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Abstract
A replacement action is a function L that maps each k-vertex labeled graph to another k-vertex
graph. We consider a general family of graph modification problems, called L-Replacement to C,
where the input is a graph G and the question is whether it is possible to replace in G some k-vertex
subgraph H of it by L(H) so that the new graph belongs to the graph class C. L-Replacement to
C can simulate several modification operations such as edge addition, edge removal, edge editing,
and diverse completion and superposition operations. In this paper, we prove that for any action L,

if C is the class of planar graphs, there is an algorithm that solves L-Replacement to C in O(|G|2)
steps. We also present several applications of our approach to related problems.
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1 Introduction

The irrelevant vertex technique was proposed by Robertson and Seymour for the Disjoint
Paths problem [24, 25], which is the central algorithmic result of their Graph Minors series
of papers. A superficial description of the technique is

If the treewidth of the input graph is small, then standard techniques on graphs of bounded
treewidth can be used to solve the problem we have on hands. Otherwise, the graph contains
an irrelevant vertex, that is, the vertex whose removal does not change the problem.

Of course, the devil is in details, and usually in order to make the irrelevant vertex technique
work, highly non-trivial arguments are involved in proving the existence of an irrelevant
vertex, see e.g. [1, 7, 12, 13, 14, 15, 17, 18, 19, 20, 22, 23]. We also refer to [6, Chapter 7]
for a high-level overview of the irrelevant vertex technique.
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28:2 Modification to Planarity is Fixed Parameter Tractable

There are a number of generic algorithmic results in the literature explaining why and
when a certain algorithmic technique is successful. For example, we know that many
problems can be solved by dynamic programming on graphs of bounded treewidth, and
Courcelle’s theorem explains why this happens [5]. However, we do not know any generic
characterization of problems solvable by the irrelevant vertex technique and the quest for
such a characterization is the main motivation for this paper.

We show that the irrelevant vertex approach can be used to establish fixed-parameter
tractability of a very general class of graph transformation problems. The problem we
consider is the following: For some integer k, is it possible to transform an input graph G into
a planar graph by performing at most k allowed changes? The allowed changes are defined
through the set of the following replacement actions. Suppose that for every labelled k-vertex
graph H we have a list L(H) of labelled k-vertex graphs. Then the replacement action
selects a subset of k vertices X in the graph G and replaces the subgraph G[X] induced by
X by a graph F from the list L(G[X])). More precisely, the action selects a k-sized vertex
subset X of G labelled by numbers {1, . . . , k} and, given that H is the labelled k-vertex
graph obtained from G[X], we select a labelled k-vertex graph F from L(H) and replace H
by F. Thus the vertex set of the new graph G′ is V (G) and it has the same adjacencies as in
G except pairs of vertices from X. In the transformed graph, vertices u, v ∈ X labelled by
i, j ∈ {1, . . . , k} are adjacent in G′ if and only if {i, j} is an edge of F. Then the task is for a
given graph G and the family of allowed replacement actions, to decide whether there is a
replacement action transforming G into a planar graph.

The problem of replacements to a planar graph encompasses many interesting graph
modification problems. For example, the simplest replacement action is defined by associating
with every k-vertex graph H the list L(H) consisting of an edgeless k-vertex graph. This
encodes the problem of finding in graph G a set of k vertices X such that deleting all edges
with both endpoints in X results in a planar graph. By selecting an appropriate set of
replacements, one can encode many interesting graph transformation problems, with specified
properties of the replaced subgraph. This also includes various structural properties of
replaced subgraph H, like being a a matching, a clique, or a cycle. Similarly replacement
actions can describe the structural properties of the replacement graph F. For example, the
condition could be that F is the complement of H. Or it could be some quantitive property,
like if we delete k/100 edges, we have to add a least k/200 edges, or that one graph is
obtained from another by flipping k edges according to some specified rules, etc.

Our main result is an algorithm that for any choice of the replacement actions on k-vertex
graphs, decides whether an n-vertex input graph G can be made planar by making use of
replacement in time O(f(k) · n2), where f is some function of k only. In other words, the
problem is fixed-parameter tractable (FPT) parameterized by k.

While, from the general perspective, the proof of our main result follows the path of
all irrelevant vertex techniques papers, there are several significant differences compared
with the previous works. The main difficulty we have to resolve is the following. The most
common argument towards application of the irrelevant vertex technique is that if we find
a large “flat wall” (a grid-like part of the graph which has a planar embedding), then the
central part of the wall is irrelevant. This does not work for replacements – the reason is
that replacements are non-local and may affect vertices that are anywhere in the graph.
Thus even if a vertex is inside a huge wall, it still can be used in the action. To overcome
this issue we have to define an equivalence relation between pieces of the wall expressing
the fact that equivalent pieces are “interchangeable” with respect to any application of an
action. Next we have to detect a sufficiently large set of “equivalent” pieces of the wall and
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prove that at least one of these pieces can be considered untouched by the transformation.
Identifying equivalent parts of the wall is the main technical challenge. While parts of the
wall are of bounded treewidth, typical applications of equivalence relations for graphs of
bounded treewidth used in the literature strongly exploit the property that the boundary of
treewidth bounded graphs is also bounded. However, this is not true in our case because the
parts of the wall may have huge boundaries. This requires a new way to define equivalence
relations and an efficient procedure for handling new relations, which in turn allows us to
simplify the input of large treewidth. We believe that the technical contribution of our work
will be the starting point for dealing with other algorithmic applications on planar graphs.

