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Abstract

Estimating metrics such as the Mean Time To Failure (MTTF) or its inverse, the Failures-In-Time
(FIT), is a central problem in reliability estimation of safety-critical systems. To this end, prior
work in the real-time and embedded systems community has focused on bounding the probability of
failures in a single iteration of the control loop, resulting in, for example, the worst-case probability
of a message transmission error due to electromagnetic interference, or an upper bound on the
probability of a skipped or an incorrect actuation. However, periodic systems, which can be found
at the core of most safety-critical real-time systems, are routinely designed to be robust to a single
fault or to occasional failures (case in point, control applications are usually robust to a few skipped
or misbehaving control loop iterations). Thus, obtaining long-run reliability metrics like MTTF and
FIT from single iteration estimates by calculating the time to first fault can be quite pessimistic.
Instead, overall system failures for such systems are better characterized using multi-state models
such as weakly-hard constraints. In this paper, we describe and empirically evaluate three orthogonal
approaches, PMC, Mart, and SAp, for the sound estimation of system’s MTTF, starting from
a periodic stochastic model characterizing the failure in a single iteration of a periodic system,
and using weakly-hard constraints as a measure of system robustness. PMC and Mart are exact
analyses based on Markov chain analysis and martingale theory, respectively, whereas SAp is a sound
approximation based on numerical analysis. We evaluate these techniques empirically in terms of
their accuracy and numerical precision, their expressiveness for different definitions of weakly-hard
constraints, and their space and time complexities, which affect their scalability and applicability in
different regions of the space of weakly-hard constraints.
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9:2 Characterizing the FITness of Periodic Weakly-Hard Systems

1 Introduction

Zero risk of failure in the presence of intolerable errors, such as errors due to electromagnetic
interference (EMI), can never be achieved [4]. Instead, since environmental sources of
interference are stochastic in nature, probabilistic analyses are often used to bound the
probabilities of failure to within societally acceptable levels of risk. For example, prior work
has investigated the effects of EMI on real-time systems (RTS), resulting in the worst-case
probability of an EMI-induced message transmission error [14], or an upper bound on the
probability of a skipped or an incorrect actuation in a single iteration of a control loop [22].

However, probabilistic analyses for a single message or iteration are often insufficient for
answering whole-system reliability questions in the context of system operation times, and
for many certification standards, e.g., ISO-26262 for the automotive domain or DO-178C for
the avionics domain. For example, given a fleet of one million autonomous cars, each with
an average operating time of five hours a day, if it is desired that less than ten cars break
down due to EMI in a year, a reliability metric like Failures-In-Time (FIT) [46] – i.e., the
expected number of failures in one billion operating hours – is much more useful.

A simplistic approach to obtain such long-run reliability metrics from single iteration
estimates is to calculate the time to first fault; this can be done analytically if the probability
distribution is known, or through simulation otherwise. However, periodic systems, which
can be found at the core of most safety-critical RTS, are routinely designed to be robust
to a single fault or to a few occasional failures (a classic example being real-time control
applications, which are usually robust to a few skipped or misbehaving control loop iterations).
Hence, for such well-engineered RTS, this simplistic approach can be excessively pessimistic.
Instead, overall system failures of such temporally robust RTS are better characterized using
multi-state models such as weakly-hard constraints.

Weakly-hard constraints are widely used and well-studied, especially in the context of
temporal requirements [24, 10, 15, 38, 36, 11, 20, 34, 17, 16, 26]. They capture properties
related to a discrete sequence of events (or iterations) rather than properties required per each
individual event (or a single iteration). For instance, an (m, k) constraint, one of the simplest
forms of weakly-hard constraints, requires a periodic system to have at least m successful
iterations in any window of k consecutive iterations. It is non-trivial to obtain closed-form FIT
bounds for such stateful specifications. Simulation-based methods do not yield exact answers,
may even unsafely under-approximate the true failure rate, and scale poorly, especially when
analyzing low-probability events. The reliability modeling literature (see related work in §8)
focuses mostly on spatial redundancy, i.e., analysis of systems with redundant components,
but does not explore analysis of periodic systems with intermittent iteration failures, a form
of temporal redundancy that is common in RTS, but not in general-purpose systems.

In this paper, we bridge the gap between analyzing the failure probability of a single
iteration in a time-sensitive periodic system, e.g., network control systems, and analyzing
the overall reliability of the system while considering its robustness to a few failed iterations.
That is, we consider the problem of soundly and accurately estimating the FIT rate, or its
inverse, the Mean Time To Failure (MTTF), of a periodic control system with respect to
failure models expressed as one or more weakly-hard constraints, given that bounds on the
reliability of a single iteration have been computed, e.g., using the techniques of [14, 22].

Any such analysis to upper-bound the FIT rate (FITness analysis) must be generic enough
to support complex weakly-hard requirements in order to stand for the needs of larger and
more complicated systems. Further, a FITness analysis must be accurate, ideally, exact, to
minimize pessimism in the final system reliability. Last, but not least, a FITness analysis must
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Table 1 Approaches to FIT derivation.

Approach Accuracy Scalability Expressiveness

PMC Exact Poor General system, all properties
Mart Exact Poor IID systems, all properties
SAp Approximate Good IID systems, single (m, k) constraint

be scalable with respect to the problem size, since capturing asymptotic control properties
requires dealing with large problem windows. To respond to each of these requirements, we
propose and compare three approaches for FITness analysis: PMC, Mart, and SAp.

PMC (Probabilistic Model Checking) models the problem as an expected reward problem
in a discrete-time Markov chain, which can be solved using state-of-the-art probabilistic model
checkers such as PRISM [31] and Storm [18]. PMC is able to express complex robustness
constraints as well as sophisticated system models with state-dependent probabilities of
failure, such as in [34]. For the common special case of Bernoulli systems, where failure
probabilities are independently and identically distributed (IID), martingale theory [32]
allows for a direct approach that we call Mart. It constructs a system of linear equations,
whose solution gives the expected time to failure, and is therefore able to use powerful
linear algebra routines such as LAPACK [5] and BLAS [1]. Like PMC, Mart provides an
exact analysis and can support general weakly-hard constraints, but both PMC and Mart
have limited scalability. To scale to large window-size constraints (see §2 for an example),
we introduce SAp (Sound Approximation), an empirically-driven, scalable, and yet sound
approach designed to evaluate a single (m, k) constraint. The tradeoffs of the three proposed
techniques are summarized in Table 1.

Our main contribution is a systematic exploration and empirical evaluation of the afore-
mentioned methods, each of which is sound by construction, for different points in the
weakly-hard constraint design space. We show that for (m, k) constraints where m is close to
k, exact analyses scale well, but an implementation must account for numerical imprecisions,
especially when failure probabilities are low. On the other hand, SAp is scalable across
the entire range of m (for a given k) and, in our experiments, provides safe approximations
within a factor of two of the exact answer (when both can be computed). While algorithms
for computing reliability measures using Markov chains or martingale theory are not new
(see, e.g., [39]), to the best of our knowledge, our paper is the first in applying these techniques
in the context of weakly-hard periodic RTS, which are at the heart of many safety-critical
systems where sound reliability assessments are essential, and in empirically evaluating the
performance-accuracy tradeoffs in this context.

The rest of the paper is organized as follows. We start with an example to motivate
the reliability analysis problem studied in this paper (§2). A periodic stochastic model of
the system and a formal model of weakly-hard constraints are provided in §3. The three
FITness analysis approaches, PMC, Mart, and SAp, are discussed in §4–§6, respectively.
Results from a comprehensive evaluation of these approaches are discussed in §7. Finally, we
conclude with a discussion of related and future work in §8 and §9, respectively.

