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Preface

This is the third running of the Summit oN Advances in Programming Languages (SNAPL),
a relatively new venue for the programming languages community. The goal of SNAPL
is to complement existing conferences by discussing big-picture questions. After the first
two events, held in 2015 and 2017, we hope to continue evolving the venue into a place
where our community comes to enjoy talks with inspiring ideas, fresh insights, and lots of
discussion. Open to perspectives from both industry and academia, SNAPL values innovation,
experience-based insight, and vision. Not affiliated with any other organization, SNAPL is
organized by the PL community for the PL community. We planned to hold SNAPL every
two years in early May. After two runnings in Asilomar, California, we decided to hold the
third SNAPL in Providence, RI, USA, hoping that the East Coast location will make the
conference more accessible to attendees from Europe.

SNAPL has drawn on the elements from many successful meeting formats such as the
database community’s CIDR conference, the security community’s NSPW workshop, and
others, and continues to evolve its own particular flavor. The focus at SNAPL is not primarily
on papers but rather on talks and interaction. Nevertheless, a short paper is the primary
medium by which authors request and obtain time to speak. A good SNAPL entry, however,
does not have the character of a regular conference submission — we already have plenty of
venues for those. Rather, it is closer to the character of an invited talk, encompassing all the
diversity that designation suggests: visionary ideas, progress reports, retrospectives, analyses
of mistakes, calls to action, and more. Thus, a SNAPL submission should be viewed more as
a “request to give an invited talk.”

Overall, the submissions suggest SNAPL remains an interesting and valuable venue. We
have received 21 submissions and decided to accept twelve. The program will also include
talks by members of the program committee. We look forward to discussions that will
hopefully be as lively as in the previous instances of SNAPL.

Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi
May, 2019
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Overparameterization: A Connection Between
Software 1.0 and Software 2.0
Michael Carbin
MIT CSAIL, Cambridge, MA, USA
mcarbin@csail.mit.edu

Abstract
A new ecosystem of machine-learning driven applications, titled Software 2.0, has arisen that
integrates neural networks into a variety of computational tasks. Such applications include image
recognition, natural language processing, and other traditional machine learning tasks. However,
these techniques have also grown to include other structured domains, such as program analysis
and program optimization for which novel, domain-specific insights mate with model design. In
this paper, we connect the world of Software 2.0 with that of traditional software – Software 1.0 –
through overparameterization: a program may provide more computational capacity and precision
than is necessary for the task at hand.

In Software 2.0, overparamterization – when a machine learning model has more parameters than
datapoints in the dataset – arises as a contemporary understanding of the ability for modern, gradient-
based learning methods to learn models over complex datasets with high-accuracy. Specifically, the
more parameters a model has, the better it learns.

In Software 1.0, the results of the approximate computing community show that traditional
software is also overparameterized in that software often simply computes results that are more
precise than is required by the user. Approximate computing exploits this overparameterization to
improve performance by eliminating unnecessary, excess computation. For example, one – of many
techniques – is to reduce the precision of arithmetic in the application.

In this paper, we argue that the gap between available precision and that that is required for
either Software 1.0 or Software 2.0 is a fundamental aspect of software design that illustrates the
balance between software designed for general-purposes and domain-adapted solutions. A general-
purpose solution is easier to develop and maintain versus a domain-adapted solution. However, that
ease comes at the expense of performance.

We show that the approximate computing community and the machine learning community
have developed overlapping techniques to improve performance by reducing overparameterization.
We also show that because of these shared techniques, questions, concerns, and answers on how to
construct software can translate from one software variant to the other.

2012 ACM Subject Classification Software and its engineering → General programming languages;
Computing methodologies → Machine learning
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1:2 Overparameterization: A Connection Between Software 1.0 and Software 2.0

1 Software 2.0

Software 2.0 is the vision that future software development will consist largely of developing
a data processing pipeline and then streaming the pipeline’s output into a neural network
to perform a given task [25]. The implication is then that Software 1.0 – the development
of software using traditional data structures, algorithms, and systems – will move lower in
the software stack, with less of the overall software engineering effort dedicated to building
software in this traditional way.

In domains such as image recognition and natural language processing, this Software 2.0
vision has been largely realized: neural networks have replaced hand-engineered models for
vision, natural language processing, and other traditional, machine learning tasks. The key
observation in these domains is that building models by hand is labor-intensive, requires
significant expertise in domain-specific modeling, and is difficult to adapt across similar tasks.
Such engineering can include both hand-developing analytical models as well as engineering
features to use as inputs to machine learning models, such as Support Vector Machines.

The promise of Software 2.0 is that neural networks have the capability to automatically
learn high-dimensional representations of the system’s inputs from raw data alone. For
example, the word2vec [33] model automatically learns high-dimensional vector-valued repre-
sentations of natural language words that capture semantic meaning and can automatically
be used in a variety of natural language tasks. This stands in contrast to traditional ap-
proaches that require experts to develop algorithms that manually identify important words
or subwords within a piece of text. With this opportunity, Software 2.0 – in its most extreme
form – holds out the promise of replacing large, hand-developed components of traditional
software systems with neural networks.

1.1 Overparameterization
A key component of the success of Software 2.0 is overparameterization. Contemporary
explanations for the relative ease of training neural networks on large, complicated datasets
with relatively simple optimization methods such as gradient descent posit that overparame-
terization is a key ingredient. Specifically, overparameterization results in improved learning
both in total accuracy and accuracy as a function of data points of training [29, 1, 15, 2].

Overparameterization is a condition in which a machine learning model – such as a
neural network – has more parameters than datapoints. In such a regime, the contemporary
understanding is that a learning algorithm can identify parameters for the model that can
perfectly memorize the data. The connotation of the term overparameterization is therefore
a note that – in principle, for well-posed datasets – it is possible to design a model that has
fewer parameters than the number of datapoints for which a learning algorithm can identify
an effective setting for those parameters for the task at hand.

Although overparameterization seems uniquely restricted to the domain of machine
learning models and Software 2.0, in this paper we argue that overparameterization is a key
ingredient in the development of Software 1.0 and that therefore overparameterization is
binding force to relate Software 1.0 and Software 2.0.

1.2 Overparmeterization in Software 1.0
We define overparameterization in Software 1.0 as a condition in which the system performs
more computation than is necessary for the task at hand. As a simple example, the traditional
software development practice of uniformly choosing single- or double-precision for all real-like
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numbers in a system is a simplifying assumption that ignores the fact that different quantities
in the program may require different precisions. Choosing precision in this regime requires
the precision of all operations to be that of the operation that the program needs to be the
most precise. However, for some applications, data and operations may require only limited
precision, such as half-precision or even less, while still enabling the application to produce
an acceptable result.

The difference between selecting uniform precision and selecting an appropriate precision
per operation is an inherent trade-off: uniformly selecting a high-precision is easier than the
detailed numerical analysis required to soundly select a precision per operation [12]. However,
uniformly selecting precision may not yield optimal performance: more precise floating-point
operations are more computationally and memory intensive than less precise operations.

1.3 Reducing Overparameterization (Approximate Computing)
In both Software 1.0 and Software 2.0, researchers have sought techniques to address the fact
that overparameterization results in reduced performance, increased energy consumption,
and decreased ubiquity (requiring significant resources from the user to execute the software).

For Software 1.0, the approximate computing community has shown that it is possible
to eliminate unnecessary computation and, correspondingly, improve performance. Specific
techniques have included floating-point precision tuning (i.e., choosing less precise arith-
metic) [12, 11, 44, 10, 34], loop perforation (eliding computations entirely) [36, 35, 49], and
function substitution (replacing entire sub-computations whole cloth with less expensive,
approximate implementations) [23], and more [13, 16, 17, 27, 38, 39, 45, 9].

For Software 2.0, the machine learning community has developed a variety of new
techniques to reduce overparameterization in neural networks. Quantization chooses new,
low-precision representations of the parameters and arithmetic in neural networks [40].
Pruning ignores subsets of a neural network’s parameters [26, 21, 41]. Distillation trains
a new, smaller network to mimic the behavior of a large, well-trained network [5, 22].
Each of these techniques have direct analogues to techniques in approximate computing:
precision-tuning, loop perforation, and function substitution, respectively.

1.4 Shared Questions
The core premise of this paper is that overparameterization in both Software 1.0 and Software
2.0 and the overlap in techniques for reducing overparameterization in both, enable us to
interpolate between Software 1.0 and Software 2.0, mapping observations and questions from
one software construction methodology to the other and vice-versa.

For example, the first question we ask is, is overparameterization is necessary? For
Software 1.0, it is assumed that developers – perhaps with significant effort – can develop
optimized implementations from the outset given a specification of the system’s requirements.
The analogous question for Software 2.0 is if it is possible to train – from scratch – a neural
network with significantly fewer parameters to model a given problem. We recount our
results on the Lottery Ticket Hypothesis [18] that demonstrate that from scratch training
for standard problems is possible.

Second, a claim for Software 2.0 is that the parameters of its design – such as the specific
neural network architecture – can be optimized alongside the system’s objective, provided
that these parameters are differentiable. The second question we therefore ask is, can we
integrate approximation transformations from the start – and throughout the lifetime – of a
Software 1.0 system? We survey our recent results on noise-based sensitivity analysis for

SNAPL 2019



1:4 Overparameterization: A Connection Between Software 1.0 and Software 2.0

programs by showing that if we embrace Software 2.0’s aim to minimize its expected behavior
– versus its worst-case behavior – then it is possible to integrate approximations into the
optimization of the system’s overall objective using gradient descent.

Finally, we discuss several questions on the compositionality and correctness of future of
Software 1.0 and Software 2.0 systems and propose directions forward.

1.5 Directions
Software 1.0 and Software 2.0 share the phenomenon of overparameterization, share the same
approaches for reducing overparameterization, and – once connected – share overlapping
challenges to their construction. By drawing these connections, we hope to identify principled
techniques to approach software design, correctness, and performance jointly for both Software
1.0 and Software 2.0.

2 Reducing Overparameterization

Researchers in both approximate computing and machine learning have sought techniques to
automatically eliminate overparameterization. In the machine learning setting, there are a
variety of techniques that reduce parameter counts by more than 90% while still maintaining
the accuracy of the neural network on the end task. The goal of reducing parameter
counts is multi-fold: 1) reducing the representation size of the network reduces storage and
communication costs [21, 22], 2) reducing parameters eliminates computation, and 3) the
combination of effects overall improves performance and energy consumption [50, 37, 31].

For example, the following code implements a neural network layer that computes a
matrix-vector product of its internal weights (weights) with its m-dimensional input (x). The
result is an n-dimensional vector passed through a Rectified Linear Unit activation function
(max(0, output)). The n-dimensional result denotes the output of n neurons.

1 float x[] = { ... };
2 float weights [][] = { ... };
3 float output [] = { ... };
4 for (int i = 0; i < n; ++i)
5 {
6 for (int j = 0; j < m; ++j)
7 {
8 output [i] += weights [i][j] * x[j];
9 }

10 }
11 return max (0, output );

Quantization reduces the number of bits used to represent each weight and compute each
operation within the neural network’s computation. We can capture this optimization as
classic precision selection where, for example, this program could be written to use 16-bit
precision floating-point instead of 32-bit float types.

Pruning takes a trained large model and eliminates weights by, for example, removing the
weights of the smallest magnitude. For this example program, this is equivalent to eliding a
subset of the loop iterations – i.e., loop perforation – based upon a pre-determined mask.
Eliding iterations of the loop over j, elides individual weights in each of the n neurons while
eliding iterations of the loop over i elides neurons in their entirety. Both options have been
explored in the literature [21].
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Distillation takes a large, trained model and trains a smaller network to mimic the outputs
of this model. In this example, this entire layer could be substituted with an alternative
implementation. For example, this computation is no more than a matrix-vector product
and therefore it is to possible accelerate this computation by instead learning a fast, low-rank
approximation of weights and computing with that instead [14].

3 Fewer Parameters from the Start

The standard conceptualization of the approximate computing workflow applies approximation
transformations after an initial, end-to-end development of a system. Specifically, the standard
workflow requires that a developer write an additional quality-of-service specification [36]
after developing their program. This specification states how much error – measured with
respect to the ground truth – that the user can tolerate in their program’s output. Given this
specification, an approximate computing system then searches the space of approximation
transformations to produce a program that meets the quality-of-service specification.

Reducing overparameterization in Software 2.0 follows a similar methodology. Standard
methodologies apply pruning, quantization, and distillation to a fully trained neural network.
However, the reality that these techniques can be applied lends itself to the question: why
not simply use a smaller, more efficient neural network from the start?

Until our recent results [18], contemporary understanding in the machine learning com-
munity was that small neural networks are harder to train, reaching lower accuracy than
the original networks when trained from the start. Alternatively, overparameterization is
required for effective learning.1 Figure 1 illustrates this phenomenon. In this experiment,
we randomly sample and train small networks. These networks are sampled from the set of
subnetworks of several different neural network architectures for the MNIST digit recognition
benchmark and the CIFAR10 image recognition benchmark. Across various sizes relative to
the original reference networks, the sparser the network (fewer parameters), the slower it
learned and the lower its eventual test accuracy.

However, this figure also shows the results of our techniques for identifying winning
tickets [18]: small networks that do in fact train as well (or better) than the original network.
The solid lines in the graph are winning tickets, for which these graphs show that even down
to a small size, these networks achieve high-accuracy as well as train quickly.

We identify winning tickets by pruning: randomly initialize a neural network f(x;W0),
train it to completion, and prune the weights with the lowest magnitudes (and repeat over
multiple iterations). To initialize the winning ticket, we reset each weight that survives the
pruning process back to its value in W0.

The success of this technique has lead us to pose and test the lottery ticket hypothesis:
any randomly-initialized, neural network contains a subnetwork that is initialized such that –
when trained in isolation – it can learn to match the accuracy of the original network after at
most the same number of training iterations. In our work, we have supported this hypothesis
through experimental evidence on a variety of different neural network architectures. However,
our approach to identify winning ticket still requires training the full network: the remaining
science is to determine a technique to identify winning tickets earlier in the training process.

1 “Training a pruned model from scratch performs worse than retraining a pruned model, which may
indicate the difficulty of training a network with a small capacity.” [28] “During retraining, it is better
to retain the weights from the initial training phase for the connections that survived pruning than it is
to re-initialize the pruned layers...gradient descent is able to find a good solution when the network is
initially trained, but not after re-initializing some layers and retraining them.” [21]

SNAPL 2019



1:6 Overparameterization: A Connection Between Software 1.0 and Software 2.0

Figure 1 The iteration at which early-stopping would occur (left) and the test accuracy at that
iteration (right) of the lenet architecture for MNIST and the conv2, conv4, and conv6 architectures
for CIFAR10 ([18] Figure 2) when trained starting at various sizes. Dashed lines are randomly
sampled sparse networks (average of ten trials). Solid lines are winning tickets (average of five trials).

4 Approximation from the Start

Recent work has investigated techniques to introduce pruning, quantization, early in the
training process with limited success [40, 30, 19]. The key idea behind these approaches is
that the parameters of these techniques can be designed to be differentiable. Notably, in the
standard Software 2.0 methodology, a learning algorithm identifies settings of the system’s
parameters that minimize the system’s expected error with respect to a ground truth given
by a training dataset. Within this umbrella, an error specification is therefore builtin to
this methodology and – typically – the learning algorithm selects the system’s parameters
through gradient descent. Therefore, if the parameters of these reduction techniques are
differentiable, then they can be learned alongside the system’s standard parameters.

Approach

Inspired by Software 2.0, in recent results we have developed a sensitivity and precision
selection technique for traditional numerical programs that is differentiable. Our approach
models sensitivity as random noise – e.g., sampled from a gaussian distribution – added to
each operation in the program such that the standard deviation of the noise’s distribution
indicates the sensitivity of the program’s expected error to changes in the operation’s output.

If an operation’s noise distribution can have large standard deviation without perturbing
the expected error of the program, then the program is relatively less sensitive to perturbations
in that operation’s results. On the other hand, if an operation’s noise distribution must have
small standard deviation to avoid perturbing the expected error of the program, then the
program is relatively more sensitive to changes in that operation’s result.
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Table 1 We compare the absolute error bound from FPTuner against the empirically determined
root mean squared error from our approach. Mean bits is the average number of bits in the mantissa
of the approximate program in contrast to FPTuner’s 52-bit mantissa (from doubles).

Benchmarks FPTuner RMSE Mean Bits
verlhulst 3.79e-16 1.13e-16 51
sineOrder3 1.17e-15 7.64e-16 50
predPrey 1.99e-16 1.90e-16 50
sine 8.73e-16 8.34e-17 51
doppler1 1.82e-13 3.30e-14 53
doppler2 3.20e-13 3.30e-14 53
doppler3 1.02e-13 8.22e-14 53
rigidbody1 3.86e-13 1.37e-13 51
sqroot 7.45e-16 4.00e-16 50
rigidbody2 5.23e-11 6.08e-12 51
turbine2 4.13e-14 2.57e-14 50
carbon gas 1.51e-08 3.01e-09 49
turbine1 3.16e-14 8.69e-15 51
turbine3 1.73e-14 5.09e-15 52
jet 2.68e-11 2.45e-11 54

The goal of our approach is to identify the maximum standard deviations for the distri-
bution of each operator such that the resulting program still delivers acceptable expected
error. Our technique poses this goal as an optimization problem and solves the problem
through stochastic gradient descent. We have shown that these sensitivities are informative
by developing a precision selection approach that takes as input the set of sensitivities for
the operations in the program and produces an assignment of precision to each operator.

Case Study

We have applied our approach to a set of scientific computing benchmarks used by FPTuner’s
developers to develop and evaluate FPTuner [10]. FPTuner is a tool that can identify
an assignment of precisions to operators such that the resulting program satisfies a user-
provided worst-case error. FPTuner uses a combination of static error analysis and quadratic
programming to automatically identify an assignment that satisfies the provided bound. To
evaluate our sensitivity analysis, we have devised a technique to map the sensitivity of each
operator to the number of bits to use in an arbitrary precision library (i.e., MPFR).

Table 1 presents our preliminary results of our approach. We configured our approach to
produce sensitivities such that expected error of the program is less than FPTuner’s absolute
error. The results are that our approach generates tighter expected error bounds using
fewer bits than FPTuner for 10 out of 15 benchmarks. For the remaining 5 benchmarks, our
approach requires at most 2 extra bits on average than in FPTuner.

Sensitivity analysis provides critical information to an approximate computing system –
the sensitivity of the program’s output to changes in semantics of an operation. By embracing
expected error and working within a differentiable setting, we have arrived at an approach
that mates Sofware 1.0 (approximate computing) with Software 2.0.

SNAPL 2019
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5 Discussion

Software 2.0 – replacing core components of traditional-developed software systems with
learned components – is a lofty goal. A particular challenge to this goal is that an integral
component of Software 2.0 – neural networks – have so far proved to be difficult to interpret
and reason about for the purposes of validating the resulting system’s behavior. However, the
approximate computing community has faced similar difficulties with 1) understanding the
composition of approximation with the original system, 2) giving the resulting approximate
system a useful behavioral specification, and 3) developing analysis frameworks for reasoning
about that behavioral specification. Through the shared tie of overparameterization, Software
2.0 and approximate computing can share techniques to solve their common challenges.