Section 3 is devoted to a high-level description of our algorithm, while the formal definitions
for some basic concepts of this description are presented in Section 4. In Section 5 we provide
several examples of problems that can be reduced to the replacement framework and in
Section 6 we conclude with some open problems and further research directions.

Related work. Graph planarization and, more generally, graph modification, is one of the
main themes in Parameterized Algorithms. For example, Planar Vertex Deletion, where
one asked to remove at most k vertices of the input graph to make it planar. This problem
is fixed-parameter tractable parameterized by k by the generic result from the Graph Minors
project of Robertson and Seymour [24], who showed that every minor-closed property of
graphs can be checked in polynomial time. The result of Robertson and Seymour yields
the existence of an algorithm for this problem but provides no way to construct such an
algorithm. Constructive algorithms for Planar Vertex Deletion were considered in
[16, 23]. The fastest known algorithm for this problem runs in time 2O(k log k)n [15]. The
problem of obtaining a planar graph by contracting edges was considered in [13]. More
generally, the problem of modifying a graph to some graph class excluding some fixed minors,
was considered in [9, 8, 21, 10, 11].

2 Definition of the problem and outline of the algorithm

Elementary definitions. We use N to denote the set of all non-negative numbers. Given
a k1, k2 ∈ N, we denote by [k1, k2] the set {k1, . . . , k2} and given k we denote [k] = [1, k].
Given a function ϕ : A→ B and a subset X ⊆ A we naturally extend ϕ by using ϕ(X) to
denote {ϕ(x) | x ∈ X}. We also write ϕ|X to denote the restriction of ϕ to X ⊆ A. We
denote by inj(A,B) the set of all injections from A to B. For ϕ ∈ inj(A,B), we denote by
ϕ−1 the mapping of ϕ(B) to A that is the reverse of ϕ.

All graphs in this paper are undirected, finite, simple, and without multiple edges. Given
a graph G we denote by V (G) and V (E) the set of its vertices and edges, respectively. We
also denote |G| = |V (G)|. If S ⊆ V (G), then we denote by G \ S the graph obtained by
G after removing from it all vertices in S, together with the incident edges. We define
the subgraph of G induced by S as the graph G[S] = G \ (V (G) \ S). Given an induced
subgraph G′ of G, we define G \G′ = (V (G), E(G) \ E(G′)), i.e., G \G′ is obtained from
G if we remove the edges of G′. Given two graphs G1 and G2, we define their union as
G1 ∪G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)).

2.1 Replacement actions
Replacements. A k-numbered-graph is any graph H where V (H) = [k], i.e., the vertices of
H are the numbers {1, . . . , k}. We denote the set of all k-numbered graphs by Hk and we set
H =

⋃
k∈NHk. A replacement action (abbreviated as R-action) is any function L : H → H,

where for every H ∈ H, |L(H)| = |H|, i.e., graphs in H are mapped to same-size graphs.

STACS 2019
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L

ϕ−1

L(ϕ−1(G))

Lϕ(G)
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G

Figure 1 An illustration of a replacement action where the R-action L replaces graphs by their
complements.

Let G be a graph and let ϕ ∈ inj([k], V (G)). We define ϕ−1(G) = ([k], {ϕ−1(e) | e ∈
E(G[ϕ([k])])}), i.e., we see ϕ−1(G) is the graph in Hk that is isomorphic, via ϕ, to the
subgraph of G where ϕ applies.

Let G be a graph and let G′ be a graph where V (G′) ⊆ V (G). We denote G t G′ =
(G \G[V (G′)]) ∪G′, i.e., G tG′ occurs if we remove from G the edges between vertices in
G′ and then add all edges of G′. Given a graph G, a ϕ ∈ inj([k], V (G)), and a H ∈ Hk,
we define ϕ(H) = {ϕ([k]), {ϕ(e) | e ∈ E(H)}}. Given an R-action L : H → H, we set
Lϕ(G) = G t ϕ(L(ϕ−1(G))), in other words, we consider the part of G that is delimited by
ϕ and then we replace this part by its image via L (see Figure 1 for an example).

We now have all ingredients we need for defining our general problem.

Replacement to planarity. We examine the following family of problems, that may vary,
depending on the choice of the R-action L:

L-Replacement to a Planar Graph. (L-RP)
Input: A graph G and a non-negative integer k.
Question: Is there a ϕ ∈ inj([k], V (G)) such that Lϕ(G) is planar?

I Theorem 1. For every R-action L, there exists an algorithm that given an instance (G, k)
of L-Replacement to a Planar Graph, reports whether (G, k) is a yes-instance in
Ok(|G|2) steps1.

The main result of the paper is a proof of Theorem 1. In fact, we give an algorithm
that runs in the same running time, for the following more general annotated version of this
problem:

1 Given a function f : N× N→ N and a function g : N→ N, we use the notation f(k, n) = Ok(g(n)) in
order to say that there is a function h : N→ N where f(k, n) = O(h(k) · g(n)).
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L-Annotated Replacement to a Planar Graph (L-ARP)
Input: A graph G, a set of annotated vertices R ⊆ V (G), and a non-negative integer k.
Question: Is there a ϕ ∈ inj([k], R) such that Lϕ(G) is planar?