2 Motivation

As mentioned in §1, this work bridges the gap between single-iteration analyses and full-system
reliability analyses for weakly-hard real-time systems. To explain this further, and to motivate
our problem statement along with the specific assumptions that we make, we discuss below
the steps involved in the end-to-end reliability analysis of a network control system (NCS).

ECRTS 2019
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Figure 1 A single-input single-output networked control loop. Solid boxes denote hosts. Each
dashed box denotes a task replica set or a set of message streams transmitted by a task replica set.
Dashed arrows denote message streams broadcasted over the shared network N .

Consider the single-input single-output NCS illustrated in Fig. 1. For mitigating the
effects of environmentally-induced transient faults, the NCS consists of active replicas of its
sensor and controller tasks. The safety-certification objective is to ensure that despite the
presence of transient faults, the system is expected to provide its intended service for at least
X hours, where the threshold X is typically determined in a domain-specific manner, and
based on whether the system runs in a continuous mode. In other words, the objective is to
ensure that the system’s MTTF is lower-bounded by X.

The first step in the reliability analysis is to understand the manifestation of transient
faults as errors (i.e., program-visible effects of faults). For example, faults on the network
can cause retransmission of messages, which may manifest as deadline violation errors if the
bandwidth consumed by the retransmissions exceeds the available slack. An upper bound
on the probability of such errors can be quantified a priori by considering the peak fault
rates expected in practice. The next step is to evaluate error propagation in the system.
For example, redundant controller tasks with majority voting on the actuator side may
mask a few deadline violation errors experienced by the control command messages, but
if there are too many such errors, their effect may propagate to the plant actuation stage.
Through exhaustive enumeration and evaluation of all error scenarios, the probability of
one or more errors affecting the final plant actuation can thus also be upper-bounded. See
[22, 44, 25, 14, 19, 43] for such analyses for actual system configurations.

In a nutshell, the above steps provide us with an upper-bound on the per-iteration
failure probability, and these bounds are typically independent of the iteration number,
since worst-case scenarios and peak fault rates are used in every step of the analysis. Thus,
treating an iteration failure as a full-system failure, the per-iteration failure probability bound
could be used to estimate the MTTF by calculating the time to first failed iteration. For
example, if the NCS loop operates at a frequency of 100 Hz (i.e., with a time period of 10 ms),
and its iteration failure probability is upper-bounded by 10−10, its MTTF evaluates to 108

seconds (equivalent to a FIT rate of 36 000). However, this simplistic approach can be quite
pessimistic, as evident from the estimated FIT rate, which is extremely high. For instance, if
the NCS loop functions correctly despite at most one failed iteration in every four consecutive
iterations, the estimated FIT rate drops by several orders of magnitude to 1.08× 10−5.1

1 The FIT rate of 1.08× 10−5 for m = 3, k = 4, T = 10 ms, and PF = 10−10 is computed using PMC.
In particular, PMC as realized with PRISM yields an MTTF of T/(3 600 000)× (P 3

F − 3P 2
F + 3PF +

1)/(P 4
F − 3P 3

F + 3P 2
F ) hours. The FIT rate is then computed as FIT = 109/(MTTF in hours).
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In general, prior studies have shown that a control system can be (and typically is)
designed to withstand occasionally failing iterations, without compromising its intended
service (i.e., the first iteration failure does not denote a full-system failure). For example,
Majumdar et al. [33] describe a NCS where the control system continues using the previous
iteration parameters in case the current iteration is dropped. Using networked control
techniques [13], they also provide methods to estimate a minimum dropout rate tolerated
by a control system without compromising its stability (e.g., an inverted pendulum control
system with mass 0.5 kg, length 0.20 m, and sampling time 10 ms remains asymptotically
stable with at least 76.51 % successful iterations). Such constraints directly translate to
weakly-hard models. For instance, the inverted pendulum control system could be safely
modeled using m = 77 and k = 100, or using m = 766 and k = 1000.

In many cases, however, a single asymptotic constraint of the form m = 77 and k = 100
may not be sufficient to satisfy other performance specifications (such as settling time),
and must be appended with an additional short-range “liveness” constraint. For example,
given a sampling time of 10 ms, the inverted pendulum control system would surely crash
if it experienced 33 consecutive dropouts. In such cases, the temporal robustness of the
control system is better modeled using either a harder constraint (e.g., m = 4 and k = 5
instead of m = 77 and k = 100) or multiple constraints (e.g., using both m1 = 766 and
k1 = 1000 as well as m2 = 1 and k2 = 4) [12]. The objective of this paper is thus to use the
temporal robustness property of control systems, modeled using weakly-hard constraints, for
estimating their long-run reliability from the per-iteration failure probabilities.

In the subsequent sections, we provide techniques to estimate the MTTF and FIT of
temporally robust periodic RTS with such weakly-hard constraints from their per-iteration
failure probability bounds. While these bounds account for the maximum possible background
interference, system components that are not being analyzed are assumed to execute reliably.
This does not imply that the proposed analysis is not useful if a dependent component fails or
if dependent components have different robustness criteria, rather it provides a FIT rate for
one subsystem, which can then be composed with the FITs of other dependent, dependee, or
unrelated subsystems, e.g., using a fault tree analysis. This is a common way of decomposing
the reliability analysis of the whole system into manageable components.

3 System Model

We model the problem of computing a system’s MTTF as the expected stopping time of a
stochastic process.2 To that end, we model a periodic system S abstractly as a stochastic
process (Xn)n≥0 evolving in discrete time. We assume that S is periodic with a period of
T time units, i.e., the observation Xn is emitted at time nT . Each random variable Xn is
boolean-valued: Xn = 1 indicates that S executes correctly in its nth period and Xn = 0
indicates S executes incorrectly. An execution of system S is a string in {0, 1}∗ denoting
an outcome of the stochastic process (Xn)n≥0. We emphasize that S is not just a single,
periodic task, but the entire system, divided into logical iterations. For example, as in the
system described in §2, one iteration of the system may involve end-to-end execution of a
set of periodic real-time tasks and message exchanges (with period T each). The proposed
analyses can also be used to analyze multi-rate systems by analyzing each task (or sets of
tasks sharing the same rate) individually and adding their respective FIT bounds.

2 In probability theory [8], a stochastic process is defined as a family of random variables Rt, where t
ranges over an arbitrary set I. For a given stochastic process, a stopping time is a specific type of
random variable, whose value is defined as the time at which the stochastic process exhibits a certain
behavior of interest (e.g., in this paper, a violation of the system’s weakly-hard constraints).
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Failure probabilities in system S can be modeled as a Bernoulli system, where each
observation Xn is an independent, identically distributed (IID) Bernoulli variable, with
Pr [Xi = 0] = PF and Pr [Xi = 1] = 1 − PF . Such a system represents a periodic system
where errors occur independently in each iteration, and the probability of error in each
iteration is (bounded by) PF . It can also represent periodic systems where errors in multiple
iterations are dependent, but the bound PF derived for each iteration is independent of the
iteration (this is possible if PF is derived pessimistically assuming the worst-possible error
scenario, which is a common approach in the analysis of hard real-time systems, e.g., [14]).