Compositionality

In a Software 2.0 system that composes both neural networks and traditional computa-
tion, reasoning about the behavior of the resulting system is challenging. Specifically, the
high-dimensional representations that neural networks learn are not necessarily directly
interpretable by humans. For example, word2vec represents words as n-dimensional vectors,
where n is often large (i.e., greater than 256), with limited semantic meaning assigned to each
dimension. Moreover, interpreting the composed behavior of the neural network with the
larger system is challenging because the network’s task may not easily permit a compositional
specification of its behavior for which global faults can be reduced to local reasoning.

The approximate computing community has faced similar challenges. In its most idealized
form, the community’s agenda has advocated for a variety of techniques that are together
composed with the program in a blackbox manner with limited interaction with the developer
or user. Techniques such as loop perforation and function substitution may remove or replace
large fractions of a system’s computation with the result being limited understanding of the
system’s semantics. As a consequence, a developer may receive an approximate system for
which failures are hard to address because it is not clear if they are resident in the original,
non-approximate program program or a created anew through approximation [6].

One avenue for Software 2.0 to follow is the direction of our work in approximate
computing to apply the concept of non-interference to support compositional reasoning [6].
Our proposed programming methodology argues that a developer should develop a program
and establish its acceptability properties – the basic invariants that must be true of the
program to ensure that its execution and ultimate results are acceptable for the task at
hand [42]. Example invariants include standard safety properties – such as memory safety –
but also include application-specific integrity properties [6, 7]. For example, a computation
that computes a distance metric between two values should return a nonnegative result,
regardless of the extent of its approximation.

Given a program and its acceptability properties, the developer communicates to the
approximate computing system points in the application at which approximation opportunities
are available and do not interfere with the properties established for the original program.
Therefore by non-interference, we mean that if the original program satisfies these properties,
then the approximate program satisfies these properties. Reasoning about non-interference
can include reasoning about information flow to ensure that approximations do not change
the values of data and computations that are involved in the invariants. For Software 2.0,
this methodology could enable existing software components to be replaced with learned
variants that do not interfere with the program’s acceptability properties. This framework
can, for example, underpin recent work on adding assertions to machine learning models [24].
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Correctness

The act of developing a specification of the full functional correctness of a software system
as can be done for traditional software does not directly translate to either Software 2.0 or
approximate systems. For many Software 2.0 systems – such as those in computer vision
and natural language processing – the correctness specifications for these problems is either
not known or not well posed. For example, specifying that the system correctly classifies
an image of a cat as a cat does not have a declarative, logical specification. Therefore
developers typically evaluate a Software 2.0 system based on its expected error over a sample
of data from its input distribution. The correctness specification for approximate systems is
challenging in that – by definition – an approximate system returns different results from its
original implementation. By this nature, an approximate system’s natural measure of its
behavior is its error with respect to the original program.

In both domains, there has developed a shared understanding that statistically bounding
the error of the system is a potential direction for improving the confidence in a system. The
core conceptual challenge is that while the error of either type of system can be measured on
a test set drawn as a sample of the system’s input distribution to give confidence, the key
property to bound is the system’s generalization: its error on unseen data.

In the statistics and machine learning community, such bounds are known as generalization
bounds. A simplified structure for these bounds is that for δ ∈ (0, 1), with probability 1− δ
over a random sample s from an input distribution D, L ≤ B(L̂(s), δ). Here L is the
expected error (or loss) of the system on unseen data, L̂(s) is the observed error of the system
on s, and B denotes a function that computes the bound. The computed bound is at least
L̂(s) – i.e., the error on unseen data is no better the error on observed data – and decreasing
in δ – the less confidence one requires of the bound, the closer it is to the observed error.

The approximate computing community has also developed statistical bounds on the
behavior of approximate systems. These analyses include bounding the probability the
system produces the correct result [8, 34], bounding the probability it produces a result
exceeding a specified distance from that of the original program [43, 35], and bounding its
expected error [51]. The shared focus and results on statistical bounds between Software 2.0
and approximate computing suggests that these bounds may be integral specifications for
ensuring the behavior of future systems, including both Software 2.0 and Software 1.0.

Analysis

If Software 2.0 takes hold, then the reasoning methods we have used to build software will
need to change. Traditional software construction methodologies have been designed around
the classic building blocks of Computer Science: discrete and deterministic math, algorithms,
and systems. However, the basic analysis that underpins reasoning about Software 2.0 is
based on continuous math and statistics: neural networks are formalized as functions on real
numbers and formalizing generalization relies on statistical analysis. The required analysis
for approximate systems also relies on continuous math and statistics: these systems compute
on reals in their idealized mathematical specification and statistical bounds are the preferred
framework for reasoning about their correctness.

A resulting challenge is that the formal methods, programming languages, and systems
communities – communities that are major contributors to the mission to formalize and
deliver automated reasoning systems – has invested less in understanding real-valued and/or
probabilistic computations than for discrete computations. The result is that there is a
significant gap between the needs of future systems and the capabilities of existing analysis.
Therefore, the next generation of systems will need new computational building blocks.

SNAPL 2019
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For example, our work on programming with continuous values makes it possible to
soundly compute on real numbers to arbitrary precision as well as soundly combine real-valued
computation with discrete computation [47, 46]. Specifically, discrete computations on the
reals – e.g., testing if two real numbers are equal – is undecidable in general. This fact
stands as a contradiction to modern programming languages that expose floating-point as an
approximation of the reals and permit developers to test them for equality.

As another example, many of the reasoning tasks for future software – such as profiling
or computing bounds on their behavior – will be probabilistic computations. One can pose
these analyses as queries on the behavior of probabilistic models, as currently captured
by the community around probabilistic programming: representing probabilistic models as
programs with stochastic choices [20]. In these systems, the supporting programming system
can perform inference to compute answers to questions such as, what’s the probability that
the program produces a value that exceeds a given bound?

However, beneath the covers of these programming systems lies a space of inference
algorithms, which are algorithms that manipulate probability distributions. If probabilistic
computations are to be integral to future software, then future and developers and systems will
need to understand and manipulate inference algorithms and therefore need to understand
and manipulate probability distributions as first-class values. In this space, there are
open questions about the architecture of programming systems for implementing inference
algorithms that we – along with others – are exploring [4, 3, 32, 48].

In sum, the future of Software 2.0 – and the extent to which we can reason about
its behavior – critically depends on the development of new programming models and
abstractions for continuous math and statistics.

6 Conclusion

Software 1.0 and Software 2.0 appear radically different. The development methodology
for Software 1.0 revolves around developers manually architecting the overall structure and
constituent algorithms of a system. In contrast, the mantra of Software 2.0 is to delegate
much of the system’s algorithms and – perhaps – even its structure to neural networks or
other machine learning methods. However, overparameterization is a shared connection
between both methodologies.

In the case of Software 1.0, developers rely on coarse, general-purpose abstractions that
are easy to program with but that perform more computation than is necessary for the task
at hand. In the case of Software 2.0, results have shown that larger neural networks learn
more easily than their smaller counterparts, but – in principle – smaller networks are capable
of representing the task. The trade-off for both of these methodologies is that the increased
ease in development comes at the expense of performance.

To address this problem, both the approximate computing community and the machine
learning community have coalesced on techniques to reduce overparameterization in Software
1.0 and Software 2.0, respectively, while still preserving ease of development. Based on this
shared goal, this paper offers the viewpoint that questions, challenges, and techniques from
both communities can translate from one to the other. As the Software 2.0 future unfolds,
new questions about the composition and correctness of these systems will arise. However,
these questions can be addressed jointly within both Software 1.0 and Software 2.0.
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Abstract
In this work, we present an unexpected connection between gradual typing and type error debugging.
Namely, we illustrate that gradual typing provides a natural way to defer type errors in statically ill-
typed programs, providing more feedback than traditional approaches to deferring type errors. When
evaluating expressions that lead to runtime type errors, the usefulness of the feedback depends on
blame tracking, the defacto approach to locating the cause of such runtime type errors. Unfortunately,
blame tracking suffers from the bias problem for type error localization in languages with type
inference. We illustrate and formalize the bias problem for blame tracking, present ideas for adapting
existing type error debugging techniques to combat this bias, and outline further challenges.
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2:2 Blame Tracking and Type Error Debugging

1 Introduction

Static and dynamic typing have different strengths [38, 53, 54]. For example, static typing
can detect more errors at compile time but delivers no runtime feedback for programs that
have static errors, while dynamic typing can run any program and provide feedback but defers
error detection to runtime. Gradual typing [45, 52, 47] is a new language design approach
that can integrate both typing disciplines in a single language, allowing different interacting
program regions to use static or dynamic typing as needed. Adopting gradual typing has
been popular with both statically typed languages (for example C#[3]) and dynamically
typed languages (for example JavaScript and Flow [8]). Additionally, gradual typing has
been adapted to work with many advanced language features [44, 31, 46, 37, 16, 30].

In particular, much research has explored the interaction of gradual typing with type
inference [46, 37, 16, 4, 5]. There are several reasons that this interaction has been explored.
First, inference can benefit the usability of gradual typing without programmers having to
manually modify numerous type annotations, as argued by [36]. Second, inferred types can
be synchronized to help improve gradual typing performance [36, 37, 5, 57]. Third, inference
can aid in the detection of inconsistencies in programs [16, 4, 30].

This paper explores an intriguing connection between gradual typing and type inference,
the blame tracking in gradual typing and type error debugging in type inference. In gradual
typing, well-typed programs may still encounter runtime type errors since type-checkers
allow statically typed contexts to accept values produced by dynamically typed expressions.
At runtime these dynamic values may not have the desired runtime types that the context
expected, and consequently a runtime type error may be triggered. Blame safety, adapted
from [15] by Wadler and Findler [61] and further developed in [1, 60, 43, 2], is a well accepted
approach in the gradual typing community for indicating which code region is responsible for
a runtime type error. Blame safety states that when a cast fails the blame is always assigned
to the more dynamic part, under the slogan that “well-typed programs can’t be blamed”.

Type error localization provides a similar purpose in type error debugging. It specifies
which code region is responsible for a static type error. Inaccurate type error localization
produces poor error messages [62, 24], and type inference often leads to poor localization.
Unlike in gradual typing where blame tracking is the de facto mechanism for enforcing blame
safety, numerous approaches have been developed to improving error localization and error
reporting in the presence of type inference errors in the last three decades [7, 21, 19, 51, 24,
28, 17, 14, 13, 10, 68, 33, 27, 9, 12, 32, 26, 55, 64, 65, 42, 11].

In this paper, we explore the relations between gradual typing and type error debugging.
Our exploration includes the following directions. First, we investigate whether gradual
typing and blame tracking improve type error debugging for type inference. Intuitively,
we can turn a program with type errors into a well-typed gradual program by annotating
certain expressions with dynamic types. We can then obtain and observe runtime behaviors
of the program using gradual typing, which may give the users a better understanding of the
type error. Through a few examples, we conjecture that gradual typing improves type error
debugging, but blame tracking does not. We present the details in Section 2.

Second, by drawing an analogy from type error localization, we reflect the usefulness
of blame tracking for providing debugging information when gradual programs encounter
dynamic type errors. A fundamental difficulty in type error localization is that type inference
is biased. Specifically, it tends to attribute the type error to a later part of the program’s
syntax tree while in fact the error may have been caused by an earlier part. Unfortunately,
we observe that blame tracking is also biased. It tends to blame a later untyped region along
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the execution path leading to a dynamic type error, while the error may have been caused
by an earlier region. We prove this problem in Section 3. Thus, we suggest that while blame
tracking is well-accepted in the gradual typing community, its helpfulness in debugging is
questionable, particularly in languages supporting type inference.

Third, as blame tracking suffers from the same problem as type inference does, we are
interested in knowing the potential of adapting existing type error localization and debugging
approaches to improve blame tracking. We discuss the potential of several approaches and
highlight the challenges in adapting them in Section 4. We conclude in Section 5.

2 Gradual Typing and Blame Tracking for Type Error Debugging

This section investigates how gradual typing and blame tracking can help with type error
debugging in Sections 2.1 and 2.2, respectively.

2.1 Gradual Typing for Type Error Debugging
We use the example factorial program from Figure 1 to illustrate how gradual typing provides
new insights for type error debugging. The type error in Figure 1a is caused by the value
true, which should instead be 1. Types for the program are inferred by solving constraints
that are generated by the structure of the program. For example, in each function call a
constraint is generated ensuring that the argument type of the function must match the type
of the argument, and similarly different branches in a single function are constrained into
returning the same type. These constraints are collected and solved while traversing program
structure. If the constraints can’t be solved, then a type error is raised.

To make type inference feasible, constraint solving must be most general [59]. Most-
general constraint solving pushes back failure detection as late as possible, and thus the
reported location is likely not the real error cause. For example, Helium [20], a Haskell type
error debugger, attributes the type error to *, later than the real error cause true, as can be
seen from Figure 1b. The standard Haskell compiler GHC also suffers from the right-biased
problem, although it reports the whole else branch as the error cause.

Most type error debugging approaches prevent the running of ill-typed programs. However,
the ability to run ill-typed programs is believed to help program understanding [41, 58],
which may in turn help programmers fix their type errors. A main approach that enables the
execution of ill-typed programs is deferring type errors to runtime [58]. In a program that
contains both well-typed and ill-typed functions, deferring type errors allows programmers to
run functions that are not involved in the type error. It, however, provides little help to fix
the type error itself. To illustrate, consider running the program in Figure 1a with GHC and
deferred type errors enabled. After loading the function, we can invoke fac in GHCi. While
it looks reasonable to expect the result true when we run fac 0, since the branch that will
be executed does not contain a type error, GHCi actually dumps its deferred compile-time
type error message, as shown in Figure 1d. This message is biased since it does not mention
the real error cause true. The work by Seidel et al. [41] can also run ill-typed programs, but
it supports much fewer language features.

An alternative to the previously mentioned approaches is to use gradual typing, facilitated
by ascribing certain subexpressions with the dynamic type (denoted by ?). For fac in
Figure 1a, we make it well-typed by ascribing ? to *, as shown in Figure 1c. This new
expression, which we name facG, is well-typed because the dynamically typed operator
(*:?) can accept values of any type as arguments. We run facG with the gradual evaluator
developed by Miyazaki et al. [30], and the result is shown in Figure 1e. The output first shows
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fac n = if n == 0 then true
else n * fac (n-1)

(a) An ill-typed function, adopted from [41].

(3,43): Type error in infix application
expression : n * fac (n - 1)
operator : *

type : a -> a -> a
does not match : Int -> Bool -> Bool

(b) Output from Helium [20] for fac.

facG n = if n == 0 then true
else n (*:?) facG (n-1)

(c) A well-typed gradual program by ascribing *
in Figure 1a to have a dynamic type ?.

*Main> fac 0
*** Exception: Fac.hs:3:41: error:
• Couldn’t match expected type ‘Bool’

with actual type ‘Int’
• In the expression: n * fac (n - 1)

In the expression:
if n == 0 then True else n * fac (n - 1)
...

(deferred type error)

(d) Output from running fac with GHC 8.0.2 and de-
ferring type errors enabled.

# facG 0;;
- : bool = true
(e) Result of running facG with the idea from [30].

Figure 1 An ill-typed function fac and outputs from various tools and approaches. To reconcile
language differences, we use true for True in Haskell.

the type and then the result after the equals sign. Interestingly, gradual typing produces
true for the expression facG 0. With this output, a keen programmer should already be able
to fix the type error in fac because the factorial function should never return a boolean value.
She may thus change true to 1 to remove the type error.

Because gradual typing generally provides more feedback when running “statically”
ill-typed (but gradually well-typed) programs than deferred type errors, we believe that
gradual typing does offer additional insights beyond existing type error debugging approaches.
However, a main hindrance of adopting gradual typing for debugging type errors is that
current implementations supporting gradual typing with type inference and parametric
polymorphism are limited. The work in [30] (building on much previous work on some mix
of polymorphism, inference, and blame [16, 1, 2, 22, 23]) provides an implementation, but it
is restricted to a small set of language features.

A particular twist in using gradual typing to improve type error debugging is that the
user needs to provide appropriate arguments to ill-typed functions. Specifically, gradual
typing will show execution results only if the execution does not encounter a dynamic type
error. For example, only when the argument to facG is 0 will the resulting true be shown.
Otherwise, blaming information will be shown. In such cases, the usefulness of gradual
typing for type error debugging depending on that of blame tracking, which we investigate
in Section 2.2.

2.2 Blame Tracking for Type Error Debugging

Blame tracking specifies which subexpression should be blamed if the execution of an
expression encounters a runtime error. The standard goal of blame tracking in gradual
typing is to preserve blame safety [61, 60], which attributes the blame for runtime type errors
to subexpressions with more dynamic types. We use the following table to illustrate the
behaviors of blame safety. In the “Expressions” column, we use a ; to denote a sequential
expression. The “Blames” column are the expressions blamed after running the corresponding
expression with the evaluator from [30]. Our goal in the expressions (1) through (4) is to
use gradual typing to debug the type error in fac (Figure 1a). The goal of expressions (5)
through (11) is to debug the type error in (\x y -> if true then x else y) 2 false.
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Ids Expressions Blames

(1) fac1 n = if n == 0 then true else n (*:?) fac1 (n-1); fac1 1 *
(2) fac2 n = if n == 0 then (true:?) else n * fac2 (n-1); fac2 1 true
(3) fac3 n = if n == 0 then (true:?) else n (*:?) fac3 (n-1); fac3 1 *
(4) fac4 n = if n > 0 then n (*:?) fac4 (n-1) else (true:?); fac4 1 *

(5) (\x y -> if true then x else y) 2 (false:?) false
(6) (\x y -> if true then x else y) (2:?) false 2
(7) (\x y -> if true then x else y) (2:?) (false:?) false
(8) (\x y -> if true then x else y) (false:?) (2:?) 2
(9) (\x y -> if true then x else y) ((succ:?) 2) (false:?) false
(10) (\x y -> if true then x else y) ((succ:?) (2:?)) (false:?) false
(11) (\x y -> if true then x else y) ((\x -> x) (succ:?) 2) (false:?) false

From the table, we make two observations. First, when an expression contains only one
subexpression with a dynamic type ?, then that subexpression will be blamed for causing
the runtime type error. This is intuitive, because that subexpression is more dynamic than
all other subexpressions and will alone be responsible for type mismatches at runtime. The
expressions (1), (2), (5), and (6) in the table all belong to this case. Note that the anonymous
function is statically-typed (since the parameters do not have the type ?), and the conditional
branches are required to have the same type. As a result, the expressions (5) through (11)
will raise blame, rather than returning the first argument. We observe that blame tracking
does blame the subexpression that caused the type error if that subexpression happens to
have the dynamic type, as in the expression (2) above. However, if the user knows where to
add ? she probably already knows how to fix the type error.

Second, when an expression contains multiple subexpressions that have the dynamic
type, then blame safety is biased in attributing the dynamic type error. Specifically, because
blame safety is connected to the expression that triggers the runtime type error, it always
blames the most recently encountered dynamic context in program execution, even if the
true cause of the error was due to an expression evaluated much earlier. For example, in
both expressions (3) and (4), the subexpression true:? is returned earlier than it is being
used as a multiplicand to *:?. In other words, true is being executed before *:?. As a result,
*:? is blamed in both subexpressions, regardless of their ordering in the conditional branches.
Alternatively, we can view true:? as injecting true to a dynamic value, and when it is used in
*:? a projection happens. This fits in our description of blame, since blame tracking always
blames projections that follow injections.