Theorem 1 can easily be generalized for the case when instead of a single R-action L we
are given a set L of R-actions and consider the following problem:

L-List Replacement to a Planar Graph (L-LRP)
Input: A graph G and a non-negative integer k.
Question: Is there an R-action L ∈ L and ϕ ∈ inj([k], V (G)) such that Lϕ(G) is
planar?

Since |Hk| = 2(k
2), by brute force checking all R-actions of L restricted to Hk, we reduce

this more general problem to L-Replacement to a Planar Graph and obtain the
following corollary.

I Corollary 2. For every family of R-actions L, there exists an algorithm that given an
instance (G, k) of L-List Replacement to a Planar Graph, reports whether (G, k) is
a yes-instance in Ok(|G|2) steps.

Another possibility to generalize the problem is to allow multiple actions, that is, to
consider the following variant for a given R-action L:

L-Consecutive Replacement to a Planar Graph (L-CRP)
Input: A graph G, and two non-negative integers k and r.
Question: Is there a tuple ϕ1, . . . , ϕh ∈ inj([k], V (G)) for some h ≤ r such that
Lϕh

(. . .Lϕ2(Lϕ1(G)) . . .) is planar?

Notice that Lϕh
(. . .Lϕ2(Lϕ1(G)) . . .) can be seen as L̂ψ where ψ ∈ inj([k′], V (G)) and L̂

is some R-action for k′ = |ϕ1([k]) ∪ . . . ∪ ϕh([k])|. Since k′ ≤ rk, we can check all possible
values of k′ and for each k′, construct the family of all possible R-actions L that contain all
feasible L̂ that can be results of compositions of L. This way, we reduce L-Consecutive
Replacement to a Planar Graph to L-List Replacement to a Planar Graph
and show that the problem is FPT when parameterized by k + r.

I Corollary 3. For every R-action L and a positive integer r, there exists an algorithm that
given an instance (G, k) of L-Consecutive Replacement to a Planar Graph, reports
whether (G, k) is a yes-instance in Ok+r(|G|2) steps.

In fact, it is possible to combine both generalizations and allow multiple actions chosen
from a given list or even distinct lists.

3 High-level description of the algorithm

As our algorithm for L-ARP is quite involved, in this extended abstract we present an outline
of its main ideas. Our description is high-level. Formal definitions of the most important
concepts in this description can be found in Section 4.

STACS 2019
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Basic concepts. We start with some conventions. In the course of our description, the
word “small-enough” (resp. “big-enough” or “many-enough”) means upper (resp. lower)
bounded by some function of k. By the term “flat part of G” we refer to some subgraph
of G that can be embedded in a disk. Also by the term “bidimensionally big-enough part
of a graph G” we refer to a flat part of G that contains a subdivision of a big-enough wall
as a subgraph (see Figure 2). We say that a vertex of G is “well-enough insulated” if it
is surrounded by a collection of many-enough homocentric cycles of some flat part of G.
Intuitively, the existence of a bidimensionally big-enough part implies that a big-enough
number of vertices of G are well-enough insulated.

Figure 2 A subdivision of a 12× 12-wall and the 6 homocentric cycles insulating its two central
vertices.

Some preliminary observations. Before we present the main idea of the algorithm we start
with some preliminary observations.

Observation 1: The kick-off observation is that it is possible to express L-ARP in Monadic
Second Order logic (MSOL). This implies that when the instance graph G has small-
enough treewidth, then the problem can be solved in a linear in n = |V (G)| number of
steps. This observation is not straightforward as actions may also add edges in G and it
requires some extra effort to translate this into MSOL.

Observation 2: The second observation is that if (G, k) is a yes-instance, then either G has
bounded treewidth – and then we are done, because of Observation 1 – or it contains a
bidimensionally big-enough flat part K. Moreover, using a result from [12, Subsection
4.1], we can also assume that K, besides the fact that it is bidimensionally big-enough, it
has small-enough treewidth. This last property will permit us to apply MSOL-queries to
any portion of K. It follows that K, if it exists, can be detected in O(n) steps.

Observation 3: A third observation is that if some non-annotated vertex v in K is “surroun-
ded” by a subdivided 3-wall-annulus A (see Figure 3) and the closed interior IA of the
outer cycle of A contains only non-annotated vertices, then we can remove v from G and
reduce the instance to a simpler equivalent one. This reduction is based on the fact that
the 3-connectivity of A offers enough rigidity for the graph inside IA to remain unaffected
in any planar graph that may be created by an action on G. Based on the above, we
may assume that any bidimensionally big-enough territory of the flat part contains some
annotated vertex in its interior.
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Figure 3 A subdivided 3-wall-annulus. The grey vertices are the subdivision vertices.

The territory-equivalence idea. The main idea of the algorithm is to detect, inside a
bidimensionally big-enough part of G, a collection of many-enough pairwise-disjoint territories
and to define a suitable notion of equivalence between them that expresses all the ways an
action may affect them.

A critical aspect of our approach is that the number of equivalence classes of such an
equivalence relation should depend only on k. This permits us, given that we have many-
enough territories, to algorithmically detect some sub-collection of k + 1 of them that are
indistinguishable with respect to any action that can be applied on G. As an action affects
vertices of at most k territories, we can arbitrary pick some particular annotated vertex inside
one of them and create the equivalent instance where this vertex is no longer annotated. In
this way, we can recurse to an equivalent instance of the problem that is more simple than
the original one.