Alternatively, to capture history-dependence in failures and more accurate iteration-
specific error scenarios, the failure probabilities can be modeled more expressively using a
discrete-time labeled Markov chain [9]. In this case, the system is modeled as a set of states
Q and a probabilistic transition function P : Q×Q 7→ [0, 1], where P(sn+1, sn) specifies the
probability with which the system transitions from state sn at any step n to state sn+1 at
step n+ 1. Each state is labeled with a Boolean variable denoting success (1) or failure (0),
and observation Xn is the label of the (random) state at step n.

Next, we formalize robustness specifications to capture the intuition that a periodic RTS,
such as one hosting a well-designed control application, continues to provide overall acceptable
service despite individual iteration failures, as long as there are not “too many” such iteration
failures. In particular, we characterize the set of safe executions for which a periodic system
is guaranteed to provide its service as a prefix-closed3 set of executions R ⊆ {0, 1}∗. Thus,
the intersection of two robustness specifications is again a robustness specification.

In this paper, we focus on the classic (m, k), 〈m, k〉, and 〈m〉 robustness specifications,
usually called weakly-hard specifications, which have been originally proposed in the context
of firm real-time systems that can tolerate a limited number of deadline misses [11]. Let π1(s)
denote the number of 1’s (successful iterations) in any string (system execution) s ∈ {0, 1}∗.
Let u, v, w,w′ ∈ {0, 1}∗ each denote an execution of system S. Formally, an execution w
is (m, k) robust if every window of size k has at least m successes, i.e., ∀u, v, w′ : w =
uw′v ∧ |w′| = k ⇒ π1(w′) ≥ m; it is 〈m, k〉 robust if every window of size k has at least m
consecutive successes, i.e., ∀u, v, w′ : w = uw′v ∧ |w′| = k ⇒ ∃u′, v′ : w′ = u′1mv′; and it is
〈m〉 robust if there are never more than m consecutive failures, i.e., 6 ∃u′, v′ : w = u′0m+1v′.

For a given system, one can be interested in several robustness specifications simul-
taneously, e.g., to express both asymptotic properties (such as “no more than 5% failed
iterations”) and short-term requirements (such as “no more than two iteration failures in
a row”). Thus, for example, we can ask that a system is (m1, k1) robust and also 〈m2〉
robust. This just means that executions of the system satisfy both the (m1, k1) constraint
and the 〈m2〉 constraint. In general, given a set of robustness specifications, an execution is
considered correct if it satisfies all the specifications in the set.

Given a periodic system S and its robustness specification R, we next define the reliability
metrics MTTF and FIT. Let a system failure denote an execution that is not in R. For
example, for a system with a robustness specification (2, 5), an execution 010100100 denotes
a failure (since the last five iterations consist of only one successful iteration). We assume
that S stops if it encounters a system failure, and therefore to compute the MTTF and FIT
we are interested in a failing execution whose proper prefixes (i.e., prefixes excluding the last
iteration) satisfy the robustness specification. Accordingly, given a robustness specification
R, we define the stopping time of system S as a random variable

N(S,R) = min
{
n ≥ 0

∣∣∣ X0 . . . Xn 6∈ R∧
∀i < n X0 . . . Xi ∈ R

}
. (1)

3 In a prefix-closed set, if an execution belongs to the set, all its prefixes also belong to the set.
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The Mean Time To Failure (MTTF) is the expectation of the stopping time multiplied
by the period T of the system,

MTTF = T

∞∑
n=0

n · Pr [N(S,R) = n]. (2)

As mentioned before, the Failures-In-Time (FIT) metric is the inverse of the MTTF, with a
human-friendly scale factor, to the effect that the FIT represents the expected number of
failures in one billion operating hours. Thus, FIT = 109/(MTTF in hours).

In §4–§6, we propose three approaches for FIT derivation: PMC, Mart, and SAp. To
explain the techniques in detail, we initially focus on a single (m, k) robustness specification,
and discuss the applicability of the respective technique for evaluating a generic set of
robustness specifications such as {(m1, k1), 〈m2, k2〉, 〈m3〉} at the end of each section.
Wherever a Bernoulli system is considered, PF is used to denote the probability of a failed
iteration, and PS = 1− PF is used to denote the complement of PF .

4 PMC: Markov Chain Analysis

We start with the most general method PMC, which is based on discrete-time Markov chains.
PMC uses two Markov chains, one for modeling the system, and another (referred to below as
the monitor Markov chain) for modeling the weakly-hard robustness constraints as a function
of the system’s execution history. Therefore, PMC is able to account for both sophisticated sys-
tem models with state-dependent probabilities as well as complex robustness specifications.

We explain the Markov chain constructions in detail in the following. Our observation
is that computing the MTTF reduces to finding the expected total reward in an absorbing
Markov chain (explained below). Conceptually, our method works for any regular robustness
specification, i.e., robustness specifications that can be accepted by a finite automaton, but
we focus our discussion on the class of weakly-hard robustness specifications, which we expect
to be most widely used in practice, and also for concreteness.

Suppose that the system S is modeled as a Markov chain M = (Q,P,L, si), where Q
denotes a finite set of system states, P : Q×Q 7→ [0, 1] denotes the transition probability
matrix, L : Q 7→ {0, 1} denotes the state labels with 1 and 0 corresponding to success and
failure (respectively), and si ∈ Q denotes the initial state. For example, if S is a Bernoulli
system, then M , as illustrated in Fig. 2(a), consists of states s0 and s1 and transition
probabilities P (s0, s0) = P (s1, s0) = PF and P (s0, s1) = P (s1, s1) = 1− PF .

Given the Markov model M and a robustness specification R = (m, k), we run a monitor
Markov chain, denoted Monitor(M,R) = (Q′, P ′, L′, qi), along with M . The monitor tracks
a finite execution history of M of length k to decide whether S has failed, i.e., whether there
were more than k −m failures in the last k steps. Thus, Q′ consists of 2k states, and each
state q ∈ Q′ is labeled with a unique label L′(q) ∈ {0, 1}k, e.g., a label of 1k−10 implies that
every iteration but the last one was successful. Every time M takes a step, the monitor state
is updated to reflect the past k steps of M ’s execution. Thus, the transition probability of
Monitor(M,R) from state q with label w to state q′ with label w′ is P ′(q, q′) = P (s, s′) if
system S can transition from history w to w′ by transitioning from state s to s′; otherwise, it
is P ′(q, q′) = 0. The initial state qi ∈ Q′ is labeled 1k to model absence of any failure during
system start. In addition, since system S stops as soon as it encounters an execution that does
not satisfy (m, k) robustness (recall from §3), we define Bad(m, k) = {q | q ∈ Q′∧L′(q) 6∈ R}
as the set of all “bad” states in Q′ and make them absorbing, i.e., once the monitor enters a
state in Bad(m, k), it does not transition into another state.
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Figure 2 PMC approach. In inset (b), Px1x2, y1y2 is a shorthand for transition probability
P ′(q, q′) where states q and q′ have labels L′(q) = x1x2 and L′(q′) = y1y2, respectively. In inset (c),
Px1x2x3, y1y2y3 is a shorthand for P ′(q, q′), where states q and q′ correspond to execution histories
x1x2x3 and y1y2y3, respectively. Since the Type 2 monitor is represented more concisely, the node
labels in inset (c) are not equal to the execution histories, e.g., label “3” indicates an execution
history of “110” where the latest iteration has failed. In insets (b) and (c), transitions with zero
probability are marked with dashed arrows, and states in Bad(1, 2) and Bad(2, 3) are colored red.