In expressions (7) through (11), the anonymous function is first applied to the first
argument, substituting the argument into x in the body and also instantiating the type of
both parameters x and y. When it is applied to the second argument, its type is ensured to
be the same as the instantiation. Therefore, we observe that the first argument is executed
first and the second argument later. Unsurprisingly, blame safety always assigns the blame
to the second argument. The expression (8) in the table demonstrates that that the ordering
of types is responsible for determining the blamed expression. The expressions (9) through
(11) confirm this observation, even as expressions become more complicated.

We observe that when an expression has multiple subexpressions with ?, blame tracking
may provide little help to type error debugging. There is little context in the program that
indicates that the blamed subexpression is the true cause of the type error. This phenomenon
is well-understood in the type error debugging research community. For example, while *
is blamed in the expressions (3) and (4), we already know that that does not cause the
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Term variables x, y Type variables X, Y
Type constants ι Blame labels `

Static types T ::= ι | X | T →T Gradual types U ::= ? | ι | X | U→U

Ground types G ::= ι | ?→?
Expressions e ::= x | c | op(e, e) | λx :U.e | e e | e : U ⇒` U

Values w ::= c | op(w,w) | λx :U.e | w : U→U ⇒` U→U | w : G⇒`?

Figure 2 Syntax of types, expressions, and values.

type error. In subexpressions (7) and (9) through (11), while false may be the error cause
(because changing it to some integer value will in fact fix the type error), 2 or/and succ are
equally likely to have caused the type error. For example, the user may have intended to use
a boolean value where 2 is, or they may have intended to use a boolean valued function such
as even or odd instead of succ.

Based on these two observations, we conclude that blame tracking offers very little
additional help to type error debugging. Moreover, our second observation implies that
blame safety may not be an ideal way to report causes for dynamic type errors, since it is
biased. In Section 3 we prove that this bias is indeed a general problem.

3 Blame Tracking is Biased

To prove that blame tracking is biased, our high-level idea is to show that gradual program
execution embodies type constraint generation and solving, which are well-known to be
biased in the type inference research community. Our idea is inspired by the work of dynamic
type inference (DTI) for gradual typing [30]. In combining gradual typing and type inference,
some type variables are left undecided at compile time due to the interaction of dynamic
types. Consider, for example, the expression (λx : ?.x 2) (λy.y). During type inference,
the type, say Y , for the parameter y cannot be decided because it is solely required to be
consistent with ? (which every type is consistent with). However, the choice of Y has a
significant impact on the execution result. If Y is chosen to be Int, then the expression runs
correctly. Otherwise, the expression leads to dynamic type errors. The challenge here is that
it is statically difficult to decide that Y should be Int.

DTI addressed this issue by keeping Y as y’s static type and deferring the instantiation
of it to runtime. Eventually, λy.y will be applied to 2, making it clear that Y needs to be
instantiated with Int to make this application succeed. Miyazaki et al. [30] proved that DTI
is both sound and complete in the sense that if a term is evaluated successfully then some
correct instantiation (such as instantiating Y with Int at compile time) of the term will
execute successfully in the blame calculus [61, 1, 2].

This example illustrates that DTI mixes reductions and type instantiations without
generating type constraints explicitly. To investigate whether existing type error localization
and debugging approaches can help address the bias in blame tracking, we instead separate
constraint generation (during program execution) and constraint solving (after the execution
is finished). If constraint solving succeeds, then the program executes without raising blame
in DTI. Otherwise, blame will be raised. The advantage of this separation is that it allows
us to make a clear connection between constraint solving and blame tracking.
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op(w1, w2) −→G (JopK(w1, w2), {})
(λx :U.e) w −→G (e[w/x], {})
w : ι⇒` ι −→G (w, {})
w :?⇒`? −→G (w, {})

(w1 : U1→U2 ⇒` U3→U4) w2 −→G ((w1 (w2 : U3 ⇒` U1)) : U2 ⇒` U4, {})
w : U ⇒`? −→G (w : U ⇒` G⇒`?,{}) (if U 6=?, U 6= G, U ∼ G)
w :?⇒` U −→G (w :?⇒` G⇒` U ,{}) (if U 6=?, U 6= G, U ∼ G)

w : G1 ⇒`1 ?⇒`2 G2 −→G (w, {G1 ·
`2= ·G2}) Meet

w : ι⇒`1 ?⇒`2 X −→G (w, {ι · `2= ·X}) Base
w :?→?⇒`1 ?⇒`2 X −→G (w :?→?⇒`2 X1→X2,{X ·

`2= ·X1→X2}) Arrow

Figure 3 Reduction rules. X1 and X2 in the Arrow rule are fresh.

3.1 Syntax
We consider a cast calculus with the type and expression syntax given in Figure 2. The
definition is standard compared to other cast calculi [30, 47]. In the figure, e : U1 ⇒` U2
denotes a cast that ensures e has the type U2 at runtime and raises blame at location `

otherwise. Both the cast and the label ` are inserted while translating gradual programs into
programs in a cast calculus [47, 30].

The main difference between our calculus and others is that we do not have an explicit
blame construct and do not terminate programs early, while others do [30, 47]. To avoid
early termination, we add a value form op(w1, w2) that interprets possible computations like
3 + true as the value +(3,true). The main reason for this addition is that we do not want
to terminate program execution once a cast error would be encountered but rather collect
all type constraints until program reduction finishes. We will show that our calculus and
corresponding reduction rules yield the same result as others–that is they succeed with the
the same value or fail with the same blame label.

3.2 Dynamic Constraint Generation and Solving
The reduction and constraint generation rules are presented in Figure 3. Our reductions
have the form e1 −→G (e2, C), where C is a set of constraints. A constraint has the form
U1 ·

`= ·U2, denoting that U1 and U2 are required to be the same type, and ` will be blamed if
they can not be made the same. We write e −→∗

G (en, C) if e −→G (e1, C1), e1 −→G (e2, C2),
. . . , and en−1 −→G (en, Cn), and C = C1 ∪ C2 ∪ · · · ∪ Cn.

Since our semantics is designed to collect all type constraints, our reduction rules differ
from those in [30] only when typing constraints are generated, or when a primitive operation
would produce an error. The rules are the same in all other cases. Specifically, the first seven
rules in Figure 3 are mostly standard among other cast dynamic semantics [30, 47]. Since no
typing constraints are generated, the constraint set is empty in these rules.

The Meet rule handles two cases that are dealt separately in other cast semantics. In the
first case, G1 and G2 are the same, and the cast will be successful and will thus be dropped.
In the second case, G1 and G2 are different, and the cast will fail and blame `2. When our
approach attempts to solve the constraint G1 ·

`2= ·G2, it will behave as one of these cases.
Specifically, if G1 and G2 are the same, then the constraint solving succeeds. Otherwise,
constraint solving fails and blames `2.
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In Base, a dynamically typed value with primitive type ι can be projected into having
type X if and only if X of is the same as ι. As a result, a constraint ι · `2= ·X is generated.
Similarly, in Arrow, when we project a value that has a function type (?→?), our minimal
expectation of the value is that it is a function (U1→U2). Both of these rules are similar to
those in [30], but they solve the constraint immediately while we collect and solve them later.

For a generated constraint set, the Robinson’s unification algorithm [39] will suffice to
solve it. For simplicity, we use U to denote that algorithm with following simple extensions.
For any constraint set C, U(C) returns a substitution θ if constraint solving succeeds. When
constraint solving fails, it returns (`, θ), where ` is the label of the constraint that fails to
solve and must be blamed, and θ is the substitution accumulated so far. Note that U solves
the constraints in the ordering they are added to the constraint set, as what classic type
inference does [35].

In general, our approach of separating reduction and constraint solving is correct, as
expressed in the following theorem, where −→∗

D denotes the reduction relation that mixes
constraint solving and reduction, as defined in [30].

I Theorem 1 (Correctness of −→G and U). Given any expression e, let e −→∗
G (w1, C).

U(C) = θ if and only if e −→∗
D w2 and θ(w1) = w2.

U(C) = (`,θ) if and only if e −→∗
D blame `.

Intuitively, the theorem states that both approaches compute the same correct result or
blame the same location. The theorem can be proved by induction over the −→G relation
defined in Figure 3 and the relation −→D in [30].

The following example shows the reduction sequences of −→∗
G (between the two rules)

and −→∗
D (after the second rule) for the expression (λx y.if true then x else y) (2:?) (5:?).

Note,  denotes the step of type inference and cast insertion. The two parameters have
the same type variable X after type inference because (1) they have no ?s and normal
type inference applies to them and the subexpressions using them and (2) they are the two
branches of the same conditional, which are required to have the same type [16, 30].

(λx y.if true then x else y) (2:?) (5:?)
 (λx : X y : X.if true then x else y) (2 : Int⇒`2 ?⇒`2 X) (5 : Int⇒`5 ?⇒`5 X)

−→G (λx : X y : X.if true then x else y) 2 (5 : Int⇒`5 ?⇒`5 X) {Int · `2= ·X}
−→G (λy : X.if true then 2 else y) (5 : Int⇒`5 ?⇒`5 X) {Int · `2= ·X}
−→G (λy : X.if true then 2 else y) 5 {Int · `2= ·X, Int · `5= ·X}
−→∗

G 2 {Int · `2= ·X, Int · `5= ·X}

−→D (λx : Int y : Int.if true then x else y) 2 (5 : Int⇒`5 ?⇒`5 Int) {X 7→ Int}
−→D (λy : Int.if true then 2 else y) (5 : Int⇒`5 ?⇒`5 Int)
−→D (λy : Int.if true then 2 else y) 5
−→D 2

For this example, the reduction −→∗
D produces the result 2. The relation −→∗

G also
produces that result, but generates an additional constraint set {Int · `2= ·X, Int · `5= ·X}, which
has the solution {X 7→ Int} after being solved by the solver U . Therefore, both reductions
succeed and produce 2.

The following example shows the reduction sequences of −→∗
G (between the two rules) and

−→∗
D (after the second rule) for the expression (λx y.if true then x else y) (2:?) (false:?).
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(λx y.if true then x else y) (2:?) (false:?)
 (λx : X y : X.if true then x else y) (2 : Int⇒`2 ?⇒`2 X) (false : Bool⇒`f ?⇒`f X)

−→G (λx : X y : X.if true then x else y) 2 (false : Bool⇒`f ?⇒`f X) {Int · `2= ·X}
−→G (λy : X.if true then 2 else y) (false : Bool⇒`f ?⇒`f X) {Int · `2= ·X}
−→G (λy : X.if true then 2 else y) false {Int · `2= ·X, Bool · `f= ·X}
−→∗

G 2 {Int · `2= ·X, Bool · `f= ·X}

−→D (λx : Int y : Int.if true then x else y) 2 (false : Bool⇒`f ?⇒`f Int) {X 7→ Int}
−→D (λy : Int.if true then 2 else y) (false : Bool⇒`f ?⇒`f Int)
−→D (λy : Int.if true then 2 else y) (blame `f)
−→D blame `f

For this example, the reduction −→∗
D blames the location `f because false does not

have the expected type Int at runtime. The relation −→∗
G produces the result 2 with the

constraint set {Int · `2= ·X, Bool · `f= ·X}. When solving this set in the ordering that constraints
were added to this set, U fails to solve the second constraint because X will be updated to
Int after the first constraint is solved. As a result, solving the second constraint leads the
program label `f being blamed. Overall, both reductions have the same behavior of blaming
`f for this example.

Although the two reductions blame same locations for expressions that have runtime
type errors, the reduction −→∗

G can extract more useful information that can be exploited
by existing type error debugging approaches to provide better blaming information (We
briefly explore this idea in Section 4). The following example cond3 illustrates this aspect.
For the cast inserted program, the relation −→∗

D blames `2 and so does −→∗
G. However, our

reduction rules also collect the constraint set Ccond= {Bool · `f= ·X, Int · `2= ·X, Int · `5= ·X}.

cond3 = (λx y z.if false then x else (if true then y else z)) (false:?) (2:?) (5:?)
 (λx : X y : X z : X.if false then x else (if true then y else z))

(false : Bool⇒`f ?⇒`f X) (2 : Int⇒`2 ?⇒`2 X) (5 : Int⇒`5 ?⇒`5 X)

Based on Theorem 1, we can reduce blame tracking to constraint generation and solving in
our approach. Since constraint solving is biased [14, 25, 29, 66, 10, 17], blame tracking is
also biased. The difference between type inference and gradual typing is that constraints are
collected at compile time in the former while at runtime in the latter. This means that in
type inference the bias happens along the abstract syntax traversal ordering while in gradual
typing the bias happens along the execution ordering.

4 Type Error Debugging for Blame Tracking

The previous section shows that blame tracking is biased similar to type inference, albeit
with constraint collection happening at different times. This inspires that existing work in
type error debugging may be adapted to alleviate the bias problem in blame tracking.

Reordering constraint solving. A common idea to combat the bias in the standard uni-
fication algorithm is to reorder the unification problems being solved [14, 25, 29, 66]. For
example, if we solve the constraints in Ccond from the last to the first, then the location `f ,
corresponding to false, will be blamed. While these approaches can improve blame tracking
in some cases, they are in general still biased in the orderings they solve constraint problems.
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Error slicing. Instead of just blaming one location, type error slicing approaches [50, 17, 40,
48, 49, 63] highlight all of the program locations relevant to a type error. For example, for
the expression cond3 in Section 3, although only `2 looks to cause the dynamic type error, all
three locations `f , `2, and `5 will be identified by slicing approaches due to the connection of
the common type variable X in all constraints. The downside of slicing approaches is that
the user still must determine the real error cause among all those identified.

Error localization. Many approaches [24, 21, 18, 20, 34, 33, 27, 67, 68, 69] have been
developed to exploit context information to locate the most likely error location among a set
of locations. From the constraint set Ccond, all these approaches will blame `f as the error
cause because the type variable X is unified with Bool once but Int twice. This result makes
sense because changing false modifies only one subexpression, whereas the other fix requires
changing 2 and 5. Most of these approaches, however, lack a concrete message about how to
fix the type error.

Discussion. Some challenges exist in adopting existing type error debugging for improving
blame tracking, including: (1) current gradual typing implementations do not facilitate
constraint collection at runtime, (2) the assumptions that hold for type error debugging may
not hold for blame tracking, and (3) shortcomings with error debugging approaches will also
be transferred to those for blame tracking.

The real challenge is that, in some situations, neither blame tracking nor type error
debugging help to debug the error, illustrated by the following expression.

(\x y -> if true then x else y) ((\x -> (x:?)) succ (2:?)) (false:?)

Assume the user intended to use even instead of succ in the expression, meaning that succ is
the error source. Similar to the expression (11) (Section 2.2), this expression will cause a
dynamic type error. However, neither blame tracking nor a potentially adopted type error
debugging approach will be able to locate succ as the error source since it is not annotated
with a ?. Worse, since this expression is well-typed, no existing type error debugging approach
can help, leaving it to the user to determine the real problem.

One may suggest to remove all ?s in gradual programs and employ existing type error
debugging approaches to assign blame for such programs. This idea is particularly intriguing
as recent work on a user study of gradual typing behaviors [56] suggests that both experienced
and novice programmers value static feedback for programs that have runtime type errors.
However, the suggested idea fails because it may report errors in programs that do not fail.
To illustrate, consider the following expression condxy, adopted from [6].

condxy = (λx (y :?).if x then even y else not y)true 2

Assume even has the type Int→ Bool and not has the type Bool→ Bool. This gradual
expression runs without blaming any subexpression. However, if we remove the ? for the
parameter y, we receive an error that blames some subexpression in condxy. Consequently,
this idea may yield too many false positive error reports.

5 Conclusion

Type error debugging for fixing and understanding type errors when type inference fails is a
well-studied subject. Blame tracking, though relatively new, is a well-accepted mechanism
for assigning blames to program locations when gradually-typed programs encounter runtime



S. Chen and J. P. Campora III 2:11

type errors. This paper explores connections between these two error debugging mechanisms,
focusing on how one can help the other. A fundamental observation in our exploration is that
blame tracking can be reduced to constraint collection and solving, the two main components
of type inference, indicating that the well-accepted gradual typing error debugging mechanism
suffers from the bias problem in type inference. This illustrates two problems. First, it limits
the ability to use gradual typing as a type-error debugging approach similar to deferred type
errors. Second, it means that blame tracking in general may not help programmers find
the cause of their runtime type errors. This calls for more research into understanding and
improving of blame tracking, particularly in gradual languages that employ type inference to
recover type information.
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Abstract
Our most sensitive and important software systems are written in programming languages that are
inherently insecure, making the security of the systems themselves extremely challenging. It is often
said that these systems were written with the best tools available at the time, so over time with newer
languages will come more security. But we contend that all of today’s mainstream programming
languages are insecure, including even the most recent ones that come with claims that they are
designed to be “secure”. Our real criticism is the lack of a common understanding of what “secure”
might mean in the context of programming language design. We propose a simple data-driven
definition for a secure programming language: that it provides first-class language support to address
the causes for the most common, significant vulnerabilities found in real-world software. To discover
what these vulnerabilities actually are, we have analysed the National Vulnerability Database and
devised a novel categorisation of the software defects reported in the database. This leads us to
propose three broad categories, which account for over 50% of all reported software vulnerabilities,
that as a minimum any secure language should address. While most mainstream languages address
at least one of these categories, interestingly, we find that none address all three.

Looking at today’s real-world software systems, we observe a paradigm shift in design and
implementation towards service-oriented architectures, such as microservices. Such systems consist
of many fine-grained processes, typically implemented in multiple languages, that communicate over
the network using simple web-based protocols, often relying on multiple software environments such
as databases. In traditional software systems, these features are the most common locations for
security vulnerabilities, and so are often kept internal to the system. In microservice systems, these
features are no longer internal but external, and now represent the attack surface of the software
system as a whole. The need for secure programming languages is probably greater now than it has
ever been.
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1 Analysing software vulnerabilities

The National Vulnerability Database (NVD) is the US government repository of standards-
based vulnerability management data. It takes as its data feed the vulnerabilities given in the
Common Vulnerabilities and Exposures (CVE) directory, and performs various analyses to
determine impact metrics (CVSS), vulnerability types (CWE), and applicability statements
(CPE), and other useful metadata.

For the past few decades, this data has been extensively analysed, aggregated and
categorised, and gives probably the best insight into the most common security issues facing
the software industry. In 1995, the NVD contained only 25 entries; in 2017, this had ballooned
to more than 10,000 entries for that year alone. The software industry clearly faces a serious
problem. Moreover, there is strong evidence that this is an underestimation of the actual
problem. For example, many cloud software defects are not even assigned a CVE, because
cloud software is typically architected to be continuously updated, making it difficult to be
tracked by services such as the CVE list.

The main technical contributions of this paper are an analysis of the labelled data in the
NVD for the five years from 2013 to 2017, where we have normalised and aggregated the
data related to source code vulnerabilities into broad categories, and a more precise and
meaningful definition of a secure language.