K

v

Figure 4 A visualization of the interior of the flat part K. Each subdivided sub-wall contains an
annotated vertex v surrounded by many-enough homocentric cycles. In this particular figure, each
subdivided sub-wall gives rise to a separation sequence of only 3 layers.

Separation sequences. We now explain how the above idea is implemented. First of all, we
work on the flat part K (that can be detected due to the Observation 2) and use the fact that
it is bidimensionally big-enough in order to detect in it a big-enough set X of well-enough
insulated annotated “central” vertices. Thus each v ∈ X is accompanied with a big-enough
collection Cv = {C1, . . . , Cr} of surrounding cycles, called a separation sequence (assuming

STACS 2019
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that C1 is the outermost cycle). Moreover, based on the big-enough bidimensionality of K
we can also assume that for every two distinct v, v′ ∈ X, the closed interiors of the outermost
cycles of Cv and Cv′ are disjoint (see Figure 4). Based on Observations 2 and 3, it is possible
to detect such a set X of annotated vertices along with their accompanying cycle collections,
in O(n) steps. Moreover, for each cycle Cj in Cv we denote by Gj the graph cropped by its
interior and we make sure that the 3 outermost cycles are parts of a subdivided 3-wall-annulus
Aj . We call Gj j-th prefix graph of v.

We see each prefix graph as a doubly annotated graph Gj = (Gj , Zj , Rj) where Zj are
the vertices inside the annulus Aj and Rj are the annotated vertices inside Gj . As r is
big-enough, we know that for any application of an action on a set S of k vertices, that is able
to transform G to a planar graph, there will be some Zj , j ∈ {1, . . . , r} that will be disjoint
from S. This permits us to see this Zj as a separator of G whose inner part (including Zj) is
Gj . Moreover after an action that does not affect Zj , the set Zj will maintain its status as a
separator in the resulting graph. This notion of separator is formalized by the concept of an
annulus-embedded separator that is formally described in Subsection 4.2.

An equivalence relation on prefix graphs. Recall that a prefix graph Gj is a planar graph
of bounded treewidth. We stress that typical equivalence relations that are based on MSOL-
expressible properties require that the boundary of the bounded-treewidth graphs is also
bounded. However, this is not our case. Instead we will use the fact that the boundary Zj
“well insulates” Gj from the rest of the graph.

We need to encode, for each Gj = (Gj , Zj , Rj), all possible ways an action may rearrange
G in both sides of the separator Zj , assuming that it does not affect the vertices of Zj .
Clearly, if S is the set of vertices of G on which an action is applied, then some part of S is
outside Gj and another part is inside Gj (but not in Zj). As the action does not affect the
separator Zj , it will create a planar graph G′ where the outer and inner part will still be
well-defined with respect to Zj .

G
(i)
j

C

C ′

C
(j)
1 Z

(i)
j

Figure 5 A prefix graph Gi. The set Zj are the vertices in the annulus defined by its 3 first
layers. The red vertices are the vertices affected by some action. The graphs C′ and C are connected
components of (G \ V (Gj)) \ S that will be relocated after the application of an action to G.

The vertices of S along with the connected components of (G\V (Gj))\S will be relocated
in G′ in the inner and the outer parts of Zj . However, these possible relocations depend only
one the size of S (that is k) and the ways these components can be seen as “partially-planar
graphs” with respect to their boundary in S (which also depends on k). The precise encoding
of this is expressed by the notion of a replacement folio of a doubly annotated graph, formally
defined in Subsection 4.3. This encoding is justified by a Lemma asserting (the proof is
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omitted in this extended abstract) that any action on G that avoids Zj can be “represented”
by this folio in the sense that if two doubly annotated graphs, that correspond to different
separation sequences Cv and Cv′ , have the same replacement folio, then the application of an
action to the first can be simulated by the application of an action to the second.

An important technical step is to prove a series of lemmata that “translate” all pos-
sible elements of a replacement folio to MSOL-formulas. Again we stress that this is not
straightforward: besides the need of suitably encoding partially-planar graphs, we also
have to express all the ways “missing edges” of G may appear as the result of an action.
As a consequence of its MSOL-expressibility, it follows that our equivalence relation on
territories has a small-enough number of equivalence relations. This, together with the
bounded treewidth of the flat part K, permits us to detect in it k + 1 equivalent territories
in Ok(n) steps, “de-annotate” one of their annotated “central vertices” and create a simpler
equivalence instance. Given this reduction and the reduction of Observation 3, we may use
|V (G)|+ |R| ≤ 2|V (G)| as the complexity-measure of an instance of our algorithm. Therefore,
after O(n) recursive calls of the above reductions, the algorithm provides a correct answer
or an equivalent instance whose graph has small-enough treewidth. In the latter case, the
correct answer can be computed in Ok(n) steps, as mentioned in Observation 1. Based on
the above, the overall running time of the algorithm is Ok(n2).

