
LIPIcs.ESA.2016.19.

2 G. Calinescu, A. Dumitrescu, H.J. Karloff, and P. Wan. Separating points by axis-parallel
lines. Int. J. Comput. Geometry Appl., 15(6):575–590, 2005.

3 O. Devillers, F. Hurtado, M. Mora, and C. Seara. Separating several point sets in the plane.
In Proc. of the 13th Canad. Conf. Comput. Geom., pages 81–84, 2001.

4 U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous-valued attributes
for classification learning. In Proc. of 13th Int. Joint Conf. on Artificial Intelligence, pages
1022–1029, 1993.

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.19
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.19

É. Bonnet, P. Giannopoulos, and M. Lampis 8:13

5 R. Freimer, J.S.B. Mitchell, and C.D. Piatko. On the complexity of shattering using ar-
rangements. TR 91-1197, Dept. Comput. Sci., Cornell Univ., NY, 1991.

6 S. Har-Peled and M. Jones. On separating points by lines. arXiv:1706.02004v1, 2017.
7 Ferran Hurtado, Mercè Mora, Pedro A. Ramos, and Carlos Seara. Separability by two lines

and by nearly straight polygonal chains. Discrete Applied Mathematics, 144(1-2):110–122,
2004. doi:10.1016/j.dam.2003.11.014.

8 J. Kujala and T. Elomaa. Improved algorithms for univariate discretization of continuous
features. In Proc. of the 11th PKDD, volume 4702 of LNCS, pages 188–199, 2007.

9 B. Lu, H. Du, X. Jia, Y. Xu, and B. Zhu. On a minimum linear classification problem. J.
of Global Optimization, 35(1):103–109, 2006.

10 N. Megiddo. On the complexity of polyhedral separability. Discr. & Comput. Geom, 3:325–
337, 1988.

IPEC 2017

http://dx.doi.org/10.1016/j.dam.2003.11.014

	Introduction
	Parameterized hardness for arbitrary slopes
	FPT Algorithm Parameterized by Size of Smaller Set
	Open problems