In our analysis of the NVD data, interestingly, we discovered that three of the top
four most common vulnerabilities are actually issues that can be considered to be in the
realm of programming language design. Moreover, when combined, these three categories of
vulnerabilities represent 53% of all labelled exploited vulnerabilities listed in the NVD for
that period. The complete analysis is presented in Appendix A. The three categories and
the number of reported vulnerabilities they represent are as follows:

5,899 buffer errors
5,851 injection errors1
3,106 information leak errors.

It is a little depressing that two of these vulnerability categories are very old. The Morris
worm [16] exploited a buffer error in the Unix finger server in 1988 – over 30 years ago. SQL
injections [14] and XSS exploits [2] have been documented in the literature since 1998 and
2000, respectively.

A 2018 study [9] revealed that the average total cost of a data breach is US$3.86 million,
with an average cost per record of US$157 due to hacker or criminal attacks. With all the
additional costs of software defects, including reputational loss, productivity loss, among
many others, there is an obvious incentive to try to address more than 50% of vulnerabilities
by better programming language design.

This paper is organised as follows. In §2 we give the definition and an example of each of
the three types of vulnerabilities discussed in this paper. In §3 we take a look at mainstream
languages, and consider their support for the three categories of software vulnerabilities.
We consider this problem abstractly, examining the trade-offs when using new abstractions
provided by a programming language. In §4 we look at the common programming language
abstractions to address buffer overflows. In §5 we look at the common programming language
abstractions to address the most frequently occurring forms of injection error. Finally, in §6
we consider the issue of information leak errors, and point to a promising technique from the
research community. We conclude in §7, and give details of our categorisation of the CWE
enumerations used in the NVD, and analysis of recent five years of NVD data in Appendix A.

1 Injection errors include Cross-Site Scripting (XSS), SQL injection, Code injection, and OS command
injection.
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2 The Three Categories of Vulnerabilities

In this paper we focus on three vulnerabilities that are widely exploited year over year, and yet,
those vulnerabilities could be prevented through programming language design. Throughout
this section we make use of NIST’s Computer Security Resource Center definitions [4] and
CWE examples from Mitre [5].

2.1 Buffer Errors
A buffer overflow attack is a method of overloading a predefined amount of memory storage in
a buffer, which can potentially overwrite and corrupt memory beyond the buffer’s boundaries.
Buffer overflow errors can be stack-based or heap-based, depending on the location of the
memory that the buffer uses.

An example of a stack-based buffer overflow, CWE-121, follows. In this C code, the
function host_lookup allocates a 64-byte buffer, hostname, to store a hostname. However,
there is no guarantee in the code that the hostname will not be larger than 64 bytes, and
hence, this is a vulnerability. An attacker can attack this vulnerability by supplying an
address that resolves to a large hostname, overwriting sensitive data or even relinquishing
control to the attacker:
void host_lookup(char *user_supplied_addr ){
struct hostent *hp;
in_addr_t *addr;
char hostname [64];
in_addr_t inet_addr(const char *cp);

/* routine that ensures user_supplied_addr is in the right format
for conversion */

validate_addr_form(user_supplied_addr );
addr = inet_addr(user_supplied_addr );
hp = gethostbyaddr( addr , sizeof(struct in_addr), AF_INET );
strcpy(hostname , hp ->h_name );
}

A canonical example of a heap-based buffer overflow, CWE-122, follows. In this C code,
a heap-based buffer buf is allocated of a given size. When a copy of the string argv[1] into
that buffer is made, there is no check on the size of the buffer, leading to an overflow for
strings larger than the allocated size. This is a vulnerability because the user/attacker has
control over the string argv[1].
# define BUFSIZE 256
int main(int argc , char **argv) {
char *buf;
buf = (char *) malloc(sizeof(char)* BUFSIZE );
strcpy(buf , argv [1]);
}

2.2 Injection Errors
Injection errors include several types of vulnerabilities, the most common ones being: cross-
site scripting (XSS), SQL injection, code injection, and OS command injection. We provide
examples for the first two types of vulnerabilities.
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Cross-site scripting is a vulnerability that allows attackers to inject malicious code into
an otherwise benign website. These scripts acquire the permissions of scripts generated
by the target website and can therefore potentially compromise the confidentiality and
integrity of data transfers between the website and client. Websites are vulnerable if they
display user-supplied data from requests or forms without sanitising the data so that it is
not executable. There are three main kinds of XSS, all part of CWE-79: reflected XSS (or
non-persistent); stored XSS (persistent); and DOM-based XSS.

An example of a reflected XSS follows. The JSP code fragment reads an employee ID,
eid, from an HTTP request and displays it to the user without sanitising the employee ID.
This vulnerability can be exploited by an attacker by including meta-characters or source
code in the input, then that code will be executed by the web browser as it displays the
HTTP response.
<% String eid = request.getParameter("eid"); %>
...
Employee ID: <%= eid %>

An example of a stored XSS follows. The JSP code fragment queries a database for a
particular employee ID and prints the corresponding employee’s name. This is a vulnerability
if the value of the name originates from user-supplied data and has not been validated. As
such, without proper input validation on all data stored in the database, this vulnerability
can be exploited by an attacker by executing malicious commands on the user’s web browser.
<%Statement stmt = conn.createStatement ();
ResultSet rs = stmt.executeQuery("select␣*␣from␣emp␣where␣id="+eid);
if (rs != null) {
rs.next ();
String name = rs.getString("name");

}%>

Employee Name: <%= name %>

An SQL injection vulnerability is one that allows attackers to execute arbitrary SQL code
on a database back-end. A canonical example of an SQL injection vulnerability, CWE-89,
follows. In this C] code fragment, an SQL query is dynamically constructed that searches
for items matching a currently authenticated user name. Because the query concatenates a
user-defined string, ItemName.Text, the query will behave correctly only if the item name
does not contain a single-quote character. This vulnerability is exploited by an attacker with
the user name wiley by entering an item name such as name’ OR ‘a’=‘a, leading to the
SQL query SELECT * FROM items WHERE owner = ‘wiley’ AND itemname = ‘name’ OR
‘a’=‘a’;, which effectively becomes SELECT * FROM items; as the WHERE clause evaluates to
true. Even worse, if the SQL API supports multiple statements, then a malicious user would
enter an item name such as ‘ OR 1=1; DROP TABLE users; SELECT * FROM secretTable
WHERE ‘t’ = ‘t that would delete the table of users and extract all the details from a secret
table.
...
string userName = ctx.getAuthenticatedUserName ();
string query = "SELECT␣*␣FROM␣items␣WHERE␣owner␣=␣’" + userName +
"’␣AND␣itemname␣=␣’" + ItemName.Text + "’";

sda = new SqlDataAdapter(query , conn);
DataTable dt = new DataTable ();
sda.Fill(dt);
...
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2.3 Information Leak Errors

Information leakage is the intentional or unintentional release of information to an untrusted
environment. There are many forms of information leakage in today’s software systems.
Information can be leaked through log files, caching, environment variables, test code, shell
error messages, servlet runtime error messages, Java runtime error messages, and more. The
most common type of information leak is through log files (whether debug logs, server logs,
or other).

An example of an information leak through log files, CWE-532, follows. In this Java code
fragment, the this object contains the location of the user. When the application encounters
an exception, it will write the user object to the log, including the location information.

locationClient = new LocationClient(this , this , this);
locationClient.connect ();
currentUser.setLocation(locationClient.getLastLocation ());
...

catch (Exception e) {
AlertDialog.Builder builder = new AlertDialog.Builder(this);
builder.setMessage("Sorry ,␣this␣app␣has␣experienced␣an␣error.");
AlertDialog alert = builder.create ();
alert.show ();
Log.e("ExampleActivity", "Caught␣exception:␣" + e + "␣While␣on␣User:"
+ User.toString ());

}

3 Mainstream languages and vulnerabilities

For the purposes of this paper, we restrict our attention only to what we term mainstream
languages. We use this term a little loosely, and we are certainly not arguing the relative
merits of these languages over each other, or any other language for that matter. To be
concrete, we used the data from the respected TIOBE Index [17], though interestingly,
other similar indexes yield very similar, if not identical, results. According to the TIOBE
index of January 2019, the current top 10 mainstream programming languages are: Java, C,
Python, C++, Visual Basic .NET, JavaScript, C], PHP, SQL and Objective-C. However,
for this paper, we take the cumulative data for the past 10 years, and therefore we consider
a language to be mainstream if it has been in the top 10 for every year of the past 10
years. Accordingly, we take Java, C, C++, Python, C], PHP, JavaScript and Ruby as the
mainstream programming languages to be considered in this paper.

So, we have our mainstream languages, and from our analysis of the NVD we have our
three security vulnerability categories. Our thesis is that any secure programming language
worthy of its name should be one that has first-class support for all three categories. Put
diagrammatically, a secure language is one that lives in the intersection of the following Venn
diagram:
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Unfortunately, given this definition, it is the case that none of our mainstream languages
can be considered secure.

It is worth taking a step back, and considering the causes of vulnerabilities in software.
Developers do not write incorrect code because they want to. Vulnerable code is written
inadvertently because our mainstream programming languages do not provide the right
abstractions to support developers in writing vulnerable-prone code. Buffer errors are
introduced because of manual management (allocation, reallocation, and deallocation) of
pointers. Injection errors are introduced because of the representation of code as strings, use
of manual string concatenation, and sanitisation of strings that reach a sensitive location
(e.g., an SQL execute statement). And information leak errors are introduced because of
manual tracking of sensitive data, trying to ensure it does not leak to less sensitive objects.

Abstractions in programming languages introduce different levels of cognitive load. The
easier it is for an abstraction to be understood, the more accepted that abstraction becomes.
For example, managed memory is an abstraction that frees the developer from having to
manually keep track of memory (both allocation and deallocation). As such, this abstraction
is widely used in a variety of mainstream and non-mainstream languages. At the same time,
performance of the developed code is also relevant to developers. If an abstraction introduces
a high performance overhead, it makes it hard for that abstraction to be used in practice in
some domains. For example, managed memory is not often used in embedded systems or
systems programming due to the difficulty of predicting its performance overhead.

The space of these two criteria that needs to be considered when developing safe abstrac-
tions can be visualised as follows:

The ideal abstraction is clearly one that has low cognitive load and low performance
overhead. By contrast, abstractions that provide a high cognitive load and high performance
overhead will never be used in a mainstream programming language. There are abstractions
in between that provide a low cognitive load yet a high performance overhead. Those
abstractions may be usable in certain domains, as are abstractions that may have a high
cognitive load and low performance overhead.
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For the issues addressed in this paper, we are interested in abstractions that address
the vulnerabilities from our analysis of the NVD. We refer to these abstractions as safe
abstractions. Managed memory is thus an example of a safe abstraction with respect to
buffer errors. In §§4–6 we provide examples of other safe abstractions.

4 Language support addressing buffer overflows

Providing language support that addresses buffer overflows is almost as old as programming
language design itself. The traditional technique is to use managed memory, discussed in
§4.1. However, this technique has not had great acceptance in the systems community, where
concerns about performance overheads, as per the discussion in the previous section, have
dominated. In §4.2 we mention an interesting new development addressing buffer overflows
using an ownership-inspired type system.

4.1 Managed memory
In 1958, the LISP language introduced the concept of managed memory by adding garbage
collection in the runtime of the language. Garbage collection provides a solution that
frees up developers from the cognitive load of having to allocate, reallocate and deallocate
memory objects correctly. Developers do not need to specify any allocation and deallocation
instructions because it is done under the hood by the runtime of the language.

Managed memory took some time to become widely used due to its performance overhead.
With the advent of faster computers, it is now widely used by object-oriented languages
such as Smalltalk, Java, C], JavaScript and Go; functional languages such as ML, Haskell
and APL; and dynamic languages such as Ruby, Perl and PHP. Note that many of today’s
mainstream languages use managed memory, however, in some domains, such as embedded
systems and operating systems, the performance overhead of a managed memory runtime is
still not feasible.

LISP’s managed memory abstraction was introduced to free up developers from the cog-
nitive load of allocating and deallocating memory objects manually. At the time, exploitation
of buffer errors was not even known, c.f., the Morris worm didn’t appear until 1988. As
such, this abstraction was not introduced for security, however, it is a great example of a
safe abstraction that can be used to provide security against buffer errors and other types of
memory-related errors.

4.2 Ownership and borrowing
Rust is a systems programming language introduced in 2009 that runs fast, prevents memory
corruption, and is designed to guarantee memory and thread safety, though has not been
formally verified yet. Not only does it prevent buffer errors, it prevents various other types
of memory corruptions, such as null pointers and use after free. This feature is provided by
the introduction of ownership and borrowing into the type system of the language:

Ownership is a programming pattern employed in C++ and other languages whereby a
resource can have only one owner. Ownership with “resource acquisition is initialisation”
(RAII) ensures that whenever an object goes out of scope, its destructor is called and
its owned resource is freed. Ownership of a resource is transferred (i.e., moved) through
assignments or passing arguments by value. When a resource is moved, the previous
owner can no longer access it, therefore preventing dangling pointers.
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Borrowing is an abstraction that allows a reference to a resource to be made available in
a secure way – either through a shared borrow (&T), where the shared reference cannot
be mutated, or a mutable borrow (&mut T), where the shared reference cannot be aliased
– but not both at the same time. Borrowing allows for data to be used elsewhere in the
program without giving up ownership. It prevents use after free and data races.

Ownership and borrowing provide abstractions suitable for memory safety, and prevent
buffer errors from happening in the code. Anecdotal evidence seems to suggest that the
learning curve to become fluent in the use of these abstractions can be long, pointing to a
high cognitive load. Nevertheless, given its low performance overhead, this safe abstraction
with respect to memory-related errors is an exciting development in the systems programming
domain.

5 Language support addressing injection errors

No mainstream language offers a general safe abstraction for injection errors. .NET offers
support for language-level query abstractions, including queries over a relational database.
This removes the possibility of SQL injection errors, which we consider in more detail in §5.1.
Although Perl is not strictly a mainstream language by our criteria, in §5.2 we consider its
taint tracking supported, that was later extended in Ruby (which is a mainstream language
by our criteria). Taint tracking could form the basis of a more general abstraction to address
injection errors.

5.1 LINQ to SQL

Language INtegrated Query (LINQ) is a framework introduced in 2007 by Microsoft for
.NET 3.5 that adds language-level query facilities to the .NET languages. It extends the
languages by adding first-class query expressions (along with some supporting extensions
to the type system and other language extensions) that can be used to extract and process
data from any source that supports a predefined set of methods, known as the standard
query operator API. A data type that supports this API is known as a LINQ provider. By
default, all arrays and enumerable classes are LINQ providers. This allows developers to
write high-level declarative queries over their in-memory collections.

Moreover, .NET also provides other implementations of LINQ providers, in particular,
LINQ-to-SQL. This allows queries to be written in a .NET language and be translated into
a semantically equivalent query that executes on an SQL engine. In addition, it comes with
an object-relational mapping framework that automatically generates strongly typed .NET
class declarations that correspond to tables in the database. LINQ-to-SQL also solves the
SQL injection problem because the programmer no longer constructs SQL code using strings
and string concatenation (the source of SQL injection errors) but uses the language-level
queries, which themselves pass all data to the database using injection-safe SQL parameters.

LINQ-to-SQL allows for a large percentage of SQL queries to be written in a simpler
language, but not all SQL queries can be represented. A number of more advanced SQL
queries, for example, that involve selecting into temporary tables and then querying those
tables, predicated updates and bulk inserts, and triggers, are not supported. Vendor-specific
extensions to SQL are also not supported. These features have to be accessed through stored
procedures that have to be defined on the database side.
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5.2 Taint tracking
Perl is a rapid prototyping language introduced in 1987. In 1989, Perl 3 introduced the
concept of taint mode to track external input values (which are considered tainted by default),
and to perform runtime taint checks to prevent direct or indirect use of a tainted value in any
command that invokes a sub-shell, or any command that modifies files/directories/processes,
except for arguments to print and syswrite, symbolic methods and symbolic subreferences,
or hash keys. Default tainted values include all command-line arguments, environment
variables, locale information, results of some system calls (readdir(), readlink()), etc.
Importantly, taint mode is supported in the runtime of the language. Perl 5 supports
taint mode, but Perl 6 does not. Note that because there is no tracking of taint to print
statements, cross-site scripting attacks on web applications are still possible.

Ruby is a dynamic programming language developed in 1993 with a focus on simplicity
and productivity. It supports multiple programming paradigms, including functional, object-
oriented, imperative, and reflective. Ruby extends Perl’s taint mode to provide more flexibility.
There are four safe levels available, of which the first two are as per Perl, as follows:
0. No safety.
1. Disallows use of tainted data by potentially dangerous operations. This level is the default

on Unix systems when running Ruby scripts as setuid.
2. Prohibits loading of program files from globally writable locations.
3. Considers all newly created objects to be tainted.

In Ruby, every object has a Trusted flag. There are methods to make an object tainted,
check whether the object is tainted, or untaint the object (only for levels 0–2). At runtime,
Ruby tracks direct data flows through levels 1–3; it does not track indirect/implicit data flows.

The taint tracking abstraction provides a way to prevent some types of injection errors
with low cognitive load on developers. Apart from Perl and Ruby, PHP [18] and version 1.1.
of JavaScript implemented taint tracking in the runtime. Trade-offs in performance overhead
need to be made to determine how much data can be tracked, what target locations should
be tracked, and whether direct and indirect uses can be tracked. Livshits [10] suggests several
reasons why taint tracking is still an unsolved problem including the following: predictable
performance needs; whether control flow tracking is needed; value tracking of data that
may be safe though deemed to be potentially tainted at runtime; determining declassifiers;
specification inference at runtime; and configurable runtime support for taint. Proposals for
reducing performance overhead include combining the approach with static analysis. Further,
for some applications, values need to be tracked not only for strings, but also for primitive
values, collections, or other objects, resulting in performance overheads.

6 Language support addressing information leak errors

As far as we are aware, there is no language-level feature in any mainstream language to
address vulnerabilities resulting from information leak errors. This is clearly an area requiring
further research. We briefly review one interesting approach from the research community,
although other approaches such as tracking sensitive data [6], data shadowing of sensitive
data [8], and a DSL for data-centric applications [13] are being pursued.

6.1 Faceted values
Jeeves is an experimental academic language for automatically enforcing information flow
policies, first released in 2014 [21]. It is implemented as an embedded DSL in Python. Jeeves
makes use of the faceted values abstraction, which is a data type used for sensitive values
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that stores within it the secret s (high-confidentiality) and non-secret ns (low-confidentiality)
values, guarded by a policy p, e.g., <s | ns> (p). A developer specifies policies outside
the code, making the code policy-agnostic, and the language runtime enforces the policy by
guaranteeing that a secret value may flow to a viewer only if the policies allow the viewer to
view secret data.

Many applications today make use of a database. To make the language practical,
faceted values need to be introduced into the database when dealing with database-backed
applications. A faceted record is one that guards a secret and non-secret pair of values.
Jacqueline, a web framework developed to support faceted values in databases, automatically
reads and writes metadata in the database to manage relevant faceted records. The developer
can use standard SQL databases through the Jacqueline object relational mapping.

The faceted values abstraction provides a way to prevent information leaks with low
cognitive load on developers, at the expense of performance overhead. This work is yet to
determine the lower bound on performance overhead, in order to provide direct and indirect
tracking of the data flows for leaks of sensitive data purposes.