As an example, the monitor representation for R = (1, 2) is illustrated in Fig. 2(b). All
execution histories of length k = 2 belong to set {11, 10, 01, 00}, and hence the monitor
Markov chain consists of four nodes, each labeled with a unique execution history from this
set. An execution history of 01 denotes that the latest iteration was a success (1), whereas
the iteration before that was a failure (0). Thus, depending on whether the next iteration is
a success or a failure, the system can transition from the state labeled 01 into either a state
labeled 11 or 10, respectively. All other transitions from this state have zero probability.
Since the robustness constraint R = (1, 2) defines a robust system execution as one in which
at least one out of every two consecutive iterations is successful, the set of bad states in this
example is a singleton corresponding to the state labeled 00 with two consecutive failures.

Given the monitor Markov chain construction described above, we reduce the MTTF
computation to deriving the expected number of steps until the monitor enters a bad state.
For this, assume that each step of the monitor has a reward of 1. We define the expected
number of steps E as the expected reward until any state in Bad(m, k) is reached, starting
from the initial state qi ∈ Q′. E can be obtained using probabilistic model checkers such as
PRISM [31] and Storm [18]. Thus, if system S has period T , and E is the expected number
of steps until a state in Bad(m, k) is reached, the MTTF of S with respect to robustness
specification (m, k) is given by MTTF = T × E.
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Note that the monitor representation discussed above is independent of m. While the
monitor’s simple structure makes it trivial to implement, its O(2k) space complexity can be
detrimental in practice. Fortunately, for the common case where k −m� k, e.g., (98, 100),
the monitor representation can be optimized to be much more space efficient. Since the
system stops as soon as the (m, k) constraint is violated, we need not keep any executions
that have more than k −m failures. In other words, it suffices to store a limited history as a
string of length k−m, where each element in the string is from {1, . . . , k}∪{⊥}, representing
the positions along the previous k steps when a failure occurred (⊥ is used in case we have
seen fewer than k −m failures). Furthermore, we can coalesce all states in Bad(m, k) into a
single “bad” state. The space complexity of the resulting monitor is only O((k+ 1)(k−m) + 1).
For example, Fig. 2(c) illustrates the monitor representation for R = (2, 3), which consists of
only five states whereas otherwise it would have required eight states.

Similarly, for m� k, we can optimize the model by storing a history as a string of length
m, where each element in the string is from {1, . . . , k}. We refer to the three representations,
i.e., the default one, the optimized version for k −m � k, and the optimized version for
m� k, as Type 1, Type 2, and Type 3 models, respectively.

Compared to the aforementioned monitor representations for an (m, k) robustness specifi-
cation, monitor representation for 〈m, k〉 and 〈m〉 robustness specifications are both simpler
and more efficient (we do not formally define these due to space constraints). For 〈m, k〉
robustness, the monitor needs to keep track of positions corresponding to (i) the latest run
of 1’s of length at least m and (ii) the current run of 1’s of length at most m. For (i), since
the beginning and the end of run can be any element in a window of size k, a string of length
two belonging to {1 . . . k}2 is needed, whereas for (ii), since the current run must always
include the latest element, a string of length one belonging to {1 . . .m} is sufficient. In both
cases, ⊥ can be used to denote the absence of a run, resulting in a space complexity of
O((k + 1)2 · (m+ 1)). For 〈m〉 robustness, the monitor can be simplified even further, since
we only need one accumulator to store the current sequence of consecutive 0’s, and so the
space complexity is O(m). For multiple specifications, i.e., for robustness constraints of the
form R = {(m, k), 〈m′, k′〉, 〈m′′〉}, we run the monitor for each specification in parallel, and
set Bad to denote states where some monitor is in a bad state.

Implementation of the PMC approach using the PRISM probabilistic model checker, along
with a discussion of model construction times and model solving times are provided in §7.

5 Mart: The Martingale Approach

Computing the MTTF using PMC reduces to the problem of solving a system of linear
equations [9]. In the special case of Bernoulli systems, there is a direct and elegant approach
to deriving an equivalent system of linear equations whose solution provides the expected
stopping time of the system (i.e., the MTTF), without going through the process of Markov
chain modeling. Thus, even though this approach, denoted Mart, does not model history-
dependent failures like PMC, it is easy to implement scalably on top of mature linear algebra
libraries such as LAPACK [5] and BLAS [1].

We now summarize Mart for (m, k) robustness. The first step in Mart is similar
to enumerating the “bad” states of the monitor Markov chain in the PMC approach. In
particular, we list all failure strings that correspond to a violation of the (m, k) constraint,
i.e., all strings in {0, 1}≤k in which at least k −m+ 1 failures occur. We do this by fixing
the last position to be a failure and then choosing all possible combinations of k −m indices
from the set {1, . . . , k}. In the second step, given an exhaustive list of failure strings, we
reduce the problem of computing MTTF to that of computing the expected waiting time
until one of the failure strings is realized by the system execution.
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9:10 Characterizing the FITness of Periodic Weakly-Hard Systems

To find the expected waiting time, we use an elegant algorithm from the theory of
occurrence patterns in repeated experiments proposed by Li [32]. Li’s algorithm translates
the failure strings into a set of linear equations, such that solving these linear equations
directly yields an expected waiting time for each individual failure string (i.e., until a specific
failure string is realized by the system) as well as an expected waiting time until any of the
failure strings manifests. To compute the MTTF, we require only the latter. We summarize
Li’s algorithm and MTTF derivation using the algorithm in the following.

Let Π = {π1, π2, . . .} be the set of failure strings obtained in the first step. Let |πi| denote
the length of a string πi ∈ Π, and let πi,j denote the jth character in string πi. Key to Li’s
algorithm is a combinatorial operator ‘∗’ (see Eq. 2.3 in [32]) between any pair of strings πa

and πb from Π, which is defined as follows.

πa ∗ πb = (δ1,1δ2,2 . . . δx,x) + (δ2,1δ3,2 . . . δx,x−1) + . . . + (δx−1,1δx,2) + (δx,1), (3)

where x = |πa|, y = |πb|, and δi,j =


1

PF
if i ∈ [1, x], j ∈ [1, y], πa,i = πb,j = 0

1
PS

if i ∈ [1, x], j ∈ [1, y], πa,i = πb,j = 1
0 otherwise.

Using this operator, the expected waiting time e0 until any one of the sequence patterns in
Π occurs for the first time satisfies the following linear system of equations,

0 1 1 . . . 1
−1 π1 ∗ π1 π2 ∗ π1 . . . πn ∗ π1
−1 π1 ∗ π2 π2 ∗ π2 . . . πn ∗ π2
...

...
...

...
...

−1 π1 ∗ πn π2 ∗ πn . . . πn ∗ πn




e0
e1
e2
...
en

 =


1
0
0
...
0

 , (4)

where n = |Π|. Thus, if S has period T , the MTTF is given by eo × T . As mentioned before,
Li’s algorithm also yields the expected waiting times for each individual failure string in
π1, π2, . . . , πn ∈ Π, which are given by e1, e2, . . . , en, respectively.

For example, consider a system with period 5 ms, iteration failure probability bounded by
PF = 0.1, and robustness specification (2, 3), i.e., at most one 0 is allowed in any execution
of length three. The set of all failure strings in {0, 1}≤3 that violate (2, 3) robustness and
end in a failure is Π = {00, 010, 100}. Using Eq. 3, π2 ∗ π2 is computed as follows.