4 Key concepts

4.1 Graph embeddings and boundaried graphs
Embedded graphs. We denote by S0 the sphere {(x, y, z) | x2 + y2 + z2 = 1} and we refer
to it as the plane. We consider embeddings or partial embeddings of graphs on S0 and several
subsets of it. Such subsets can be closed disks, i.e. subsets of S0 that are homeomorphic to
the set {(x, y, z) | x2 +y2 ≤ 1} and closed annuli, i.e., subsets of S0 that are homeomorphic to
the set {(x, y, z) | 1

2 ≤ x
2 + y2 ≤ 1}. Given a set X that is either a closed disk or an annulus,

we denote its boundary (i.e., the set of points of X for which every neighborhood around
them contains some point not in Z) by bor(X). Notice that if A is an annulus, then the set
bor(A) has two connected components that are both cycles. We call these cycles boundaries
of A. An oriented annulus is a triple A = (A,Nin, Nout) where A is an annulus and Nin and
Nout are its boundaries. We say that Nin (resp. Nout) is the inner (resp. outer) boundary of
A. Given an oriented annulus A = (A,Nin, Nout) we define rev(A) = (A,Nout, Nin), i.e., we
exchange the roles of the inner and the outer boundary. When we embed a graph G in the
plane, in the annulus, or in a disk, we treat G as a set of points. This permits us to make
set operations operations between graphs and sets of points. For instance, if G is a graph
embedded in the plane and ∆ is a closed disk in the plane, we can use the notation V (G)∩D
in order to the set of vertices of G that are points of D. Also, given that bor(D)∩G ⊆ V (G),
we use G ∩D to denote the graph formed by the vertices and the edges of G that are inside
D. We denote by P the class of all planar graphs.

Annotated graphs. An annotated graph is a pair (G,R) where G is a graph and R ⊆ V (G).
A triple (G,R,Z) where R,Z ⊆ V (G) is called doubly annotated graph.

Boundaried graphs. Let k ∈ N. A k-boundaried graph is a triple G = (G,B, λ) where
(G,B) is an annotated graph and λ ∈ inj(B, [k]) (keep in mind that |B| ≤ k). For every
x ∈ R, we refer to the number λ(x) as the index of x in G and we define the index set of G
as Λ(G) = λ(B). We call B the boundary of G and the vertices of B the boundary vertices
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of G. We also denoted B(G) = B and λ(B) = λ. Also we define the size, denoted by |G| of
G = (G,B, λ) by |G|. We denote by Bk the set of all k-boundaried graphs, for each k ∈ N.
Given a G = (G,B, λ) ∈ Bk we define the graph gr(G) = (Λ(G), {λ(e) | e ∈ E(G[B])}), i.e.,
gr(G) is the graph in Hk that is obtained after taking the subgraph of G induced by the
boundary B(G) and then mapping it, via λ, to numbers in [k]. Also, given two i, j ∈ Λ(G), we
say that i ∼G j if λ−1(i) and λ−1(j) belong in the same connected component of G. Clearly,
∼G is an equivalence relation. Let G1,G2 ∈ Bk. We say that G1 and G2 are compatible if
gr(G1) = gr(G2) and ∼G1=∼G2 .

Let G1 = (G1, B1, λ1) and G2 = (G2, B2, λ2) be two compatible k-boundaried graphs.
We define the gluing operation ⊕ such that G1 ⊕G2 is the graph obtained by taking the
disjoint union of G1 and G2 and then identifying each vertex in B1 with the same-indexed
vertex in B2. We make the convention that after identifying a vertex x ∈ B1 with a vertex
y ∈ B2, then the result of this identification in G1⊕G2 is again the vertex x (i.e., B1 prevails
over B2). Finally, we say that G1 ≡ G2, if they are compatible and for every boundary
graph F where gr(F) = gr(Gi), i ∈ [2] it holds that

F⊕G1 ∈ P ⇐⇒ F⊕G2 ∈ P. (1)

4.2 Annulus-embedded separators
The notion of a subdivided 3-wall-annulus is depicted in Figure 3. Notice that each such
graph contains two “boundary” cycles that we call extremal cycles.

Given a S ⊆ V (G), we define as ccin(G,S) as the set of all connected components of
G \ S that are not connected components of G. We also define ccout(G,S) as the union of
all connected components of G \ S that are connected components of G.

Annulus-boundaried graphs. An annulus-boundaried graph is a quadruple (C,K, Y,A)
where

C is a graph,
K is a connected subgraph of C,
Y is a subdivided 3-wall-annulus that is a subgraph of K,
A = (A,Nin, Nout) is an oriented annulus,
Y is embedded in A so that
Nin and Nout are the two extremal cycles of Y, and
G ∩A = K.

We call the cycle of Y that is identical to Nin (resp. Nout) inner (resp. outer) cycle of
(C,K, Y,A). We say that an annulus-boundaried graph (C,K, Y,A) is planar if Q can be
embedded in a disk ∆ such that A ⊆ ∆ and Nout = bor(∆).

Annulus-embedded separators. Let G be a graph. Let also (K,Y,A) be a triple where K
is a graph, Y is a subgraph of K and A is an oriented annulus. We say that (K,Y,A), is
a annulus-embedded separator of G if there are two subgraphs Cin and Cout of G such that
both (Cin,K, Y,A) and (Cout,K, Y, rev(A)) are annulus-boundaried graphs. Notice that each
connected component of ccin(G,V (K)) contains some vertex x where NG(x) intersects either
the inner or the outer cycle of (G,K, Y,A) (but not both). We also make the convention that
all connected components of ccout(G,V (K)) are subgraphs of Cout and we denote Cin (resp.
Cout) inner (resp. outer) component of (K,Y,A) in G. We say that (K,Y,A) is inner-planar
if (Cin,K, Y,A) is planar.
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The following observation easily directly from the definitions and the fact that that every
3-sd-annulus is 3-connected and has a unique embedding in the plane.