We note that faceted values could also be used to prevent injection errors, as shown
by the DroidFace implementation for an intermediate Java-like language [15]. Conversely,
taint tracking can also be used to track sensitive user data leaving an application through a
network, file system, or similar [6].

7 Concluding Remarks and Further Work

The mainstream languages over the past 10 years are Java, C, C++, Python, C], PHP,
JavaScript and Ruby. In this paper we have considered these languages with respect to
their support for features that directly address the sorts of vulnerabilities in real-world
software systems.

To identify these vulnerabilities, we have analysed the labelled data in the NVD for the
five-year period of 2013–2017. Employing a novel categorisation, we have identified that
three of the top four categories of vulnerabilities for that period actually represent issues that
can be considered to be in the realm of programming language design; namely, prevention of
buffer errors, injection errors, and information leak errors.

We observe that none of today’s mainstream languages provide safe abstractions that
address all three of these prominent types of exploited vulnerabilities. By our criteria, we
claim that none of our mainstream languages can be considered secure.

Buffer errors are addressed by all mainstream languages, apart from C, C++, and PHP,
through use of the managed memory. We note that taint tracking is in place in only the
Ruby and PHP (through an extension) mainstream languages to avoid injection errors, and
that some classes of injection errors have been addressed by LINQ for the .NET languages.
Taint tracking solutions are not yet mature enough to capture all aspects of what needs to be
tracked with a good performance trade-off. As far as we are aware, no mainstream language
supports a safe abstraction to deal with information leak errors.

We note that a couple of upcoming languages, Rust and Pony [3], have designed their
languages to not only avoid buffer errors, but also concurrency (data race) errors. They
use different safe abstractions for data race prevention, and neither provides abstractions to
prevent injection or information leak errors.

Many languages today provide a foreign function interface (FFI) to “escape” into an-
other language that normally provides other properties, such as performance or low-level
system access. Such an FFI escape hatch breaks any concept of a safe abstraction in
the language because the compiler and/or runtime does not track information across the
language boundaries.
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Ideally, in order to help developers in writing vulnerability-prone code, we need to provide
safe abstractions that complement existing mainstream languages, because it is impractical to
migrate the millions of lines of code already written and relied upon by millions of developers.
Indeed, much of the existing software is developed in languages that are distinctly insecure!
Two interesting and somewhat orthogonal approaches to this problem are being explored in
the research community:
1. One approach is to explore multilingual compilers and runtimes that have been architec-

ted to simultaneously support multiple languages, with differing security abstractions
(e.g. [20]). More foundational work in this area is also encouraging [12].

2. Another approach is to maintain a monolingual runtime but employ possibly many
stages of secure compilation; that is, compilation that preserves security properties via
translations that are fully abstract (e.g. [1, 7]).

Further work also involves continued analysis of the vulnerability data. While we have
paid attention to the largest categories, and hope that they will be addressed, the remaining
categories will become increasingly more relevant. Put another way, these other vulnerability
categories should be drivers for programming language design of the future.

Finally, we conclude by drawing attention to the significant change in the design of real-
world systems from large, standalone software systems to software-as-a-service. This reflects
both the change in underlying infrastructure from in-house systems to rented cloud platforms,
and also the requirements of systems to seamlessly scale up/down. Many existing applications,
as well as new applications, are being re-architected using quite radically different design
patterns, such as microservices (functions-as-a-service). While it should be expected that
familiar vulnerabilities will be reported from these applications, it is entirely reasonable to
expect that either new vulnerabilities will emerge, or existing ones will become much more
common. There is some work on security aspects of microservice-style programming – for
example, Whip [19] proposes a formal contracts system for microservices code that prevents
software errors at the edge – but it is clear that further research is needed, for example, how
to prevent second-order SQL injections in a microservice.
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A Appendix – NVD data analysis

CWE Classification

The Common Weakness Enumeration (CWE) [11] specification provides a classification
of software security vulnerabilities as they are found in source code, design, or system
architecture. An individual CWE represents a single vulnerability type. CWEs are organised
in a hierarchical structure – CWEs at the highest levels of the structure provide an overview
of a vulnerability category (e.g., “data handling”), and the leaves of the tree represent actual
vulnerability types (e.g., “out-of-bounds read”, “SQL injection”, “cross-site scripting”). The
National Vulnerability Database makes use of 34 CWEs for its classification of the various
reported CVEs. We focus on the ones related to source code errors.

The first 25 years of vulnerability data, from 1988 to 2012, were collated and analysed
by Sourcefire [22]. From September 2007, the NVD changed its methodology and adopted
19 CWE categories to classify vulnerabilities, but chose not to reclassify the earlier ones.
Sourcefire normalised the data by manually mapping from the old categories to the 19 new
ones. NVD also makes use of two CWEs that do not provide information for classification
purposes and are not counted towards the 19. They are “Insufficient Information” and
“Other”. The 19 CWE categories are:

1. Buffer Errors 8. Cross-Site Scripting 14. Access Control
2. SQL Injection 9. Input Validation 15. Code Injection
3. Information Leak 10. Resource Management 16. Path Traversal
4. Configuration 11. Numeric Errors 17. Authentication
5. Credentials 12. Crypto 18. CSRF
6. Link Following 13. OS Command Injection 19. Format String
7. Race Conditions

Figure 1 shows the subtree of the CWE tree hierarchy that represents vulnerabilities in
the source code. As can be seen, there are four main CWE categories: (1) indicator of poor
code quality, (2) data handling, (3) security features, and (4) time and state.

Data for 2013–2017

We took the data from the NVD for the years 2013 to 2017 and recategorised the 32 CWEs
that have been used since July 2016 into the 19 CWE NVD categories of 2007 because the
12 new CWEs are all inner nodes of the CWE tree hierarchy. As such, they represent a
subcategory of vulnerabilities rather than a vulnerability type per se. There are 16 leaves
that are part of the 2007 vulnerability types, with two others (“input validation”, and “path
traversal”) that are inner nodes of the subtree, and one other (“configuration”) that is not
part of the source code CWE subtree hierarchy.

The summary data from NVD for the years 2013–2017, categorised into 19 categories
after removing the entries “Not Enough Information” and “Other”, is as follows:
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1- CWE-398: Indicator of poor code quality
CWE-399: Resource management errors

2- CWE-19: Data handling
CWE-20: Input validation
CWE-119: Buffer errors
CWE-134: Format string vulnerability
CWE-74: Injection
CWE-77: Command injection
CWE-78: OS command injection
CWE-89: SQL injection
CWE-79: XSS
CWE-94: Code injection
CWE-21: Path equivalence
CWE-22: Path traversal
CWE-59: Link following
CWE-189: Numeric errors
CWE-129: Improper validation of array index
CWE-190: Integer overflow or wraparound
CWE-682: Incorrect calculation
CWE-190: Integer overflow or wraparound
CWE-191: Integer underflow
CWE-369: Divide by zero
CWE-199: Information management errors
CWE-200: Information Leak

3- CWE-254: Security features
CWE-287: Authentication issues
CWE-345: Insufficient verification of data authenticity
CWE-352: CSRF
CWE-255: Credentials management
CWE-264: Permissions, privileges and access control
CWE-284: Improper access control
CWE-287: Authentication issues
CWE-310: Cryptographic issues

4- CWE-361: Time and state
CWE-362: Race conditions

Figure 1 Subtree of the CWE tree hierarchy that focuses on source code.
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Vulnerability Type Number of Unique Exploits
Buffer errors 5899
Permissions, privileges and access control 3951
Cross-site scripting 3914
Information leak 3106
Input validation 2618
Cryptographic issues 1873
Resource management 1422
SQL injection 1299
Cross-site request forgery 1062
Path traversal 690
Authentication 485
Code injection 450
Numeric errors 420
Credentials management 370
Race conditions 256
OS command injection 188
Link following 112
Configuration 38
Format string 29

We aggregated the data from all forms of injection attacks (namely, “cross-site scripting”,
“SQL injection”, “code injection”, and “OS command injection”) into a single category, and
then considered the resulting top four vulnerability categories.

Vulnerability Category Count
Buffer errors 5899
Injections 5851
Permissions, privileges and access control 3951
Information leak 3106

It is important to note that these top four categories represent 64% of all labelled data
for the five years.

The categories “buffer errors”, “injections”, and “information leak” represent categories
of vulnerabilities that could be prevented through first-class language support. However,
the category “Permissions, privileges and access control” represents vulnerabilities in the
implementation of a security solution (whether in the implementation of the language solution
or through own implementation of a solution in the source code). It remains future work to
establish to what degree language-level support could alleviate vulnerabilities in this category.
Accordingly, we have focused our attention in this paper on the other three categories, which
still represent 53% of all labelled data in the NVD for the recent five years of 2013–2017.
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4:2 From Theory to Systems

1 Introduction

A deep divide exists today between courses on programming languages across academia.
Some PL courses focus on theory and formal methods, such as CMU [1], UPenn [2], and
Princeton [3]. Some combine PL and compilers to cover the implementation of grammars,
typecheckers, and interpreters like Northeastern [9], UC Berkeley [4], and UIUC [5]. Others
yet focus on teaching existing paradigms of programming languages like functional and logic
programming at places like UW [7] and (formerly) Stanford [10]. (And others still blaze new
trails, like Brown [17].)

While I strongly believe in the educational value of programming language theory, I worry
that the theory-oriented PL courses (e.g. courses using [16, 14]) end up only interesting the
math-oriented programmers that appreciate the intrinsic beauty of concise programming
models and proofs. Anecdotally, my peers and I experienced this during undergrad at CMU.
I heard sentiments about PL theory like, “I get it, it’s cool, but I’m not designing functional
programming languages or doing PL research, so it’s not for me.”

By contrast, while implementation-oriented or “programming language zoo” courses are
looked down upon by theorists, these courses are undeniably fun in ways theory courses often
are not. The journey of discovering new languages, the excitement of exploring unfamiliar
paradigms – for me, these moments, arcs, and emotions carried my passion for programming
languages through the years moreso than abstract theory. Motivating students to continue
learning and using what we teach is just as important as the content itself.

Over the last two years, I redesigned Stanford’s graduate PL course, CS 242, in an
attempt to bridge this divide. I developed a novel curriculum that integrates modern systems
programming languages like WebAssembly and Rust to contextualize and motivate discussions
of functional programming, type theory, and operational semantics. In this paper, I will
discuss the key design decisions of this curriculum and my experience teaching it to 70
Stanford CS students.

2 Pedagogy

The target audience for this course is the average Stanford senior undergraduate or master’s
student. This student has completed the computer science core (data structures, computer
systems, algorithms, discrete mathematics, etc.) and has no formal exposure to functional
programming (CS 242 is the only Stanford course that teaches FP). They probably intend to
become a software engineer at a large tech company after graduation, or perhaps already
are – Google and Facebook engineers have taken CS 242 through job training programs.
This student does not necessarily come predisposed with a love of mathematical theory, of
functional programming, or of programming languages at all.

For such a student, I believe the primary benefit of learning PL theory is to provide a
simple model of fundamental concepts in computation. I call this “computational literacy,”
i.e. not just knowing how to program, but understanding the essence of ideas like variables,
functions, and types. From simplicity comes two key benefits:

1. Improving mental models of computation: most students learn programming ad hoc
through courses, extracurriculars, and internships. These experiences provide a working
knowledge of computational concepts through the lens of existing programming tools, but
such concepts often carry significant baggage due to reasons of poor design, legacy code,
or limitations of the underlying hardware. For example, a student who learns C assumes a
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mental model of functions that involves multiple/variadic arguments, void returns, top-level
vs. nested functions, recursion, control flow through early returns, the call stack, and so
on. By contrast, a student who learns the lambda calculus can understand functions solely
as abstraction of code over a single variable (along with variable scope). I strongly believe
that providing students a clear mental model of computational concepts should be a core
mission of not just a PL course, but of a broader CS curriculum. I suspect that these
concepts are essential in acquisition and transfer of computational skills like building new
algorithms or learning new programming languages, although our current understanding of
the programmer’s psyche is perilously insufficient to fully justify this claim.

2. Enabling formal reasoning: when a computational model is simple (has few rules,
syntactic constructs, edge cases, etc.), then the model becomes significantly easier to analyze
for correctness, computational complexity, and many other such properties. For students
both using and potentially designing computational models, simplicity becomes a criterion
for understanding and evaluating the amenability of a model to analysis. Moreover, students
can gain exposure to a wider variety of program analysis techniques than just those tradi-
tionally applied to programming languages. Existential types, ownership types, session types,
refinement types, etc. all serve to expand a student’s idea of the realm of possibilities in
language design.

My goal for CS 242 is to demonstrate how programming language theory provides a
simpler view on computational concepts, and to contextualize the benefits of simplicity
against problems familiar to students. All CS students at Stanford are required to take
an introduction to computer systems course, i.e. assembly, C, pointers and memory, bit
manipulation, and so on. This provides an opportunity to ground the theoretical framework
of PL in their concrete experiences writing low-level programs, showing that PL theory could
solve problems they empathize with. What if a static type system could prevent you from
ever getting a segfault? What if assembly actually had a type system? Answering these
questions both provides concrete applications of PL theory in practice, but also motivates
students by addressing problems they understand viscerally: just ask any student how long
they’ve spent staring at x86 or debugging a segfault.

3 Curriculum

CS 242 has seven arcs across eight weeks of core content, roughly 50/50 between theory
and systems. The theory arcs are largely derived from a subset of Types and Programming
Languages [16], while the systems arcs are entirely my own invention. Students are expected
to do 12-15 hours of work per week including lectures and weekly assignments.

3.1 Logic and semantics
We first establish the logical system of judgments and inference rules, followed by a presenta-
tion of the untyped lambda calculus and its operational semantics. The assignment, like many
in this course, is structured around introducing new concepts and getting students to transfer
knowledge from lecture to new contexts. This is as opposed to, say, just implementing an
interpreter for the abstractions defined in class. Rather than teach students the Church
encoding in class, we provide an untyped lambda calculus interpreter with OCaml-ish syntax
and have students build the encoding themselves. This requires students to transfer an
understanding of the lambda calculus execution model from the simple examples shown in
class to the more abstract ones in the Church encoding.
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Similarly, to test the student’s ability to interpret semantic rules, we introduce the
semantics for a dynamically-scoped lambda calculus and ask students to complete a proof
of an execution trace and provide a semantic rule for a new syntactic construct. This both
prepares students to understand proof contexts used later for typing judgments, and it also
demonstrates how to reformulate language semantics under a different design decision, i.e.
dynamic vs. lexical scoping.

3.2 Type theory
We next move to the basics of static semantics and the typed lambda calculus. We discuss
structural induction along with progress and preservation, both to highlight a topic of intrinsic
interest (demonstrating the safety of a language), but also to show a first example of proving
a complex property about a language. Given the limited course time, we do not discuss
proofs of totality or other such properties. Because functional programming is not a course
prerequisite, we simultaneously introduce OCaml, framing the language as a featureful typed
lambda calculus interpreter.

For the assignment, students implement an interpreter for the typed lambda calculus with
algebraic data types in OCaml, learning both languages at the same time. This more standard
exercise is supplemented with a language design challenge: the student is given the static
and dynamic semantics for two proposed language extensions (let bindings and induction
over naturals). One violates progress or preservation and the other does not, and the student
must figure out which is which and provide the corresponding proof/counterexample. From
my interactions with students, this kind of written exercise is a necessary complement to the
interpreter, since it’s very possible for students to successfully write the OCaml program
without fully internalizing how the lambda calculus actually works.

3.3 Functional programming
We then discuss three important areas in type systems: algebraic data types, recursion, and
parametric polymorphism. On each topic, I give a practical introduction as one might find
in an introduction to functional programming course, followed by a discussion of formal
semantics in the typed lambda calculus. For example, when teaching ADTs, I will give
examples of how sum types in OCaml better represent error conditions than error codes and
null pointers, followed by a presentation of their static and dynamic semantics in the typed
lambda calculus along with a progress/preservation proof.

For this assignment, students implement a polymorphic collections library in OCaml and
translate their implementation by hand into typed lambda calculus. The coding portion is of
the kind one would find in an introduction to functional programming class, the goal being
to have students write functional programs of moderate complexity that aren’t interpreters.
The written portion is part of a broader strategy of learning by analogy, i.e. students are
more likely to recognize the similarities of the OCaml and lambda calculus representations if
asked to explicitly translate between the two. Similarly in lecture, if I show a new functional
programming construct, I will consistently translate back to a familiar language like C, Java,
or Python to help students relate to languages and problems they know.

3.4 WebAssembly
This is the major divergence point with existing curricula. We start our shift into systems by
asking: now that we understand the basics of a mathematical framework for programming
languages, how can we use this knowledge to improve the design of real-world languages?
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WebAssembly is a perfect example, as it is a popular, cutting-edge language for high
performance web development, and its authors have presented a formal semantics [13] and a
proof of progress and preservation [19] for the language. WebAssembly introduces the notion
that even assembly languages don’t have to be unsafe, and could support a type system
with careful language design (e.g. no jumps). I use its semantics as a motivating example
to introduce formal representations of mutability and non-local control flow. The actual
semantics are too complicated to be feasibly taught in a single lecture, so I instead designed
a distilled version of the language, e.g. separating the instruction sequence from the value
stack and eliminating block contexts for branch semantics [11].

The assignment has students implement a memory allocator using plain WebAssembly
and formulate semantics for adding exceptions into the language. The allocator uses a
simple implicit free list that all students are familiar with from their introduction to systems
course, but this time recast into WebAssembly instead of C. This helps students internalize
WebAssembly semantics and identify the key differences with x86 and C like structured
branching. The written portion asks students to provide operational semantics for a basic
exception mechanism given an English specification. This task both provides students an
opportunity to design semantics for a nontrivial language feature, and also highlights the
difference between static/dynamic control flow with WebAssembly’s branches versus the
proposed exceptions.

3.5 Rust

While we use WebAssembly to demonstrate a direct application of PL theory, we introduce
Rust to demonstrate more broadly the utility of type systems in low-level programming. We
focus primarily on using the borrow checker (i.e. affine and ownership types) for resource
management, especially with respect to memory safety and concurrency. I also emphasize
the trait system for understanding a more compositional approach to modular programming
than the traditional inheritance-based object-oriented style. I do not use formal semantics to
teach either topic, as that would take up too much time. My goal is just to convince students
that tricky systems problems like avoiding segfaults and data races can be categorically
eliminated through static analysis combined with careful language design.

This arc covers two assignments: first, students implement a WebAssembly interpreter
in Rust to learn Rust basics and reinforce knowledge of WebAssembly semantics. The
WebAssembly semantics are significantly more complex than the typed lambda calculus,
having local mutable variables, a function call stack, and an addressable memory. Students
experience the contrast between implementing a simple interpreter in OCaml versus a complex
interpreter in Rust.