π2 ∗ π2 = δ1,1δ2,2δ3,3 + δ2,1δ3,2 + δ3,1

= δ1,1δ2,2δ3,3 + δ3,1 {since π2,2 6= π2,1, δ2,1 = 0}
= 10 · δ2,2 · 10 + δ3,1 {since π2,1 = π2,3 = 0, δ1,1 = δ3,3 = 1/PF = 10}
= 10 · δ2,2 · 10 + 10 {since π2,3 = π2,1 = 0, δ3,1 = 1/PF = 10}

= 10 · 10
9 · 10 + 10 = 1090

9 {since π2,2 = 1, δ2,2 = 1/PS = 10/9}

Other πa∗πb’s can be similarly computed, resulting in the following system of linear equations:
0 1 1 1
−1 110 10 110
−1 10 1090/9 10
−1 0 100/9 1000/9



e0
e1
e2
e3

 =


1
0
0
0

 , (5)

which yields e0 = 62.63 and MTTF = e0 × 5 = 313.15 ms.
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With the Mart approach, accounting for a generic set of robustness specifications, such
as {(m1, k1), 〈m2, k2〉, 〈m3〉}, is relatively straightforward in comparison to PMC. We need
to modify only the first step of Mart to obtain an appropriate set of failure strings that
corresponds to a violation of any of the robustness specifications, which is used as before to
instantiate the system of linear equations defined in Eq. 4. However, we must ensure that
any two patterns πa, πb ∈ Π do not contain one another [32]. This is possible if, for example,
the failure patterns for constraints (95, 100) and 〈3〉 are merged. For such cases, the longer
pattern is removed from Π, since the shorter pattern occurs first.

6 SAp: An Approximate Analysis

The PMC and Mart approaches presented in §4 and §5, respectively, can be used to
determine the exact value of MTTF for systems with multiple different types of weakly-hard
robustness specifications. Unlike Mart, PMC even allows estimating the MTTF of systems
that do not resemble a Bernoulli process. However, neither PMC nor Mart scale to large
values of m and k. Thus, with scalability being the primary motivation, we present next an
approximate analysis SAp. Like Mart, SAp can be used only for Bernoulli systems. However,
unlike PMC and Mart, SAp is applicable only for a single (m, k) robustness constraint;
it does not support constraints of the form 〈m, k〉 or 〈m〉, or combinations thereof. Most
importantly, though, SAp is sound, that is, it estimates an approximate value of the MTTF
that lower-bounds the actual MTTF (as given by the exact analyses PMC and Mart).

Before we describe SAp, recall the definition of MTTF from §3. For brevity, let g(n) =
Pr [N(S,R) = n], which is a factor in the integrand in Eq. 2. SAp consists of two key steps.
In the first step, we derive a lower bound on g(n), denoted gLB(n). For this, we split the
(m, k) robustness specification into three conditions, compute an exact or lower bound on the
probability for each of these conditions, and then compute a product of these probabilities.
In the second step, we integrate n · gLB(n) numerically (but in a sound manner) to strictly
lower-bound the MTTF of system S. We discuss both these steps in detail next.

For S to violate the (m, k) specification for the first time during its nth iteration, the
following three conditions must hold. (E1) The nth iteration must fail; (E2) exactly
k −m iterations must fail out of the k − 1 iterations between the (n − k + 1)th and the
(n−1)th iteration; and (E3) fewer than k−m+1 iterations must fail out of any k consecutive
iterations, among the first n− 1 iterations. Then g(n) = Pr(E1)× Pr(E2)× Pr(E3). Now,
Pr(E1) = PF , and summing over all possible combinations of k−m iteration failures in k − 1
consecutive iterations yields Pr(E2) =

(
k−1
k−m

)
P

(k−m)
F P

(m−1)
S .

However, obtaining the exact value of Pr(E3) is challenging. To tackle this challenge,
we use the a-within-consecutive-b-out-of-c:F model [30, §11.4] (or a/Con/b/c:F in short),
proposed originally for a system that consists of c (c ≥ a) linearly ordered components and
that fails iff at least a (a ≤ b) components fail among any b consecutive components. Thus,
in terms of the (m, k) constraint, for a = k −m + 1, b = k, and c = n − 1, a successful
execution of an a/Con/b/c:F system is equivalent to condition E3, and the reliability of an
a/Con/b/c:F system, whose approximations have been well studied in the past, yields Pr(E3).
In particular, since we are interested in a sound approximation, we reuse the reliability lower
bound RLB(a, b, c) of the a/Con/b/c:F system as proposed by Sfakianakis, et al. [42].

Sfakianakis et al.’s analysis [42] breaks the problem into smaller subproblems for which
exact analyses are available and that can be computed quickly. However, neither Sfakianakis
et al. nor any prior work explicitly enumerates the reliability definitions for an exhaustive
set of parameters, i.e., which covers all possibles values of parameters a, b, and c. Therefore,
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Table 2 Reliability lower bound of a linear a/Con/b/c:F system with IID components. Type
indicates whether the reliability definition is an exact value or a lower bound (LB).

Case Definition Type Source

a = 0 R1(a, b, c) = 0 Exact –

a = 1 R2(a, b, c) = P c
S Exact –

a = 2, c ≤ 4b R3(a, b, c) =
∑b c+b−1

b c
i=0

(
c−(i−1)(b−1)

i

)
P i
FP c−i

S
Exact [30, §11.4.1]

(Eq 11.10)

a = 2, c > 4b
R4(a, b, c) = R3(a, b, b + t− 1)(R3(a, b, b + 3))u

where t = (c− b + 1)mod 4 and u =
⌊
c−b+1

4

⌋ LB [30, §11.4.1]
(Eq. 11.16)

a > 2, c ≤ 2b,

a = b
R5(a, b, c) =

{
1 0 ≤ c < a

1− P a
F − (c− k)P a

FPS a ≤ c ≤ 2a
Exact [30, §9.1.1]

(Eq. 9.20)

a > 2, c ≤ 2b,

a 6= b, c ≤ b
R6(a, b, c) =

∑c

i=c−a+1

(
c
i

)
P i
SP c−i

F Exact [30, §7.1.1]
(Eq. 7.2)

a > 2, c ≤ 2b,

a 6= b, c > b

R7(a, b, c) =
∑a−1

i=0

(
b−s
i

)
P i
FP b−s−i

S M(a′, s, 2s)
where s = c− b and a′ = a− i,

and M(a′, s, 2s) =



1 a′ > s

R2(a′, s, 2s) a′ = 1
R3(a′, s, 2s) a′ = 2
R5(a′, s, 2s) a′ > 2 ∧ a′ = s

R7(a′, s, 2s) a′ > 2 ∧ a′ 6= s

Exact [30, §11.4.1]
(Eq. 11.14)

a > 2, c > 2b

R8(a, b, c) = Rφ(a, b, b + t− 1)(Rφ(a, b, b + 3))u

where t = (c− b + 1)mod 4 and u =
⌊
c−b+1

4

⌋
,

and Rφ(a, b, c) =


R5(a, b, c) a = b

R6(a, b, c) a 6= b ∧ a ≤ b

R7(a, b, c) a 6= b ∧ a > b

LB [30, §11.4.1]
(Eq. 11.16)

we provide an unambiguous definition of the reliability lower bound RLB(a, b, c) that draws
from Sfakianakis et al.’s analysis for large values of c and from other prior works for some
special cases and smaller values of c. Note that in many cases, there are multiple ways to
define RLB(a, b, c), in which case we prefer a definition that can be quickly computed. We
summarize our definition of RLB(a, b, c) in Table 2.4 Using this reliability lower bound and
the definitions of Pr(E1) and Pr(E2), a lower bound gLB(n) on g(n) is given by

gLB(n) =
(
k − 1
k −m

)
P

(k−m+1)
F P

(m−1)
S RLB (k −m+ 1, k, n− 1) . (6)