I Observation 4. Let (G,R) be an annotated graph and let (K,Y,A) be a annulus-embedded
separator of G. Let also Cin and Cout be the inner and the outer component of G respectively.
Then G is planar if and only if both Cin and Cout are planar.

4.3 Replacement folios
A k-planarity-folio is a setMk ⊆ Bk such that for every G ∈ Bk there is a J ∈ Mk such
that J ≡ G. It is known (see e.g., in [2]) that, for every k ∈ N, it is possible to construct
a k-planarity-folioMk whose size depends on k. Given a k ∈ N, we define gk = max{|C| |
C ∈ Mk}. For every graph L where V (L) ⊆ [k], we define CL = {G ∈ Mk | gr(G) = L}.
The following is an direct consequence of the definitions (see e.g., [2]).

I Observation 5. For every k-numbered graph L and every two compatible boundaried
graphs G1 and G2 where gr(G1) = L, it holds that G1 ≡ G2 if and only if ∀F ∈ CL,
F⊕G1 ∈ P ⇐⇒ F⊕G2 ∈ P.

From now on we fix some k-planarity folioMk. Given the above observation, the members
of theMk represent all ways a boundary graph can be “partially planar” with respect to its
boundary.

Replacement folios. Our purpose now is to define a structure representing the effect of all
replacement actions on a doubly annotated graph (G,R,Z). The actions we want to encode
involve vertices in R that are not in Z. Also they involve vertices of some virtual graph D
that is not a part of G. Later, the set Z will be the vertex set of a wall embedded separator
of a graph and D will represent the part of the graph, affected by an action, that is in the
outer component of this embedded separator.

Let k ∈ N. A k-pattern is a quadruple (Ĵin, Ĵout, D, τ) where
Ĵin, Ĵout ∈Mk (both Ĵin, Ĵout are members of the k-planarity folio),
Λ(Ĵin) ∩ Λ(Ĵout) = ∅ ( Ĵin, Ĵout do not have same-index boundary vertices),
D is a graph where |D| = |gr(Ĵin) ∪ gr(Ĵout)| (the size of D is the sum of the boundaried
sizes of Ĵin, and Ĵout), and
τ is an bijection from V (D) to Λ(Jin) ∪ Λ(Jout)) (i.e., τ is a labelling of D with numbers
from the index sets of J1 and J2).

We denote by Pk the set of all k-patterns. Suppose now that (G,R,Z) is a doubly
annotated graph. The k-planar L-replacement folio of (G,R,Z) is the set Lk(G,R,Z) ⊆ Pk
containing every quadruple (Ĵin, Ĵout, D, τ) ∈ Pk for which there exists an ϕ ∈ inj([k], V (D)∪
(R \ Z)) such that
1. τ−1 ⊆ ϕ,
2. if G′ = Lϕ(G ∪D), then τ(G′) = gr(Ĵin) ∪ gr(Ĵout)
and if

Sin = ϕ(Λ(Ĵin)),
Sout = ϕ(Λ(Ĵout)),
Ĝ = (G′, Sin, ϕ

−1|Sin)⊕ Ĵin,

Ûin = ccin(Ĝ, Z), and
Ûout = ccout(Ĝ, Z),

then
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3. Ûin is planar,
4. Sout ⊆ V (Ûout), and
5. (Ûout, Sout, ϕ

−1|Sout) ≡ Ĵout.

Some intuition. Let us give some intuition on the above, quite technical, definition of
the set Lk(G,R,Z). Suppose that (Ĵin, Ĵout, D, τ) ∈ Pk. The graph G should be seen as
an annulus-boundaried graph (G,K, Y,A) where Z = V (K) where (K,Y,A) is an annulus-
embedded separator between G and a virtual “outside part”. Assume also that ϕ is an action
that affects vertices in R \ Z (i.e., vertices in the interior, call it IG, of the wall separator,
but not in R) and some virtual vertices outside G. The graph D represents these vertices
and the way these are connected between them (see Figure 6).

Ĵin

Ĵout

Sout

Sin

G

IG

D

Figure 6 A 3-sd-annulus. The grey vertices are the subdivision vertices.

Notice that the action ϕ creates some edges between V (D) and IG. Moreover, the same
action is rearranging the edges in D and the edges between the vertices in ϕ([k]) ∩ IG. The
edges of D are rearranged so as to transform it to a graph isomorphic to gr(Ĵin) ∪ gr(Ĵout)
and this is enforced by conditions 1 and 2. Let G′ be the result of the application of ϕ on
G ∪D and the Ĝ be result of gluing G′ with Ĵin. Here Jin represents a virtual “outside part”
that is not present in G. Notice that the connected components of this outside part are
finally scattered either inside or outside the resulting graph. Moreover both parts should be
finally “boundaried parts” of a planar graph and this is the reason we incorporated both
planarity and connectivity in the definition of the k-planarity folio. Now Ûin is the part of
Ĝ that goes “inside” and Ûout is the part of Ĝ that goes “outside” after the rearrangement.
In condition 3 we demand the inside part Ûin to be planar (we stress that this “inside part”
may contain connected components of Ĵin). We also demand that outside part Ûout contains
Sout (condition 4) and that Ûout is boundaried by Sout is equivalent to Ĵout because of
Condition 5 (again it is possible that this boundaried graph contains connected components
of Ĵin). In this way, Ĵout represents the virtual “outside part” the separator. Resuming, if
(Ĵin, Ĵout, D, τ) ∈ Pk then there is an action ϕ that outside G behaves as indicated by D and
τ, that assumes that the virtual outside part is equivalent to Ĵ∈ and, under this assumption,
demands that the occurring outside part is equivalent to Ĵout.