Second, students implement a combinator-based futures library [8] to explore the inter-
action of memory management, concurrency, and traits in a DSL. Most systems concepts
like concurrency and memory management are taught in languages with impoverished type
systems like C, which shapes the student’s mental model around ugly interfaces like pthreads
and epoll. This assignment shows how a proper type system provides the foundation for
expressing domain concepts with better abstractions, e.g. using parametric polymorphism
instead of void* for generic thread callbacks, or using sum types and pattern matching to
manage communication between threads instead of tagged unions or #define.
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3.6 Session types
In the same way UW’s “Hack Your Language” course [6] promotes an ethos where anyone can
implement an embedded DSL, I want to convey the same lesson but for domain-specific type
theories. To do this by example, we introduce two-party session types [18] along with their
standard theory (e.g. computing duals), and then walk through an implementation of session
types in Rust [15]. Session types pull together many of the course’s lessons: articulating a
type theory using mathematical notation, translating inference rules into code with traits,
avoiding dangerous aliasing with affine types, implementing lexically scoped variables with
de Bruijn indices, and defining recursion through fix points. We also discuss more general
notions of typestate, such as statically verified finite state machines.

Students then design and build a session-typed (simplified) TCP implementation in Rust.
We provide a high-level English specification and an example communication trace with
sufficient detail to ensure that, although the students design the session type themselves,
there is only one possible type they can correctly derive. The student’s implementation
contains the session type and an implementation of the server and client, which we test by
compiling an adversarial server/client against their code, checking that the session types
match, and then verifying the correctness properties not captured in the type.

3.7 Dynamic typing
In the course’s final arc, I conclude by asking: static types are great, but what do we lose
by having them in our language? We review many of the language constructs in the course,
e.g. polymorphic types, exceptions, etc., and consider how dynamically-typed languages
allow programmers to get these features “for free” while statically-typed languages require
significant machinery in the compiler. I show how dynamically-typed languages make it easy
to implement new language features. We specifically look at building a multiple-inheritance
object-oriented programming system from scratch within Lua using prototypes.

For their final two-week-long assignment, students implement a variant of this OOP
system, build a small ASCII-art adventure game on top of it, then rewrite core components in
Rust using Lua’s C API. In the first section, students implement a class-based (as opposed to
prototype-based) OOP system so students can draw parallels to the litany of class-based OOP
languages they know. In the second section, we provide students most of the infrastructure
for running the game, except that it relies on their class library (thus providing a substantial
integration test). We have students implement a simple AI by introducing coroutines to
represent state machines. Finally, the game’s vector library is rewritten in Rust to show an
example of how Lua’s API enables the integration of statically typed, GC-free code with
dynamically typed, garbage-collected code.

3.8 Final project
CS 242 does not have a midterm – the majority of its grade comes from the eight assignments
described above. I am still in the process of determining the the best way to do a final. In the
first iteration, students did final projects for three weeks. Students enjoyed the opportunity
to do a deep dive on a PL-related subject of personal interest, and two-thirds said they
preferred doing a project over an exam. However, the prompt was too open-ended and the
three weeks required cut too much into class time that would otherwise be used for more
directed assignments.

On the latest iteration, I had students learn to use the Lean theorem prover [12] on their
own and prove a number of simple theorems (i.e. a take-home final, still not an exam). The
goal of the final was to show that learning about PL theory and functional programming
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would make students more productive in settings of self-directed learning that involved foreign
PL concepts, such as grappling with dependent types and the Curry-Howard correspondence.
While students were able to effectively pick up the core concepts just by reading the Lean
documentation (a reflection perhaps on the high quality of the Lean documentation!), several
students provided feedback that the final felt disjointed from the course. In future iterations,
I plan to make the final more systems-related while still preserving the same themes, perhaps
by learning and using TLA+ to verify an actual distributed system instead of arbitrary
logic theorems.

4 Outcomes

I taught this version of the curriculum in Autumn 2018 to a class of 77 Stanford students,
mostly computer science majors, and mostly masters and upper-level undergraduate students.
85% of the students provided anonymized course feedback, mostly numeric with a subset of
students leaving comments.

Students enjoyed the course and felt they learned a good amount of material. Students
were asked “How much did you learn from this course?” with responses of “A great deal” (5),
“A lot” (4), “A moderate amount” (3), “A little” (2), “Nothing” (1). The response average
was 4.3 with 87% of students answering 4 or above. When prompted to articulate specific
skills learned, most respondents wrote about: 1) PL theory and proofs about programs, 2)
functional programming and new models of computation, or 3) learning to quickly acquire
new languages. I believe this variety of responses reflects positively on the curriculum –
different students enter with different personal learning goals, and the course’s breadth allows
students to find the aspect of programming languages they enjoy most.

The survey also prompted students with “What would you like to say about this course
to a student who is considering taking it in the future?” I reproduce a few responses below.

[CS 242] reflects on the translation that occurs between the model of computation you
have in your head and how you express that model of computation using the tools a
programming language gives you.

It’s still not really clear to me how the Lambda Calculus practically relates to the
rest of the course, so the first few weeks were a bit frustrating, but I found it more
enjoyable after that.

It was not what I expected and was a lot of work (office hours were a blessing) but
it introduced me (thoroughly!) to functional programming concepts that I am now
looking into further on my own because I am interested in different ways of thinking
about computation and how that will affect the way I approach programming problems
in the future.

One of my favorite classes at Stanford (my 4th year for context) and has really opened
my eyes to the world of PL and how I actually really enjoy it and might be looking
into pursuing research or further education in PL related work.

This is one of the best CS classes I’ve taken at Stanford–if not hands down the best.
Lectures are always so exciting, and the homework is a ton of fun. I really like the
mix of theory and systems-level stuff, as well as the mix of programming and written
assignments, where both feel like they are valuable and adding to the other. I also
feel like I’m being challenged to think in different ways than I do in most CS classes
(mostly because of the functional paradigm).
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I firmly believe that students learn most from assignments. Many students enjoyed the
course likely because I put significant effort into developing assignments that didn’t just
reinforce the course content, but did so in an exciting way. This is my biggest critique of
the definitional interpreters approach to PL education: while it showcases the content, it
gets boring quickly. Implementing TCP, an adventure game, a memory allocator – this
variety keeps students engaged while they pick up new PL concepts. Moreover, the focus on
real-world systems promotes creativity in assignments, as you naturally get access to a wider
range of libraries and applications than when using niche teaching languages.

5 Discussion

Overall, I consider the focus on bridging theory and systems to be a major success. Students
leave the course with different takeaways on the most important material, but almost everyone
leaves understanding something about the role and importance of programming language
theory in practice. Going forward, I will continue working to draw explicit connections
between the different parts of the course – as one comment mentioned, some students are
still struggling to see the relationships between the abstract ideas of the lambda calculus
and the everyday concerns of systems programming.

In particular, I would like to refine the lecture and assignments to reflect the role of PL
theory in the process of designing computational systems. Operational semantics and the
like shouldn’t just be seen as verification tools for functional-esque programming languages,
but instead as a design tool for any system with a compositional model. Proofs like progress
and preservation aren’t check boxes on the way to language safety, but part of reasoning
about unforeseen edge cases. Put another way: I believe we should seek to integrate lessons
from the theorem-prover-oriented PL courses (e.g. Princeton [3], UPenn [2]) where possible.

Lastly, if any instructors would like to use part or all of this curriculum in their own
courses, I have made all course materials are freely available. The course website (http:
//cs242.stanford.edu/f18/) contains a mini-textbook of typeset notes for each lecture.
Starter code for all assignments is open-source on GitHub (https://github.com/stanford-
cs242/f18-assignments).
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5:2 From Macros to DSLs: The Evolution of Racket

1 Macros and Domain-Specific Languages

The Racket manifesto [20, 21] argues for a language-oriented programming (LOP) [13, 45]
approach to software development. The idea is to take Hudak’s slogan of “languages [as]
the ultimate abstractions” [33] seriously and to program with domain-specific languages
(DSLs) as if they were proper abstractions within the chosen language. As with all kinds
of abstractions, programmers wish to create DSLs, write programs in them, embed these
programs in code of the underlying language, and have them communicate with each other.

According to the Lisp worldview, a language with macros supports this vision particularly
well. Using macros, programmers can tailor the language to a domain. Because programs in
such tailored languages sit within host programs, they can easily communicate with the host
and each other. In short, creating, using, and composing DSLs looks easy.

Macros alone do not make DSLs, however, a lesson that the Racket team has learned
over 20 years of working on a realization of language-oriented programming. This paper
recounts Racket’s history of linguistic mechanisms designed to support language-oriented
programming; it formulates desiderata for DSL support based on, and refined by, the Racket
team’s experiences; it also assesses how well the desiderata are met by Racket’s current
capabilities. The history begins with Scheme’s hygienic macros, which, in turn, derive
from Lisp (see sec. 2). After a false start (see sec. 4), the Racket designers switched to
procedural, hygienic macros and made them work across modules; they also strictly separated
expansion time from run time (see sec. 5). Eventually, they created a meta-DSL for writing
macros that could properly express the grammatical constraints of an extension, check them,
and synthesize proper error messages (see sec. 6). A comparison between general DSL
implementation desiderata (see sec. 3) and Racket’s capabilities shows that the language’s
support for a certain class of DSLs still falls short in several ways (see sec. 7).

I Note. This paper does not address the safety issues of language-oriented programming. As a
similar set of authors explained in the Racket Manifesto [20], language-oriented programming
means programmers use a host language to safely compose code from many small pieces
written in many different DSLs and use the very same host language to implement the DSLs
themselves. Hence language-oriented programming clearly needs the tools to link DSLs safely
(e.g., via contracts [22] or types [41]) and to incorporate systems-level protection features
(e.g., sandboxes and resource custodians [30]).

Some Hints For Beginners on Reading Code

We use Racket-y constructs (e.g., define-syntax-rule) to illustrate Lisp and Scheme macros.
Readers familiar with the original languages should be able to reconstruct the original ideas;
beginners can experiment with the examples in Racket.

Lisp’s S-expression construction Racket’s code construction
’ S-expression quote #’ code quote
‘ Quine quasiquote #‘ code quasiquote
, Quine unquote #, code unquote
@, list splicing #@, code splicing

Figure 1 Hints on strange symbols.

For operations on S-expressions, i.e., the nested and heterogeneous lists that represent
syntax trees, Lisp uses car for first, cdr for rest, and cadr for second. For the convenient
construction of S-expressions, Lisp comes with an implementation of Quine’s quasiquotation
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idea that uses the symbols shown on the left of fig. 1 as short-hands: quote, quasiquote,
unquote, and unquote-splicing. By contrast, Racket introduces a parallel data structure
(syntax objects). To distinguish between the two constructions, the short-hand names are
prefixed with #.

2 The Lisp and Scheme Pre-history

Lisp has supported macros since 1963 [32], and Scheme inherited them from Lisp in 1975 [43].
Roughly speaking, a Lisp or Scheme implementation uses a reader to turn the sequence of
characters into a concrete tree representation: S-expressions. It then applies an expander to
obtain the abstract syntax tree(s) (AST). The expander traverses the S-expression to find
and eliminate uses of macros. A macro rewrites one S-expression into a different one, which
the expander traverses afresh. Once the expander discovers a node with a syntax constructor
from the core language, say lambda, it descends into its branches and recursively expands
those. The process ends when the entire S-expression is made of core constructors.

A bit more technically, macros are functions of type
S-expression −→ S-expression

The define-macro form defines macros, which are written using operators on S-expressions.
Each such definition adds a macro function to a table of macros. The expander maps an
S-expression together with this table to an intermediate abstract syntax representation:

S-expression × TableOf[MacroId, (S-expression −→ S-expression)] −→ AST

The AST is an internal representation of an S-expression of only core constructors.
See the left-hand side of fig. 2 for the simple example of a let macro. As the comments

above the code say, the let macro extends Racket with a block-structure construct for local
definitions. The macro implementation assumes that it is given an S-expression of a certain
shape. Once the definition of the let macro is recognized, the expander adds the symbol
’let together with the specified transformer function to the macro table. Every time the
macro expander encounters an S-expression whose head symbol is ’let, it retrieves the
macro transformer and calls it on the S-expression. The function deconstructs the given
S-expression into four pieces: decl, lhs, rhs, body. From these, it constructs an S-expression
that represents the immediate application of a lambda function.

;; PURPOSE extend Racket with block-oriented, local bindings
;;
;; ASSUME the given S-expression has the shape
;; (let ((lhs rhs) ...) body ...)
;; FURTHERMORE ASSUME:
;; (1) lhs ... is a sequence of distinct identifiers
;; (2) rhs ..., body ... are expressions
;; PRODUCE
;; ((lambda (lhs ...) body ...) rhs ...)

(define-macro (let e)
(define decl (cadr e))
(define lhs (map car decl))
(define rhs (map cadr decl))
(define body (cddr e))
;; return
‘((lambda ,lhs ,@body) ,@rhs))

(define-syntax-rule
(let ((lhs rhs) ...) body ...)
;; rewrites above pattern to template below
((lambda (lhs ...) body ...) rhs ...))

Figure 2 Macros articulated in plain Lisp vs Kohlbecker’s macro DSL.
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Macros greatly enhance the power of Lisp, but their formulation as functions on S-
expressions is both error-prone and inconvenient. As fig. 2 shows, the creator of the function
makes certain assumption about the shape of the given S-expression, which are not guaranteed
by the macro expansion process. Yet even writing just a transformation from the assumed
shape of the S-expression to the properly shaped output requires bureaucratic programming
patterns, something a macro author must manage and easily causes omissions and oversights.

For concreteness, consider the following problems in the context of let macro:
1. The S-expression could be an improper list. The transformer, as written, does not notice

such a problem, meaning the compilation process ignores this violation of the implied
grammar of the language extension.

2. The S-expression could be too short. Its second part might not be a list. If it is a list, it
may contain an S-expression without a cadr field. In these cases, the macro transformer
raises an exception and the compilation process is aborted.

3. The S-expression has the correct length but its second part may contain lists that contain
too many S-expressions. Once again, the macro transformer ignores this problem.

4. The S-expression may come with something other than an identifier as the lhs part of a
local declaration. Or, it may repeat the same identifier as an lhs part of the second clause.
In this case, the macro generates code anyways, relying on the rest of the compilation
process to discover the problems. When these problems are discovered,
a. it may have become impossible to report the error in terms of source code, meaning a

programmer might not understand where to look for the syntax error.
b. it has definitely become impossible to report errors in terms of the language extension,

meaning a programmer might not comprehend the error message.
5. The author of the macro might forget the unquote , to the left of lhs. In many members

of the Lisp family, the resulting code would be syntactically well formed but semantically
rather different from the intended one. In particular, conventional Lisp would generate
a function that binds all occurrences of lhs in body via this newly created lambda – a
clear violation of the intended scoping arrangements expressed in the comments.

In short, if the S-expression fails to live up to the stated assumptions, the macro transformation
may break, ignore code, or generate code that some later step in the compilation process
recognizes as an error but describes in inappropriate terms. If the programmer makes even a
small mistake, strange code may run and is likely to cause inexplicable run-time errors.

Kohlbecker’s dissertation research on macros greatly improves this situation [35,36,37].
His macro system for Scheme 84 adds two elements to the macro writer’s toolbox. The first
is a DSL for articulating macro transformations as rewriting rules consisting of a pattern
and a template. The revised macro expander matches S-expressions against the specified
patterns; if there is a match, the template is instantiated with the resulting substitution. This
DSL removes programming patterns from macro definitions and, to some extent, eliminates
problems 1 through 3 from above. For an example, see the right-hand side of fig. 2.

I Note. We call Lisp-style macros procedural and Kohlbecker’s approach declarative.

The second novel element is hygienic expansion. By default, Kohlbecker’s macro expander
assumes that identifiers contained in the source must be distinct from macro-generated
identifiers in binding positions. As such, it eliminates the need to explicitly protect against
accidental interference between the macro’s lexical scopes and those of its use contexts –
that is, yet another programming pattern from macro code. At a minimum, this hygienic
expander would not bind lhs in body as indicated in problem 5 above.
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Further work [2, 8, 15] refined and improved the pattern-oriented approach to specifying
macros as well as hygienic macro expansion. The define-syntax-rule construct and
hygienic expansion became part of the Scheme standard by the late 1990s [1]. Starting
in 1988 and in parallel to the Scheme standardization process, Dybvig et al. [15] designed
and implemented a macro definition construct, define-syntax-cases (in actual code it
requires a combination of define-syntax and syntax-case) that merged the procedural
and declarative elements of the Lisp world. Dybvig et al. also switched from S-expressions
to trees of syntax objects. These trees included source locations so that the error handling
code could try to point back to the surface code (problem 4a above).

Starting in the late 80s, researchers explored other ways to facilitate the work of macro
authors, including two relevant to creating DSLs from macros. Dybvig et al. [14] invented
expander-passing macros. Macro authors would write their own expanders and use different
ones in different macros. At an abstract level, expansion-passing style anticipates the need
for checking static attributes. Blume [3] as well as Kelsey and Reese [34] added modules that
could export and import macros. Such modules allow macro programmers to encapsulate
bundles of macros, a first step towards encapsulating a DSL’s design and implementation.

3 DSLs Require More than Bunches of Macros

Scheme-style macros greatly improve on Lisp’s as far as the extension of an existing language
is concerned. A developer can add concise and lexically correct macros to a program and may
immediately use them, for writing either ordinary run-time code or additional macros. This
immediacy is powerful and enticing because a programmer never has to leave the familiar
programming environment, use external tools, or mess with scaffolding setups.

The idea of macros is also easy to comprehend at the abstract level. Conceptually, a macro
definition adds a new alternative to one of Racket’s grammatical productions: definitions
or expressions. The declarative approach makes it easy to specify simple S-expression
transformers in a straightforward manner; hygienic macro expansion guarantees the integrity
of the program’s lexical scope.

The problem is that a language extension provides only a false sense of a purpose-tailored
language. On one hand, a programmer who uses a bunch of macro-based language extensions
as if it were a self-contained DSL must code with an extreme degree of self-discipline. On
the other hand, the macro system fails to support some of the traditional advantages of
using DSLs: catching mistakes in the parsing or type-checking stage; exploiting constraints
to generate optimized code; or link with/target tailor-made run-time functions.

Conventionally, the creation of DSLs demands a pipeline of compiler passes:
1. a parser, based on explicit specification of a domain-specific vocabulary and a grammar,

that reports errors at the DSL’s source level;
2. a static semantics, because one goal of migrating from an application interface to a DSL

is to enforce certain constraints statically;
3. a code generation and optimization pass, because another goal of introducing DSLs is to

exploit the static or linguistic constraints for improved performance; and,
4. a run-time system, because (1) the host language may lack pieces of functionality or (2)

the target language might be distinct from the host language.
Scheme macros per se do not support the creation of such pipelines or its proper encapsulation.

The Racket designers noticed some of these problems when they created their first
teaching languages [18, 19]. In response, they launched two orthogonal efforts to support the
development of DSLs via language-extension mechanisms with the explicit goal of retaining
the ease of use of the latter:
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One concerned the encapsulation of DSLs and support for some traditional passes. This
idea was to develop a module system that allows the export and import of macros and
functions while also retaining a notion of separate compilation for modules.
The other aimed at a mechanism for easily expressing a macro’s assumptions about its
input and synthesizing error messages at the appropriate level, i.e., the problems from
sec. 2. The results would also help with implementing DSLs via modules.

While sec. 4 reports on an ambitious, and abandoned, attempt to address these problems all
at once, secs. 5 and 6 describe the tools that Racket eventually provided to DSL designers
and implementors.