4 In our definition of RLB(a, b, c) in Table 2, notice that while we are interested in a reliability lower
bound, we point to Eq. 11.16 in [30, §11.4.1], which refers to an upper bound. This mismatch is due
to a slight inconsistency in how the textbook chapter [30, §11.4.1] adopts the result from the original
paper by Sfakianakis et al. [42]. Notations L and U in Table I in [42] denote lower and upper bounds
(respectively) on the failure rate of the system. Eq. 11.16 in [30, §11.4.1] uses the same notation. Thus,
UBa in Eq. 11.16 in [30, §11.4.1] actually refers to an upper bound on the system failure probability, and
not an upper bound on the system reliability (although the text in the chapter may seem contradictory).
Since we require a lower bound on the system reliability, and since system reliability is one minus its
failure probability, we use 1−UBa, where UBa is defined as in Eq. 11.16 in [30, §11.4.1].
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The next step is to use gLB(n) for lower-bounding the system’s MTTF. This requires
solving Eq. 2 with gLB(n) in place of Pr [N(S,R) = n]. Unfortunately, we were not able to
obtain a closed-form solution with current symbolic solvers due to the complicated definition
of gLB(n). In particular, gLB(n) is defined in terms of RLB(k − m + 1, k, n − 1), which
is a recursive expression with complex definitions of its subproblems, as can be seen from
Table 2. Therefore, similar to numerical integration methods, we adopt an empirical solution
for MTTF derivation that is both fast and reasonably accurate. We empirically compute
the value of function gLB(n) at finitely many sampling points d0, d1, d2, . . . , dD ∈ N such
that d0 = k −m+ 1, and d0 < d1 < d2 < . . . < dD. Using the empirically-determined values
gLB(d0), gLB(d1), . . . , gLB(dD), we derive a lower bound on the MTTF in Lemma 1 below.

The derivation in Lemma 1 depends on the property that gLB(n) (defined in Eq. 6)
decreases with increasing n, which in turn requires that RLB (a, b, c) decreases with increasing
c (since all the terms except RLB (k −m+ 1, k, n− 1) in the definition of gLB(n) are
independent of n). While this property trivially holds for cases a = 0 and a = 1, proving the
property for cases a = 2 and a > 2 is not trivial. We have provided a detailed proof of this
monotonicity property for the more general case a ≥ 2 online [21, Section IV.B].

I Lemma 1. A lower bound on the MTTF of system S with period T and robustness
specification R = (m, k) is given by T

∑D−1
i=0 (gLB(di+1)× (di+1 − di)× (di)).

Proof. From Eq. 2, MTTF is defined as T
∑∞

n=0 n · Pr [N(S,R) = n]. Since gLB ≤ g(n) =
Pr[N(S,R) = n], we lower-bound the MTTF as MTTF ≥ T

∑∞
n=0(n× gLB(n)).

Next, we split the summation range (0,∞) in the above equation into a finite number of
subintervals (0, d0], (d0, d1], . . . , (dD−1, dD], and (dD, ∞). Further, since all terms under
the summation are non-negative, and since we are interested in a lower bound, we drop
the summation terms corresponding to subintervals (0, d0] and (dD, ∞). Thus, we obtain
another lower bound MTTF ≥ T

∑D−1
i=0

∑di+1
n=di

(n× gLB(n)).
Now, since gLB(n) is decreasing with increasing n, for each interval (di, di+1], we replace

gLB(n) with gLB(di+1), which is a constant with respect to n. With this replacement, we get
MTTF ≥ T

∑D−1
i=0 (gLB(di+1)×

∑di+1
n=di

n). Finally, summing the arithmetic progression, and
using inequalities di+1 − di + 1 > di+1 − di and di + di+1 > 2di, we get the desired bound:

MTTF ≥ T
D−1∑
i=0

gLB(di+1)×
di+1∑
n=di

n


≥ T

D−1∑
i=0

(gLB(di+1)× (di+1 − di)× (di)) . J

Since scalability is the primary motivation for SAp, we choose D � dD, so that the
MTTF lower bound can be quickly computed using Lemma 1. We further choose the sampling
points d1, . . . , dD to minimize the amount of pessimism introduced by numerical integration.
Another source of inaccuracy is the use of the reliability lower bound RLB(a, b, c) proposed by
Sfakianakis et al. [42], which inherently introduces some pessimism. We discuss the choice of
sampling points in detail in §7, and compare SAp with PMC and Mart in terms of accuracy.

As mentioned before, SAp is customized for a single (m, k) constraint and does not apply
to 〈m, k〉 or 〈m〉 robustness specifications. We leave similar approximate analysis for the
other robustness constraints as future work.
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Table 3 MTTF values derived using PRISM engines.

Engine Iterations Epsilon MTTF for PF = 10−2 MTTF for PF = 10−10

1004 10−06 – –
Explicit 1009 10−06 3.36× 1005 0.23× 1015

1009 10−10 3.41× 1005 1.21× 1017

Exact N/A N/A 3.41× 1005 3.33× 1029

7 Evaluation

The objective of this section is threefold. We discuss implementation choices and challenges,
compare the three types of Markov chain models discussed in §4, and then explore the
scalability versus accuracy tradeoffs of PMC, Mart, and SAp. Since the approximate
analysis SAp is not applicable to generic robustness specifications as defined in §3, and since
(m, k) constraints are the limiting factor when it comes to scaling up the analysis, we focus
on Bernoulli systems and a single (m, k) constraint in the evaluation. In the end, we revisit
the strengths and weaknesses of each approach. All experiments were carried out on Intel
Xeon E7-8857 v2 machines with 4× 12 cores and 1.5 TB of memory.

7.1 Implementation Choices
In the following, we highlight important implementation choices that affect the accuracy and
speed of the analyses. We realized PMC using the state-of-the-art probabilistic model checker
PRISM [31].5 However, configuring PRISM properly to ensure that the estimated results are
both accurate and sound is not trivial. PRISM provides many different configuration options
that affect the method used for linear equation solving (e.g., Jacobi, Gauss-Seidel, etc.),
the model checking engine (MTBDD, Sparse, Hybrid, or Explicit), parameters for precision
tuning (i.e., the epsilon value and maximum number of iterations for convergence checks
during iterative linear solving), and even options to select exact (with arbitrary precision) or
parametric model checking (where some model parameters are not fixed). Choosing the right
set of options is thus important because they can significantly affect the estimated MTTF.

With the parametric model checking option, PRISM outputs the MTTF as a function of
parameter PF , e.g., denoting PF as q, the MTTF for robustness specification (2, 4) is:

T × q5 − 3q4 + 3q3 − 2q2 − q − 1
q6 − 3q5 + 4q4 − 3q3 . (7)

Parametric model checking is thus an ideal choice since it allows for fast reliability analysis
across a range of failure probabilities without the need to build and check the model repeatedly.
However, as we show later, parametric model checking is also the costliest analysis approach.
Thus, for scalability purposes, we also considered both exact and non-exact model checking.