As already mentioned in the high-level description of our algorithm, all conditions of the
above definition can be expressed in Monadic Second Order logic. We omit the proof of this
fact in this extended abstract.

5 Applications

5.1 Problems generated by different Instantiations of L
L-ARP can express several modification operations based on different instantiations of L. In
this section we give a series of examples. We slightly extend the definition of an action by
demanding that L : H → H is a partial function, i.e., we allow that L(H ′) may be undefined
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for some H ′ ∈ H and, in such a case, we write L(H ′) = void. Moreover, in the question of
L-ARP we additionally demand that L(ϕ−1(G)) 6= void. To reduce the enhanced version
to the old one, we define G′ as the disjoint union of G and K5, we set k′ = k + 5 and set
up a L′ so that L′(H) is defined as follows: if H ′ is the disjoint union of a graph H and a
K5 and L(H) 6= void, then L′(H ′) is equal to the disjoint union of L(H) and K−5 (that is
the graph K5 without one edge, i.e., a planar graph), otherwise L(H) = H. We now observe
that (G, k) is a yes-instance of the enhanced L-ARP iff (G′, k′) is a yes-instance of L′-ARP.

We now proceed with a series of problems that can be easily expressed by the enhanced
version of L-ARP.

Planar Completion to a Subgraph. This problem has as input two planar graphs G and H
and asks whether it is possible to add edges in G so that the resulting graph remains planar
(a planar completion of G) and contains H as a subgraph. A variant of this problem, where
G is given along with some plane embedding, has been examined in [4]. We set k = |H|. By
setting L : H → H where L(H ′) = H, i.e., L is the constant function where the output is
always H, we reduce Edge Completion to Subgraph to L-ARP.

Planar Completion to an Induced Subgraph. Here, given G and H, we ask for a planar
completion of G that contains H as an induced subgraph. To reduce this problem to L-ARP,
we consider L : H → H where L(H ′) = H if H ′ is an induced subgraph of H, otherwise
L(H ′) = void.

Edge Deletion to a Planar Graph. Edge Deletion to a Planar Graph asks whether we
can remove at most k edges from G such that the resulting graph will be planar. A pair
(H,F ) ∈ H2k ×H2k is good if E(F ) ⊆ E(H) and |E(H) \ E(F )| ≤ k. For every good pair
(H,F ), we define the action LH,F : H → H where LH,F (H ′) = F if H ′ = H, otherwise we
set LH,F (H ′) = void. Notice that (G, k) is a yes instance of Edge Deletion to a Planar
Graph iff there is a good pair (H,F ) where (G, k) is a yes-instance of LH,F -ARP. As there
are Ok(1) good pairs, this implies an FPT-algorithm for Edge Deletion to a Planar
Graph when parameterized by k.
Alternativelly, we can see this problem as a special version of L-CRP by exchanging the
roles of r and k, setting k = 2, L(K2) = K2, and L(K2) = K2, where K2 is the complement
of the complete graph on two vertices.

Matching Deletion to a Planar Graph. We ask here whether we can remove a matching
of size at most k in order to create a planar graph. The reduction is again the same as in the
case of Edge Deletion to a Planar Graph, however now, for a pair (H,F ) ∈ H2k×H2k
to be good, we additionally ask that E(H) \ E(G) is a matching of H.

Planar Subgraph Isomorphism. Planar Subgraph Isomorphism has as input two planar
graphs G and J and asks whether G contains J as a subgraph. We define the action
L : H → H where L(H ′) = H ′ if J is a subgraph of H ′, otherwise L(H ′) = void. Then
L-ARP is the Planar Subgraph Isomorphism.

Planar Induced Subgraph Isomorphism. Planar Induced Subgraph Isomorphism has as
input two planar graphs G and J and asks whether G contains J as an induced subgraph.
The construction of L is as in the previous case with the difference that we now demand
that J is isomorphic to H ′.
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Edge-disjoint Planar Superposition: given two planar graphs G and H, check whether H
is a subgraph of the complement of G and H ∪G is planar. We define the action L : H → H
where L(H ′) = H if E(H ′) = ∅, otherwise L(H ′) = void. Then L-ARP is the Edge-disjoint
Planar Superposition.

5.2 Modifications to planar graph with additional properties
Let G be a graph property, i.e, a subset of the set of all graphs. We consider the following
extension of L-RP.

L-Replacement to a Planar Graph with property G (L-RPP(G)).
Input: A graph G and a non-negative integer k.
Question: is there a ϕ ∈ inj([k], V (G)), such that Lϕ(G) a planar graph in G?

We now provide some instantiations of G for which the L-RPP(G) belongs in FPT, when
parameterized by k. In each case we explain how our algorithm should be modified.