4 Ambitious Beginnings

When the Racket designers discovered the shortcomings of a traditional Scheme macro system,
they decided to address them with three innovations. First, they decided to move beyond
the traditional S-expression representation of syntax and instead use a richly structured
one (see sec. 4.1). Second, they realized that macros needed to work together to implement
context-sensitive checks. To this end, they supplemented declarative macros with procedural
micros that could deal with attributes of the expansion context (see sec. 4.2). Finally they
decided to use modules as the containers of macro-based DSL implementations as well as the
units of DSL use (see sec. 4.3).

4.1 From S-expressions to Syntax Objects
To track source locations across macro expansion, Racket – like Dybvig’s Chez Scheme –
introduced a syntax object representation of the surface code, abandoning the conventional
S-expression representation. Roughly speaking, a syntax object resembles an S-expression
with a structure wrapped around every node. At a minimum, this structure contains source
locations of the various tokens in the syntax. Using this information, a macro expander can
often pinpoint the source location of a syntax error, partially solving problem 4a from sec. 3.

4.2 The Vocabularies of Micros
Recall that a macro is a function on the syntax representation. Once this representation
uses structures instead of just S-expressions, the signature of a macro has to be adapted:

Syntax-Object −→ Syntax-Object

Of course, this very signature says that macros cannot naturally express1 communication
channels concerning attributes of the expansion context.

Krishnamurthi et al.’s work [39] supplements macros with micros to solve this issue. Like
define-macro, define-micro specifies a function that consumes the representation of a
syntax. Additionally, it may absorb any number of Attribute values so that collections of
micros can communicate contextual information to each other explicitly:

Syntax-Object −→ (Attribute ... −→ Output)

1 A macro author could implement this form of communication via a protocol that encodes attributes as
syntax objects. We consider an encoding unnatural and therefore use the phrase “naturally express.”
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As this signature shows, a micro also differs from a macro in that the result is some arbitrary
type called Output. This type must be the same for all micros that collaborate but may
differ from one collection of micros to another. For macro-like micros, Output would equal
Syntax-Object. By contrast, for an embedded compiler Output would be AST, meaning the
type of abstract syntax trees for the target language. This target language might be Racket,
but it could also be something completely different, such as GPU assembly code. The Racket
team did not explore this direction at the time.

As this explanation points out, micros for DSLs must be thought of as members of a
collection. To make this notion concrete, Krishnamurthi et al. also introduce the notion of
a vocabulary. Since collections of macros and micros determine the “words” and “sentence
structure” of a DSL, a vocabulary represents the formal equivalent of a dictionary and
grammar rules. The micros themselves transform “sentences” in an embedded language into
meaningful – that is, executable – programs.

In Krishnamurthi et al.’s setting, a vocabulary is created with (make-vocabulary) and
comes with two operations: define-micro, which adds a micro function to a given vocabulary,
and dispatch, which applies a micro to an expression in the context of a specific vocabulary.

;; type Output = RacketAST

(define compiler (make-vocabulary))

_ _ _ elided _ _ _

(define-micro compiler
(if cond then else)
==>
(lambda ()

(define (expd t)
((dispatch t compiler)))

(define cond-ir (expd cond))
(define then-ir (expd then))
(define else-ir (expd else))
(make-AST-if

cond-ir then-ir else-ir)))

_ _ _ elided _ _ _

(define compiler-language
(extend-vocabulary

base-language
compiler))

;; type Output = RacketType
(define type-check (make-vocabulary))

_ _ _ elided _ _ _

(define-micro type-check
(if cond then else)
==>
(lambda (Γ)

;; first block
(define (tc t)

((dispatch t type-check) Γ))
(define cond-type (tc cond))
(unless (type-== cond-type Boolean)

(error _ _ _ elided _ _ _))
(define then-type (tc then))
(define else-type (tc else))
(unless (type-== then-type else-type)

(error _ _ _ elided _ _ _))
then-type))

_ _ _ elided _ _ _

Figure 3 Micros and vocabularies.

Fig. 3 collects illustrative excerpts from a vocabulary-micro code base. The left-hand
column sets up a compiler vocabulary, which expresses transformations from the surface
syntax into Racket’s core language. Among other micros, the if micro is added to compiler
because it is a core construct. The final definition shows how to construct a complete
language implementation by mixing in vocabularies into the common base language.

Like Scheme’s macro definitions, micro definitions use a pattern DSL for specifying inputs.
As for the Attribute ... sequence, micros consume those via an explicit lambda. To
create its output, the if micro allocates an AST node via make-AST-if. The pieces of this
node are the results of expanding the three pieces that make up the original if expression.
The expansions of these sub-expressions employ dispatch, a function that consumes the
expression to be expanded together with the contextual vocabulary and the attributes (none
here) in a staged fashion.
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The right-hand side of fig. 3 shows how to add an if micro for a type-checking variant of
the DSL. The code introduces a second vocabulary for the type checker. The if micro for
this additional vocabulary implements the type checking rule for if in a standard manner,
reporting an error as soon it is discovered.

Once the type-check vocabulary is in place, a developer can use it independently or
in combination with the compiler vocabulary. For example, Racket’s soft typing sys-
tem [24] needed a distinct interpretation for the language’s letrec construct, i.e., a distinct
type-check vocabulary unrelated to the actual compiler. A variant of Typed Racket [44]
could be implemented via the composition of these two vocabularies; in this context, the
composition would discard the result of the pass based on the type-check vocabulary.

In general, DSL creators get two advantages from vocabularies and micros. First, they
can now specify the syntax of their languages via explicit collections of micros. Each micro
denotes a new production in the language’s expression language, and the input patterns
describe its shape. Second, they can naturally express and implement static checking. The
micro’s secondary arguments represent “inherited” attribute, and the flexible Output type
allows the propagation of “synthesized” ones.

Implementing complete DSLs from vocabularies becomes similar to playing with Legos:
(1) vocabularies are like mixins [31], (2) languages resemble classes, and (3) dispatch is
basically a method invocation. Hence creating a variety of similar DSLs is often a game of
linking a number of pieces from a box of language-building blocks. For the team’s rapid
production and modification of teaching languages in the mid 1990s, vocabularies were a
critical first step.

4.3 Languages for Semantic Modules
According to sec. 3 the implementation of any language combines a compiler with a run-time
system. This dictum also applies to DSLs, whether realized with macros or micros. Both
translate source code to target code, which refers to run-time values (functions, objects,
constants, and so on). Such run-time values often collaborate “via conspiracy,” meaning their
uses in target code satisfies logical statements – invariants that would not hold if all code
had free access to these values. That is, the implementor of a DSL will almost certainly wish
to hide these run-time values and even some of the auxiliary compile-time transformations.
All of this suggests that macros, micros and vocabularies should go into a module, and such
modules should make up a DSL implementation.

Conversely, the implementors of DSLs do not think of deploying individual constructs
but complete languages. Indeed, conventional language implementors imagine that DSL
programmers create self-contained programs. By contrast, Lispers think of their language
extensions and imagine that DSL programmers may wish to escape into the underlying host
language or even integrate constructs from different DSL-like extensions at the expression
level. The question is whether a macro-micro based approach can move away from the “whole
program” thinking of ordinary DSLs and realize a Lisp-ish approach of deploying languages
for small units of code.

Krishnamurthi’s dissertation [38] presents answers to these two questions and thus
introduces the first full framework for a macro-oriented approach to language-oriented
programming. It combines macros with the first-class modules of the 1990s Racket, dubbed
units [29], where the latter becomes both the container for DSL implementations as well as
the one for DSL deployment. Technically, these units have the shape of fig. 4. They are
parameterized over a Language and link-time imports, and they export values in response.
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(unit/lang Language
(ImportIdentifier ...)
(ExportIdentfier ...)
Definitions-and-Expressions ...)

Figure 4 Language-parameterized, first-class units.

A DSL implementation is also just a unit/lang that combines macros, micros, and
run-time values. It is not recognized as a valid Language until it is registered with a language
administrator . The latter compiles unit/lang expressions separately to plain units. For
this compilation, the language administrator expands all uses of macros and micros and then
resolves all the names in the generated code – without exposing any of them to other code.
In particular, the developer does not need to take any action, such as adding the names of
run-time values to export specifications of Languages or to unit/langs that use a Language.
The result of a compilation is a collection of plain Racket units, and the Racket compiler
turns this collection into a running program.

In principle, Krishnamurthi’s unit/lang system addresses all four DSL criteria listed
in sec. 3. The micro-vocabulary combination can enforce syntax constraints beyond what
macros can do. They are designed to express static processing in several passes and explicitly
accommodate target languages distinct from Racket. And, the implementations of DSLs as
unit/langs encapsulates the compiler component with a run-time component.

What this system fails to satisfy is the desire to synthesize DSL implementation techniques
with Lisp’s incremental language-extension approach. The main problem is that a programmer
has to parameterize an entire unit over a complete language. It is impossible to selectively
import individual macros and micros from a unit/lang, which is what Racket developers
truly want from a modular macro system. After a few years of using plain units, the Racket
team also realized that first-class units provided more expressive power than they usually
needed, meaning the extra complexity of programming the linking process rarely ever paid
off in the code base.

Additionally, the unit/lang system was a step too far on the social side. Racket – then
called PLT Scheme – was firmly in the Scheme camp and, at the time, the Scheme community
had developed and open-sourced a new syntax system [15] that quickly gained in popularity.
This macro system combined the declarative form of Krishnamurthi’s macros with the proce-
dural form of his micros into a single define-syntax-cases form. Furthermore, this new
macro system came with the same kind of syntax-object representation as Krishnamurthi’s,
allowing source tracking, hygienic expansion, and other cross-expansion communication. In
other words, the new system seemed to come with all the positive aspects of Krishnamurthi’s
without its downsides. Hence, the Racket team decided to adapt this macro system and
create a module system around it.

5 Languages From Syntactic Modules

The Racket designers started this rebuilding effort in 2000. The goal was to create a module
system where a developer could write down each module in a DSL that fit the problem
domain and where a module could export/import individual macros to/from other modules –
and this second point forced them to reconsider the first-class nature of modules.

Flatt’s “you want it when” module-macro system [25] realizes this goal. It introduces a
module form, which at first glance looks like unit/lang. Like the latter, module explicitly
specifies the language of a module body, as the grammar in fig. 5 shows. Otherwise the

SNAPL 2019



5:10 From Macros to DSLs: The Evolution of Racket

(module Name Language

{ ProvideSpecification
| RequireSpecification
| Definition
| Expression }∗

)

#lang Language Name.rkt

{ ProvideSpecification
| RequireSpecification
| Definition
| Expression }∗

Figure 5 Language-parameterized, first-order modules and their modern abbreviation.

grammar appears to introduce a new expression form whose internals consist of a sequence
of exports, imports, definitions and expressions. A small difference concerns the organization
of the module body. The import and export specifications no longer need to show up as
the first element of the module; they can appear anywhere in the module. Appearances
are deceiving, however, and the Name part suggests the key difference. A module is not an
expression but a first-order form, known to the expander.

When the expander encounters module, it imports the Language’s provided identifiers.
This step establishes the base syntax and semantics of the module’s expressions, definitions,
imports, and exports. Next the expander finds the imported and locally-defined macros in
the module body. The search for imported macros calls for the expansion and compilation of
the referenced modules. It is this step that requires the restriction to first-order modules,
because the expander must be able to identify the sources of imported macros and retrieve
their full meaning. Finally, the expander adds those imported and local macros to the
language syntax and then expands the module body properly, delivering an abstract-syntax
representation in the Racket core language.

One consequence of this arrangment is that the expansion of one module may demand
the evaluation of an entire tower of modules. The first module may import and use a macro
from a second module, whose definition relies on code that also uses language extensions.
Hence, this second module must be compiled after expanding and compiling the module that
supplies these auxiliary macros.

#lang racket loop.rkt

(provide inf-loop)

(define-syntax-cases
[(inf-loop e)
(begin

(displayln "generating inf-loop")
#’(do-it (lambda () e)))])

(define (do-it th)
(th)
(do-it th))

#lang racket use-loop.rkt

(provide display-infinitely-often)

(require "loop.rkt")

(define (display-infinitely-often x)
(inf-loop (do-it x)))

(define (do-it x)
(displayln x))

Figure 6 Exporting macros from, and importing them into, modules.

The right-hand side of fig. 5 also shows the modern, alternative syntax for modules.
The first line of code specifies only the language of the module via a #lang specification;
the name of the file (boxed) determines the name of the module. Fig. 6 illustrates how
two modules interact at the syntax and run-time level. The module on the left defines the
language extension inf-loop, whose implementation generates code with a reference to the
function do-it. The module on the right imports this language extension via the require
specification. The Racket compiler retrieves the macro during compile time and uses it to
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expand the body of the display-infinitely-often function – including a reference to the
do-it function in module loop.rkt. Cross-module hygienic expansion [25,27] ensures that
this macro-introduced name does not conflict in any way with the do-it function definition
of the use-loop.rkt module. Conceptually, the expansion of display-infinitely-often
looks like the following definition:

(define (display-infinitely-often x)
(loop.rkt-do-it (lambda () (use-loop.rkt-do-it x))))

with the two distinct, fully-resolved names guaranteeing the proper functioning of the code
according to the intuitive surface meaning.

Flatt’s module-macro system allows the use of both declarative and procedural language
extensions. To illustrate the latter kind, the inf-loop macro uses define-syntax-cases.
If the expander can match a piece of syntax against one of the left-hand-side patterns
of define-syntax-cases, it evaluates the expression on the right. This evaluation must
produce code, which is often accomplished via the use of templates (introduced by #’) whose
pattern variables are automatically replaced by matching pieces of syntax. But, as the
definition of inf-loop suggests, the right-hand side may contain side-effecting expressions
such as displayln. While these expressions do not become a part of the generated code as
the above snippet shows, their side effects are observable during compile time.

To enable separate compilation, Racket discards the effects of the expansion phase before
it moves on to running a module. Discarding such effects reflects the Racket designers’ under-
standing that language-extensions are like compilers, which do not have to be implemented
in the same language as the one that they compile and which are not run in the same phase
as the program that they translate. Phase separation greatly facilitates reasoning about
compilation, avoiding a lot of the pitfalls of Lisp’s and Chez Scheme’s explicit eval-when
and compile-when instructions [5, 25,42].

#lang racket math.rkt

(provide Ack)

;; Number Number -> Number
(define (Ack x y)

(cond
[(zero? x) (+ y 1)]
[(and (> x 0) (zero? y))
(Ack (- x 1) 1)]

[else
(Ack (- x 1) (Ack x (- y 1)))]))

#lang racket use-acker.rkt

(require (for-syntax "math.rkt")))

(define-syntax-cases ()
[(static-Ack x y)
;; rewrites the pattern to a template
;; via some procedural processing
(let* ((x-e (syntax-e #’x))

(y-e (syntax-e #’y)))
(unless (and (number? x-e) (number? y-e))

(raise-syntax-error #f "not numbers"))
(define ack (Ack x-e y-e))
#‘(printf "the Ack # is ~a" #,ack))])

(static-Ack 1 2)

Figure 7 Importing at a different phase.

Phase separation imposes some cost on developers, however. If a module needs run-
time functions for the definition of a language construct, the import specification must
explicitly request a phase shift. For an example, see fig. 7. The module on the right defines
static-Ack, which computes the Ackermann function of two numbers at compile time. Since
the Ackermann function belongs into a different library module, say math, the use-ack
module most import it from there. But, because this function must be used at compile time,
the require specification uses the (underlined) for-syntax annotation to shift the import to
this early phase. The Racket designers’ experience shows that phase-shifting annotations are
still significantly easier to work with than Lisp’s and Scheme’s expand-when and eval-when
annotations.
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Like Krishnamurthi’s unit/langs, Flatt’s modules allow developers to write different
components in different languages. In the case of modules, the Language position points
to a module itself. The exports of this Language module determine the initial syntax and
semantics of a client module.

In contrast to an ordinary module, a Language module must export certain macros, called
interposition points; it may export others. An interposition point is a keyword that the
macro expander adds to some forms during its traversal of the source tree. Here are the two
most important ones for Language modules:

#%module-begin is the (invisible) keyword that introduces the sequence of definitions
and expressions in a module body. A Language module must export this form.
#%top-interaction enables the read-eval-print loop for a Language, i.e., dynamic loading
of files and interactive evaluation of expressions.

Other interposition points control different aspects of a Language’s meaning:
#%app is inserted into function applications. In source code, an application has the shape
(fun arg ...), which expands to the intermediate form (#%app fun arg ...).
#%datum is wrapped around every literal constant.
#%top is used to annotate module-level variable occurrences.

In practice, a developer creates a Language by adding features to a base language,
subtracting others (by not exporting them), and re-interpreting some. Here “features” covers
both macros and run-time values. The #%module-begin macro is commonly re-interpreted
for a couple of reasons. Its re-definition often helps with the elimination of boilerplate
code but also the communication of context-sensitive information from one source-level
S-expression (including modules) to another during expansion.

#lang racket lazy.rkt

(provide
(except-out (all-from-out racket) #%app)
(rename-out [lazy-app #%app]))

(define-syntax-rule
(lazy-app f a ...)
(#%app f (lambda () a) ...))

#lang "lazy.rkt" no-error.rkt

; a constant function
(define (f x y)

10)

; called on two erroneous terms
(f (/ 1 0) (first ’()))
; evaluates to 10

Figure 8 Building an embedded DSL from modules and macros.

Fig. 8 indicates how a developer could quickly build a language that looks like Racket but
uses call-by-name instead of call-by-value. The module on the left is the language implemen-
tation. It starts from Racket and re-exports all of its features, including #%module-begin,
except for function application. The module re-interprets function application via the second
part of provide. Technically, a re-interpretation consists of a macro definition that is
re-named in a provide. The lazy module comes with a lazy-app macro, which rewrites
(lazy-app fun arg ...) to (#%app fun (lambda () arg) ...). By static scope, the
#%app in the expansion refers to the function application form of Racket. Since this macro is
provided under the name #%app, a client module’s function applications – into which the
expander inserts #%app – eventually expand according to lazy-app. In particular, the two
exception-raising expressions in the no-error module are wrapped in lambda; because f is a
constant function that does not evaluate its arguments, these errors are never reported. (For
additional details on lazy, see the last chapter of Realm of Racket [16].)



R. Culpepper, M. Felleisen, M. Flatt, and S. Krishnamurthi 5:13

#lang racket all-in-one.rkt

(module lazy-impl racket

(provide
(except-out (all-from-out racket) #%app)
(rename-out [lazy-app #%app]))

(define-syntax-rule
(lazy-app f a ...)
(#%app f (lambda () a) ...)))

(module lazy-client (submod ".." lazy-impl)

(define (f x y)
10)

(f (/ 1 0) (first ’())))

(require (submod "." lazy-client))

(a) DSL development in one module. (b) Algol 60 as a Racket DSL.

Figure 9 Developing and deploying DSLs in Racket.

Modules and macros jointly make DSL development an interactive activity in the Racket
ecosystem. A programmer can open two tabs or windows in an IDE to use one for the
DSL implementation and another for a DSL program. Or, a programmer can place a DSL-
implementing submodule [26] and a DSL-using submodule into a single file, which can then
be edited and executed within a single editor window of the preferred IDE. Fig. 9a shows
how to combine the modules of fig. 8 into a single file. This program consists of three pieces.
The first one is a submodule that implements the lazy language, while the second uses the
first one in the Language position. Hence the first submodule is the programming language
of the second. The last piece of the program requires and thus evaluates the client module.
Any change to the first submodule is immediately visible in the second.