We observed that non-exact model checking resulted in significant inaccuracy. For
example, Table 3 reports the MTTF results for specification (2, 4) obtained with non-exact
model checking (using PRISM’s Explicit engine) and with exact model checking (currently
implemented by PRISM as a special case of parametric model checking). The non-exact engine

5 Our implementation of PMC using PRISM for a robustness specification of (5, 10) is explained in the
Appendix, which is available online as part of an extended tech report [23]. An empirical comparison of
PRISM with Storm [18], a more recent probabilistic model checker, is also provided in the Appendix.
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Table 4 Percentage errors in FIT (R = (8, 10) and y = 1.23456789).

Precision PF = y · 10−10 PF = y · 10−30 PF = y · 10−50

10 −2.20× 10−00 −3.96× 10−01 −1.42× 10−00

20 +1.81× 10−04 −2.70× 10−04 +3.04× 10−04

30 +3.39× 10−07 −5.26× 10−07 +1.36× 10−06

40 −2.75× 10−10 +1.20× 10−09 −2.00× 10−09

50 −1.89× 10−14 +2.99× 10−13 −4.80× 10−13

did not converge (first row of the table) for default configuration options. For PF = 10−10,
even upon decreasing the epsilon value and increasing the maximum number of iterations,
the estimated MTTF is several orders of magnitude off from the exact value, indicating the
sensitivity of non-exact model checking to small probabilities. In our evaluation of PMC, we
thus worked only with parametric and exact model checking. We denote these variants of
PMC as PMC-P and PMC-E, respectively.

The Mart approach was implemented in C++ using the Elemental [2] library, since it
uses LAPACK-based routines [5] for solving linear equations, allows for arbitrary precision
using the GNU MPFR library [3], and also allows for parallel computing using OpenMPI [7].
SAp was implemented in Python using the mpmath [6] library for arbitrary precision. Thus,
for Mart and SAp, unlike for PMC-E, we could explicitly set the global working precision,
i.e., the number of decimal digits used to represent the floating point significand.

However, the choice of the global working precision was not obvious. Table 4 reports
the percentage errors in the estimated FIT when the precision is varied from 10 to 50, with
respect to the FIT estimated using a precision of 1000. The results indicate that low precision
may result in significant errors if PF is also small, and sometimes, the results can even be
unsafe (i.e., resulting in negative errors). In general, estimating a precision that is safe to
use based on the computations involved requires rigorous analysis, e.g., [28]. To be on the
safe side, we used a precision of 1000 bits for both Mart and SAp, which ensured that any
remaining errors were of negligible magnitude.

Finally, when implementing SAp, recall that we need a mechanism to choose an appro-
priate set of data points d0, d1, d2, . . . , dD over which to run the empirical computations.
We discuss this mechanism with the help of an example. Let m = 3, k = 10, and PF = 10−7.
In Fig. 3(a), we illustrate gLB(n) given these parameters. Since the MTTF lower bound
derived using SAp depends on gLB(n), the key idea is to ensure that points d0, d1, d2, . . . ,
dD are sufficient to trace the shape of function gLB(n), and that the magnitude of gLB(n) is
negligible beyond n = dD. The first point d0, as mentioned before, is set to (k −m+ 1). To
compute the last point dD, i.e., the point at which gLB(n) becomes negligible, we observed
the logarithm of function gLB(n) for n ∈ {1, 101, 102, 103, . . .}. That is, we plotted the
function gLB(n) on a logarithmic scale for both the x- and y-axes as in Fig. 3(b), and then
determined a threshold at which the curve starts falling rapidly (e.g., dD ≈ 1055 in Fig. 3(b)).

The intermediate points d1, d2, . . . , dD−1 were chosen such that the step size di+1 − di

between any two consecutive points di and di+1 (i) is small enough to closely track the
function gLB(n), and (ii) yet still proportional to the order of magnitude of di, to avoid
evaluating an exponential number of points. For example, while generating Fig. 3, the step
size was 1 for n ∈ (10, 100] and 1052 for n ∈ (1053, 1054].
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Figure 3 Sampling points gLB(d0), gLB(d1), . . . , gLB(dD) for m = 3, k = 10, PF = 10−7, and
T = 10 ms in (a) normal scale and (b) log scale. In this example, D = 5050 and dD = 9.90× 1057.

7.2 Evaluating PMC Model Types
Recall from §4 that we introduced three different types of Markov chain models – Type 1,
Type 2, and Type 3 – each resulting in a different asymptotic model size. Does the use of
one model over the other affect the computation times or even the model building times in
practice? To answer this question, we measured the asymptotic model sizes for k = 20 and
m ∈ [1, k− 1], and compared the measurements with the model size and build time statistics
reported by PRISM. We also measured the checking time statistics for k = 10 (since model
checking for k = 20 frequently timed out). We summarize the results for PMC-E in Fig. 4.

Fig. 4a plots the asymptotic size for each model type, indicating that none of the models
is an optimal choice for all parameters. Fig. 4b reports the number of elements in the
transition matrix as reported by PRISM. The number of transition matrix nodes varies
with m in the same way as the asymptotic model size, but the absolute numbers are less
than the asymptotic sizes. This is because PRISM already prunes some states that are
unreachable during the build process. Figs. 4c and 4d illustrate the time to build and check
the models, respectively. The model construction time for each model type is proportional
to the respective model size. The model checking time, however, is independent of the model
type, since the models are equivalent and result in the same set of linear equations.

In summary, to achieve maximum scalability, it is important to choose a model that
requires the minimum time for construction. In the subsequent experiments, we thus use the
asymptotic model sizes as a guideline to choose the appropriate model type for an (m, k)
specification. That is, if k = 20, based on Fig. 4a we use the Type-3 model if m ≤ 4, the
Type-2 model if m ≥ 16, or the Type-1 model otherwise.

7.3 The Scalability vs. Accuracy Tradeoff
We start by evaluating the scalability of the analyses PMC-P, PMC-E, Mart, and SAp by
measuring the analysis duration for each k ∈ [2, 20] for four different configurations of m and
PF : (i) m = bk/2c and PF = 10−10 (Fig. 5a); (ii) m = bk/2c and PF = 10−20 (Fig. 5b);
(iii) m = k − 2 and PF = 10−10 (Fig. 5c); and (iv) m = k − 2 and PF = 10−20 (Fig. 5d).
Since evaluating (m, k) requires maximum time if m = k/2 and minimum time if m is close
to either 1 or k− 1 (see Fig. 4d), results for (i) and (iii) indicate the minimum and maximum
scalability that can be achieved by the analyses; whereas results for (ii) and (iv) help us to
understand the impact, if any, of PF ’s value on the analysis scalability.
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Figure 4 Comparing the three PMC model types using PMC-E. While measuring the checking
time statistics, k = 10 was used, since model checking for k = 20 frequently timed out.

First, as evident from each graph, and as expected, PMC-P, PMC-E, and Mart do not
scale well in comparison to SAp. For configurations of type (i) and (ii), where m = bk/2c
(see Figs. 5a and 5b), PMC-P and PMC-E scale only up to k = 9 and k = 11, respectively.
The Mart approach performs better and scales up to k = 15, mainly because it gives up
exactness (but still guarantees soundness owing to its very high precision). In contrast,
SAp easily scales up to the maximum value of k = 20. Also, notice that while SAp’s
analysis time grows exponentially in k (the y-axis is log scale), PMC’s and Mart’s analysis
times grow super-exponentially. For configurations of type (iii) and (iv) where m = k − 2
(Figs. 5c and 5d), PRISM-based analyses scale better than in the first two configurations
because the Type-3 model allows for a concise representation of the (m, k) specification in
this case and hence fast building of the model. SAp’s scalability also improves significantly
in this case because the recursion involved in computing RLB(k −m+ 1, k, n− 1) for the
empirical data points is eliminated in this case. Between configurations (i) and (ii), as well
as between configurations (iii) and (iv), only the failure probability PF is changed from
10−10 to 10−20. As a result, PMC-E takes an order of magnitude more time. This is because
lower probabilities require more space for exact representation, and hence more time for
computations on these representations. SAp is also affected since the number of data points
to be measured is larger in this case. Mart is unaffected because irrespective of PF , it uses
a precision of 1000. PMC-P is also unaffected since it is independent of PF .
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Figure 5 Comparing analysis duration for PMC-P, PMC-E, Mart, and SAp. The analysis
duration for Mart for k ≤ 5 was extremely small and is hence not illustrated. The configuration
k = 2 in (c) and (d) was ignored since (0, 2) is not a valid (or rather a trivial) specification.