(1) G := GH is the set of all H-subgraph-free graphs, for some connected graph H. In
the definitions of an annulus-boundaried graph and wall embedded separators (see
Subsection 4.2) instead of taking a 3-sd-wall, we now consider an r-sd-wall where r is
the diameter of H. This permits the modification of the conclusion of Observation 4 to
“G is H-subgraph free and planar if and only if both Cin and Cout are H-subgraph free
and planar”. Also we may enhance the definition of a replacement folio (defined formally
in Subsection 4.3) by considering in Condition 3 Ûin to be planar and H-subgraph free
and in Condition 5, we use a revised version of the equivalence ≡ where we instead
demand in (1) that F ⊕G1 ∈ P ∩ G ⇐⇒ F ⊕G2 ∈ P ∩ G. Notice that for every H,
GH is a MSOL-expressible property (actually it is even expressible in First Order Logic)
therefore the revised ≡ also has finite index.

(2) G = GH is the set of all induced H-subgraph-free graphs, for some connected graph H.
The modifications are exactly the same as in the previous case. Just take into account
that H-induced minor freeness is MSOL-expressible.

(3) G := Gd is the set of all d-regular graphs for d ∈ {3, 4, 5}. In this case, one can easily
verify that the following relaxed version of the conclusion of Observation 4 holds: “G is
d-regular and planar if and only if both Cin and Cout are almost d-regular and planar”.
Here by “almost” we demand the vertices of the 3-sd wall A = (A,Nin, Nout) that are on
Nout to have degree at most d and all the others to have degree exactly d. Notice that
this relaxed regularity condition is again expressible in MSOL-logic (for this we need
to annotate the vertices in Nout). As in the previous cases, we can again demand, in
Condition 3, that Ûin is planar and almost 3-regular and, in Condition 5 enhance the
definition of the equivalence relation by additionally asking almost regularity in (1).

(4) G is the set of all Eulerian graphs. This is the same as in the previous case. The only
difference is that we now ask degrees to be even. All modifications are are parallel to the
previous case (notice that connectivity demand for Eulerian graphs is already incorporated
in the definition of ≡). However, asking for a graph to have all vertices, except possibly
from some annotated set, of even degree is not MSOL-expressible. However, we can
use an extension of MSOL, called Counting MSOL (CMSOL) that is MSOL with an
additional predicate cardq,r where (G,S) |= cardq,r ⇐⇒ |S| ≡ q (mod r). It is known
(see e.g. [3, Lemma 3.2]) that equivalence relations on CMSOL-expressible properties
have finite index. This permits us to deal with the parity demand of being Eulerian.
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(5) G is the set of all bipartite graphs. As before, one can easily derive a version of
Observation 4 where the conclusion is: “G is planar bipartite if and only if both Cin and
Cout are planar bipartite’. The modifications are analogous to those of the previous cases
where the property is the exclusion of an odd cycle, which is CMSOL-expressible.

(6) G is the set of all triangulated graphs. Notice that G contains every graph G that
has exactly 3|G| − 6 edges. Let (G, k) be an instance of L-RPP(G) and let tG =
|E(G)|− (3|V (G)|−6). As an action cannot remove or introduce more than

(
k
2
)
edges, we

assume that −
(
k
2
)
≤ tG ≤

(
k
2
)
, otherwise (G, k) is a no-instance. Under this demand, L

should change to L′ where L′(H) = L(H) if |E(H)| − |E(L(H))| = tG and L′(H) = void
otherwise. As the action L′′ when applied on G always creates a graph G′ that has
3|G′|−6 edges and in the case G′ is planar, then it should also be triangulated. Therefore
(G, k) is a yes instance of L-ARP(G) iff (G′, k) is a yes instance of L′-ARP.

(7) G is the set of all radial graphs. A radial graph is a graph that can be embedded in the
plane so that all its faces are squares. Recall that a graph G is radial if it is planar,
bipartite, and has 2|G| − 4 edges. We apply the same reduction as in the previous case
for tG = |E(G)| − (2|V (G)| − 4) and we have that L-RPP(G) iff (G′, k) is a yes instance
of L′-ARP(G′) where G′ is the class of all bipartite graphs (treated in (5)).

6 Conclusions and open problems

In this paper we proved that for every editing operation that is based on adjacency modifica-
tions, the planarization problem is FPT, when parameterized by the number of edges that are
changed during this modification. We have also seen that the formalization of modification
problem by actions is quite versatile and can express most known modifications problems
of this flavour. The are three possible extensions of our results that could induce further
research on this topic.

First one may consider more general modifications where some (bounded) part of the
graph is replaced by another, however not of the same size but still bounded. We believe
that this setting is amenable to the techniques that we introduce in this paper, however
more complicated to deal with. Also, one may consider modifications that involve the whole
(unbounded) neighbourhood of a bounded part of the graph. Contractions or vertex removals
would fit in such a more general framework.

Second one may consider, instead of planar graphs, other classes of graphs such as graphs
of bounded genus or graphs excluding a graph as a minor, where one may still employ
structural results about “flat territories”. We believe that our machinery can be extended in
this direction. However, such extensions should be quite non-trivial as they involve several
technicalities on how separators may split graphs in those families and how actions may
rearrange them.

A third direction is to find more examples of, additional to planarity, target properties.
Most of the examples in Subsection 5.2 demand changes either to the way Observation 4
applies or to the equivalence relation ≡ that may still keep it of finite index. Is there a way
to systematize this into a general meta-algorithmic framework?
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