To summarize the discussion on analysis scalability, we illustrate in Fig. 6a for each
k ∈ [1, 25] and m ∈ [2, k − 1] whether analyses PMC-P, PMC-E, Mart, and SAp finished
on time, i.e., within a one-hour timeout window. For each cell, P denotes that PMC-P was
successful, E denotes that PMC-P timed out but PMC-E was successful, M denotes that
both PMC-P and PMC-E timed out but Mart was successful, and S denotes that only SAp
was successful. Clearly, the results indicate that exact analyses can be used only if k ≤ 15,
or else if m is either very small or very large relative to k. Thus, for larger values of k, an
approximate analysis, such as SAp, is needed, that trades some accuracy for scalability. But
is SAp accurate enough to be useful at very large values of k? And is it accurate for small
values of k so that the costly exact analyses may not be needed at all? To answer these
questions, we evaluate next SAp’s accuracy with respect to Mart and PMC.

In Fig. 6c (similar in structure to Fig. 6a), we report the percentage error in the MTTF
obtained using SAp versus that obtained from either PMC or Mart (PMC was preferred,
if available) for each k ∈ [2, 12] and m ∈ [1, k − 1]. As expected, SAp always resulted in
a lower, pessimistic MTTF than PMC and Mart since it is sound by construction. Thus,
error signs are not explicitly denoted in the figure.

We make the two key observations regarding SAp’s accuracy. First, even for small values
of k, the relative errors are significant (see the red cells in Fig. 6c denoting specifications
with relative error greater than 50%). This validates the need for an exact analysis whenever
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Figure 6 Quantifying the scalability vs. accuracy tradeoff. (a) Scalability results for different
values of m and k. (b) SAp’s accuracy trend for m = 2, m = k/2, and m = k − 2. (c) Summary of
SAp’s accuracy with respect to Mart and PMC for different values of k and m.

feasible. Second, the relative errors are higher if the ratio m/k is closer to one. To investigate
this further, we also plot the percentage errors for m = k − 2, m = 2, and m = k/2 with
respect to k in Fig. 6b. From this figure, we observe that in all evaluated cases, the MTTF
estimated with SAp was within an order of magnitude of the exact MTTF. Since in the
context of reliability analyses the order of magnitude is typically of prime interest (rather
than the exact value), we conclude that SAp is reasonably accurate for large values of k.

7.4 Discussion
Mart outperforms both PMC-P and PMC-E, which is not surprising. In fact, for the scenario
with IID iteration failure probabilities that we evaluated, Mart directly represents the
underlying system of linear equations without needing to construct a model. PMC’s benefits
lie in its ability to express non-IID iteration failure probabilities. SAp on the other hand scales
much better than PMC and Mart, at the cost of acceptable, but non-zero pessimism. To
conclude, PMC, Mart, and SAp are useful alternatives for reliability evaluation depending
on the values of m and k. PMC and Mart are ideal to evaluate short-range safety properties
that are usually applied on short window lengths e.g., such as “there should not be more
than 3 consecutive failures in any window of 10 iterations” [17]. In contrast, SAp can
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evaluate asymptotic properties that are defined over a large window of events and reflect
minimum acceptable longterm quality-of-service levels, e.g., such as “at least 90% of actuation
commands must be applied on the plant in every 100 iterations” [33, 41].

Although we focused on a binary failure type in this paper, i.e., each iteration was
categorized either as a successful iteration or a failed iteration, one could also use fine-grained
label types for each iteration, such as deadline violation, message loss, miscomputation, and
so on. That is, an execution of system S could be modeled as a string in {0 . . . λ}∗, instead of
a string in {0, 1}∗, where λ is the number of failure categories. Both PMC and Mart easily
extend to such systems. In contrast, SAp has limited extensibility in its current form, since our
objective when designing SAp was primarily to scale the evaluation of (m, k) specifications
that are widely used in practice. However, the same blueprint could be used to safely
approximate other types of robustness specifications as well, i.e., by breaking each specification
into smaller events, computing the product of respective event probabilities (or a lower bound),
and then reusing Lemma 1 for MTTF estimation. We leave such extensions for future work.

8 Related Work

Weakly-hard constraints have been widely studied in the context of firm real-time systems to
represent robustness of a time-sensitive task against occasional timing failures [24, 10, 15,
38, 36, 16]. In particular, the focus has been on (i) analyzing task schedulability according
to a given weakly-hard (usually (m, k)) constraint [36, 37], (ii) design of online schedulers to
meet these constraints [24, 10, 15, 16], and (iii) co-design approaches to find the schedulable
set of (m, k) parameters that maximizes an application’s quality of service [45, 29, 17]. Most
recently, Pazzaglia et al. [34] introduced state-based representation of the evolution of a
control system with respect to deadline misses, and showed the merits of having multiple
(m, k) constraints for a control application. In contrast, Huang et al. [26] focused on the
safety verification problem of nonlinear weakly-hard systems by modeling them using hybrid
automata. Huang et al. [27] also discuss new research directions in applying weakly-hard
constraints to general-purpose networked systems. None of these papers provides a means
for bounding a system’s MTTF with respect to its weakly-hard specification.

In the general reliability literature, there is a long tradition of work on deriving a system’s
MTTF if the occurrence of failures is described by well-known probability distributions (see
[30] for a comprehensive overview). Similarly, the problem of evaluating the reliability of series-
or parallel-redundant systems, both with and without repairs, in the context of robustness
specifications such as k-out-of-n, consecutive-k-out-of-n, multidimensional consecutive-k-out-
of-n, etc. is well understood, e.g., see [35, 40]. However, the available techniques in this
domain do not directly apply to the problem studied in this paper. Either the constraints
cannot be reduced to these techniques or symbolically integrating the applicable technique
over an infinite domain is not trivial. Further, for multiple weakly-hard specifications, a
model-based approach helps to accurately account for common failure sequences.

9 Conclusion

We proposed methods for safely bounding the MTTF of periodic systems with stochastic
faults w.r.t. weakly-hard robustness specifications. Empirical evaluations showed that an
exact (even parametric) analysis is feasible when k −m is small, and that an approximate
analysis is scalable and (within the parameters of our experiments) produces bounds within
2× of the exact bounds. In future work, it would be interesting to consider more expressive
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models of stochastic faults [39], such as continuous-time models and dynamic fault trees.
We also plan to extend SAp for evaluating other types of robustness constraints. Finally, a
holistic analysis of periodic systems that are composed of multiple subsystems with possibly
different periods and different weakly-hard constraints, as opposed to analyzing each of these
subsystems independently, would help reduce pessimism in the overall reliability assessment.
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