A developer may also equip a DSL with any desired syntax, not just build on top of
Racket’s beautiful parentheses. To support this kind of syntax, a Language module may
export a new reader. Recall from sec. 2 that a Lisp reader turns the stream of characters
into a sequence of S-expressions (or Syntax-Objects, in the case of Racket). The rest of the
implementation can then use the usual mix of macros and functions. Butterick’s Beautiful
Racket [4] is a comprehensive introduction to this strategy and comes with a powerful library
package for lexing and parsing.

In the context of modular macros, a developer may also create a conventional compiler
with the macro infrastructure. Instead of just expanding to Racket, a DSL implementation
may use a combination of macros and compile-time functions to perform conventional type
checking or other context-sensitive checks.

Fig. 9b presents a simple example of a Racket DSL program in conventional syntax.
Except for the first line, the code represents a standard Algol 60 program. The first line
turns this program into a Racket DSL and thus allows Racket to parse, type check, compile,
and run this program. Because the DSL implementation turns the Algol 60 program into
syntax objects and implements its semantics via macro expansion, DrRacket (the Racket
IDE [23]) automatically adapts itself to this new language. For example, fig. 9b illustrates
how DrRacket connects the binding occurrence of INVERSE’s parameter to its bound ones.
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In sum, Racket’s modules simultaneously allow the incremental and interactive construc-
tion of language extensions as well as the construction of complete DSLs with their own
vocabulary. The key design decision is to turn macros into entities that first-order modules
can export, import, hide, and re-interpret. It does necessitate the introduction of strict phase
separation between the expansion phase and run-time phase to obtain separate compilation.

6 Syntax Done Properly With Parsing Macros

The implementation of a DSL’s syntax consists of two essential parts: parsing syntactically
legitimate sentences, and reporting violations of the syntactic rules. Both aspects are equally
important, but for 40 years, the macro community mostly neglected the second one.

Sec. 2 lists five problems with parsing via Lisp-style macros. Kohlbecker’s rewriting DSL –
based on patterns and templates – eliminates all of them except for problem 4. To appreciate
the complexity of this particular problem, consider the actual grammatical production of
let expressions in classical BNF notation:

(let ({[id expression]}∗) expression+)

Kohlbecker’s pattern-based meta-DSL addresses this context-free shape specification with
the elegant trick of using ellipses (. . . ) for ∗ and unrolling for +:

(let ([id expression] ...) expression expression ...)

What Kohlbecker’s notation cannot express is the side condition of fig. 2:

id ... is a sequence of distinct identifiers

Indeed, Kohlbecker’s notation cannot even specify that id must stand for an identifier.
So now imagine a programmer who writes

(let (((+ 1 2) x)) (* x 3)) ;; => ((lambda ((+ 1 2)) (* x 3)) x)

or

(let ((x 1) (x 2)) (* x 3)) ;; => ((lambda (x x) (* x 3)) 1 2)

In either case, a pattern-oriented language generates the lambda expression to the right of
the => arrow. Hence, the resulting syntax errors speak of lambda and parameters, concepts
that the grammatical description of let never mentions. While a reader might be tempted
to dismiss this particular error message as “obvious,” it is imperative to keep in mind that
this let expression might have been generated by the use of some other macro, which in
turn might be the result of some macro-defining macro, and so on.

Dybvig’s define-syntax-cases slightly improves on Kohlbecker’s DSL. It allows the
attachment of of fenders – Boolean expressions – to a macro’s input patterns. With such
fenders, a macro developer can manually formulate conditions that check such side conditions.
Even in such simple cases as let, however, the error-checking code is many times the size of
the rewriting specification. And this is why most macro authors fail to add this code or, if
they do, fail to write comprehensive checks that also generates good error messages.

Culpepper’s DSL for defining macros solves this problem with two innovations [9,10,11,12].
The first is an augmentation of the pattern-matching DSL with “words” for articulating
classification constraints such as those of the let macro. The second is a DSL for specifying
new classifications. Together, these innovations allow programmers to easily enforce assump-
tions about the surface syntax, synthesize error messages in terms of the specification, and
deconstruct the inputs of a macro into relevant pieces.
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(define-syntax-class distinct-bindings
#:description "sequence of distinct binding pairs"
(pattern (b:binding ...)
#:fail-when (check-duplicate-id #’(b.lhs ..))

"duplicate variable name"
#:with (lhs* ...) #’(b.lhs ...)
#:with (rhs* ...) #’(b.rhs ...)))

(define-syntax-class binding
#:description "binding pair"
(pattern (lhs:id rhs:expr)))

Figure 10 Syntax classifications.

Following our discussion above, the specification of let needs two syntax classifications:
one to say that the second part of let’s input is a sequence and another one to say that the
elements of this sequence are identifier-expression pairs. Fig. 10 shows how a programmer
can define these classifications in Culpepper’s meta-DSL. A classification must come with at
least one pattern clause, which spells out the context-free shape of the form and names its
pieces. For example, the binding class uses the pre-defined classifications id (for identifier)
and expr (for expression) to say that a binding has the shape (id expr) and that the name
of the id is lhs and the name of expr is rhs. Any use of such a syntax class, for example the
one in the definition of distinct-bindings, may refer to these attributes of the input via a
dot notation. Thus, b.lhs ... in distinct-bindings denotes the sequence of identifiers.
As this example also shows, a syntax-class definition may also defer to procedural code, such
as check-duplicate-id to process the input. A fail-when clause allows macro developers
to specify a part of the synthesized error message (when the default is not sufficiently clear).

(define-syntax-parser let
[(_ bs:distinct-bindings body:expr ...+)
;; rewrites the pattern to a template
#’((lambda (bs.lhs* ...) body ...) bs.rhs* ...)])

Figure 11 Macros via parsing macros.

Using these two syntax classes, specifying the complete shape of let is straightforward;
see fig. 11. The :distinct-bindings classification of bs introduces names for two pieces
of the input syntax: a sequence of identifiers (bs.lhs*) and a sequence of right-hand-side
expressions (bs.rhs*), one per variable. The syntax template uses these pieces to generate
the same target code as the macros in fig. 2.

A comparison of figs. 2 and 11 illustrates the advantages as well as the disadvantages of
Culpepper’s DSL for writing macros. On the positive side, the size of the Culpepper-style
macro definition appears to remain the same as the one for the Kohlbecker-style one. The
revised definition merely adds classifications to the macro’s pattern and attribute selections
to the macro’s template. This shallow size comparison camouflages that these small changes
cause the macro to check all constraints on the shape of let and formulate syntax errors in
terms of the specified surface syntax. As Culpepper [10, page 469] explains, implementing
the same level of assumption checking and error reporting via procedural macros increases
the code size by “several factors.” Furthermore the “primary benefit [of this meta-DSL] . . .
is increased clarity” of a macro’s input specification and its code template.

On the negative side, macro programmers are now expected to develop syntax classi-
fications such as those in fig. 10 and use them properly in macro definitions, as in fig. 11.
While the development of syntax classifications clearly poses a new obstacle, their use comes
with a significant payoff and most end up as reusable elements in libraries. Hence the cost
of developing them is recouped through reuse. As for the use of syntax classifications in
macro templates and patterns, experience shows that most macro programmers consider the
annotations as type-like notions and the attribute selections as a natural by-product.
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In short, Culpepper’s meta-DSL completely replaces the define-syntax-cases meta-
DSL for macro definitions. By now, the large majority of Racket programmers develop macros
in Culpepper’s DSL and contribute to the ever-expanding collection of syntax classifications.

lang. lexical classify error separate run-time code gen.
extens. scope syntax messages compil. encaps. opt.
(sec. 3) (2) (1) (1) (4) (4) (3)

Lisp macros X – – – – – –
Scheme
– syntax-rules X X patterns – – – –
– syntax-case X X patterns & – – – –

fenders –
Racket X X patterns & X X& X module
– syntax-parse syn. classes phases only

– means programmers have the tools to design manual solutions

Figure 12 A concise overview of Lisp-family language extension features.

7 DSL Creators Need Still More Than Modular, Parsing Macros

Racket has made great progress in improving the state of the art of macros with an eye
toward both language extension and DSL implementation. Fig. 12 surveys the progress
in roughly the terms of sec. 3’s criteria. The syntax-parse DSL for defining macros can
express almost every context-free and -sensitive constraint; macro developers get away with
a few hints and yet get code that reports syntax errors in terms of the macro-defined variant.
The module system supports both the fine-grained export/import of macros for language
extensions and the whole-cloth implementation of DSLs.

At this point, implementing DSLs is well within reach for Racket beginners [4, 16] and
easy for experts. While beginners may focus on module-based DSLs, experts use macros
to create fluidly embedded DSLs. Examples are the DSL of pattern-matching for run-time
values, the syntax-parse DSL itself, and Redex [17,40]. In this domain, however, the macro
framework falls short of satisfying the full list of desiderata for from sec. 3.

To explain this gap, let us concisely classify DSLs and characterize Racket’s support:
stand-alone DSLs
These are the most recognized form in the real world. Racket supports those via module
languages with at least the same conveniences as other DSL construction frameworks.
embedded DSLs with a fixed interface
All programming languages come with numerous such sub-languages. For example,
printf interprets the format DSL – usually written as an embedded string – for rendering
some number of values for an output device. In Racket, such DSLs instead come as a
new set of expression forms with which programmers compose domain-specific programs.
Even in Racket, though, such DSLs allow only restricted interactions with the host.
embedded and extensible DSLs with an expression-level interface
Racket’s DSLs for pattern matching and structure declarations are illuminating examples
of this kind. The former allows programmers to articulate complex patterns, with
embedded Racket expressions. The latter may contain patterns, which contain expressions,
etc. The pattern DSL is extensible so that, for example, the DSL of structure definitions
can automatically generate patterns for matching structure instances. Naturally, this
DSL for structure declarations can also embed Racket expressions at a fine granularity.

With regard to the third kind of DSL, Racket’s macro approach suffers from several
problems. A comparison with the criteria in sec. 3 suggests three obvious ones.
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(define-typed-syntax (if cond then else)
[` cond >> cond-ir =⇒ cond-type]
[` then >> then-ir =⇒ then-type]
[` else >> else-ir ⇐= else-type]
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -

[(AST-if cond-ir then-ir else-ir) −→ then-type])

Figure 13 Type-checking from macros.

The first concerns DSLs that demand new syntactic categories and, in turn, good parsing
and error reporting techniques. While syntax classes allow DSL creators to enumerate
the elements of a new syntactic category, this enumeration is fixed. Experienced DSL
implementors can work around this restriction, just like programmers can create extensible
visitor patterns in object-oriented languages to allow the blind-box extension of data types.

The second problem is about context-sensitive language processing. The existing macro
framework makes it difficult to implement context-sensitive static checking, translations, and
optimizing transformations – even for just Racket’s macros, not to mention those that define
new syntactic categories. Chang and his students [6, 7] have begun to push the boundaries
in the realm of type checking, a particular rich form of context-sensitivity. Specifically,
the team has encoded the rich domain of type checking as a meta-DSL. In essence, this
meta-DSL enables DSL creators to formulate type checking in the form of type elaboration
rules from the literature (see fig. 13), instead of the procedural approach of fig. 3. However,
their innovation exploits brittle protocols to make macros work together [28]. As a result,
it is difficult to extend their framework or adapt it to other domains without using design
patterns for macro programming.

Finally, the DSL framework fails to accommodate languages whose compilation target is
not Racket. Consider an embedded DSL for Cuda programming that benefits from a fluid
integration with Racket. Such a DSL may need two interpretations: on computers with
graphical co-processors it should compile to GPU code, while on a computer without such a
processor it may need to denote a plain Racket expression. Implementing a dependent-type
system in the spirit of Chang et al.’s work supplies a second concrete example. The language
of types does not have the semantics of Racket’s expressions and definitions. Although it is
possible to expand such DSLs through Racket’s core, it forces DSL developers to employ
numerous macro-design patterns.

The proposed work-arounds for these three problems reveal why the Racket team does
not consider the problem solved. Racket is all about helping programmers avoid syntactic
design patterns. Hence, the appearance of design patterns at the macro level is antithetical to
the Racket way of doing things, and the Racket team will continue to look for improvements.
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Abstract
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6:2 The Dynamic Practice and Static Theory of Gradual Typing

1 A tale of two gradualities

It was the best of types, it was the worst of types,
it was the age of static guarantees, it was the age of blame,
it was the epoch of implementations, it was the epoch of core calculi,
it was the season of pragmatism, it was the season of principles.

– with apologies to Charles Dickens

In 2006, the idea of gradual typing emerged in two papers. Tobin-Hochstadt and Felleisen
introduced the idea of mixing untyped and typed code such that “code in typed modules
can’t go wrong” using contracts [102, 34]; Siek and Taha showed how to relax the simply
typed lambda calculus (plus some extensions) to allow for unspecified “dynamic” types to be
resolved at runtime via casts [87].1

In these two papers, two parallel lines of research on gradual typing began with quite
different approaches. Sam Tobin-Hochstadt summarized the distinction as ‘type systems for
existing untyped languages’ [Tobin-Hochstadt and Felleisen] and ‘sound interop btw typed
and untyped code’ [Siek and Taha] [101]. I draw slightly different lines, identifying one
lineage as being “dynamic-first” and the other as “static-first”. That is: one can think about
taking a dynamic language and building a type system for it, or one can think about taking
a statically typed language and relaxing it to allow for dynamism.

The differences at birth between these two approaches are still evident, and the latter
approach has an opportunity for interesting new discoveries from proof-of-concept (and more
serious) implementations.2

Disclaimer: I have made an effort to be thorough but not comprehensive in my citations.
Readers looking for a comprehensive survey will enjoy Sam Tobin-Hochstadt’s “Gradual
Typing Bibliography” [117]. Even so, I make general claims about trends in gradual types. I
try to mention the inevitable exceptions to my generalizations, but I may have missed some.

1.1 The dynamic-first approach
Tobin-Hochstadt and Felleisen use a “macro” approach, where the unit of interoperation is
the module. They are directly inspired by Racket’s module system. They see the dynamic
language as being somehow primary, with a static layer above:

First, a program is a sequence of modules in a safe, but dynamically typed pro-
gramming language. The second assumption is that we have an explicitly, statically
typed programming language that is [a] variant of the dynamically typed language.
Specifically, the two languages share run-time values and differ only in that one has a
type system and the other doesn’t. [102]

1 Flanagan showed how to use a similar cast framework to relax a fancy subset type system to a series
of dynamic checks [36]. Dynamic checking is necessary in Flanagan’s hybrid typing, because not every
refinement is easy to send to an SMT solver. While the approach is different, the spirit is similar: there
must have been something in the water.

2 There are three other distinctions one could make. First, the macro/micro distinction from Takikawa
et al. and Greenman et al. [98, 49]; second, the latent/manifest distinction [45, 46]; and third, the
distinction between languages with static semantics that influence runtime behavior (e.g., type classes)
and those languages where types can be erased. These distinctions are important but less salient for my
analysis.
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Their paper takes an “expanded core calculus” approach, defining an extension of the lambda
calculus with a notion of module (untyped, contracted, or typed).

Dynamic-first gradual typing is about accommodating particular programming idioms
in programs that allow legacy untyped code to interoperate with the newly typed frag-
ment. Typed Racket is a canonical example, though TypeScript’s various dialects, Dart,
DRuby/Rubydust/rtc, Clojure’s specs, Gradualtalk, and Reticulated Python are all compa-
rable efforts in the research community [103, 39, 8, 81, 80, 5, 112]. These languages all share
an approach going back chiefly to the 1990s but also earlier: we have a dynamic language
in hand and we’d like the putative benefits of static typing (for, e.g., maintenance [59],
documentation [64], performance) [20, 100, 17, 21, 50].

Dynamic idioms vary widely [82, 4], but a common theme is untypability in conven-
tional systems. Accordingly, the type systems used in the dynamic-first approach tend to
the unfamiliar, with features designed to capture particular language idioms: occurrence
typing [103, 104, 56], “like” types [119], severe relaxations of runtime checking disciplines to
avoid disrupting reference equality [112, 113], and ad hoc rules for inferring particular types
(e.g., telling the difference between a tuple and an array in TypeScript or Flow).

1.2 The static-first approach
Siek and Taha take a “micro” approach, where the unit of interoperation is the expres-
sion [87]. They are inspired by Thatte’s quasi-static typing and Oliart’s algorithmic treatment
thereof [100, 73]. While they imagine migrating programs from dynamic to static – would
one ever want to go the other way? – they implicitly see the type system as primary, and
gradual types as a relaxation. In their contributions:

We present a formal type system that supports gradual typing for functional languages,
providing the flexibility of dynamically typed languages when type annotations are
omitted by the programmer and providing the benefits of static checking when function
parameters are annotated.

Siek and Taha’s paper does not, however, identify any particular dynamic idioms they want
to write but that their static type discipline disallows. Such an example might serve as
motivation for wanting to relax the type system, either to accommodate existing dynamic
code that uses hard-to-type idioms (e.g., as in Takikawa et al. [99]) or to write new code
that goes beyond their system (e.g., as in Tobin-Hochstadt and Findler [106]). To be sure,
adding the dynamic type does add a new behavior – nontermination [1]. Siek and Taha don’t
explicitly observe as much beyond mentioning that the untyped lambda calculus embeds in
their system. The code of their two lambda calculus interpreters is identical (their Figure 1;
reproduced in our Figure 1); only the type annotations change.

According to Siek et al.’s refined definition [90], gradual typing “provides seamless
interoperability, and enables the convenient evolution of code between the two disciplines”; it
is critical to their conception of gradual typing that it “relates the behavior of programs that
differ only with respect to their type annotations”. Lacking particular dynamic idioms to
accommodate, the examples in static-first papers tend to be toy snippets mixing static and
dynamic code to highlight this interoperation, even when pointing out the oversight (e.g.,
Section 6 from Garcia and Cimini [41]).

Work in the “static-first” lineage cites interoperation as a motivation, not only in Siek
and Taha’s seminal paper [87] but especially in Wadler and Findler [114]. Later papers take
interesting type feature X and show how to relax the typing rules, resolving static imprecision
with dynamic checks. X ranges widely: objects [88], polymorphism [2, 3, 108], typestate [118],
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(define interp
(� (env e)

(case e
[(Var ,x) (cdr (assq x env))]
[(Int ,n) n]
[(App ,f ,arg) (apply (interp env f) (interp env arg))]
[(Lam ,x ,e) (list x e env)]
[(Succ ,e) (succ (interp env e))])))

(define apply
(� (f arg)

(case f
[(,x ,body ,env)
(interp (cons (cons x arg) env) body)]

[,other (error ”in application, expected a closure”)])))

(type expr (datatype (Var ,symbol)
(Int ,int)
(App ,expr ,expr)
(Lam ,symbol ,expr)
(Succ ,expr)))

(type envty (listof (pair symbol ?)))

(define interp
(� ((env : envty) (e : expr))

(case e
[(Var ,x) (cdr (assq x env))]
[(Int ,n) n]
[(App ,f ,arg) (apply (interp env f) (interp env arg))]
[(Lam ,x ,e) (list x e env)]
[(Succ ,e) (succ (interp env e))])))

(define apply
(� (f arg)

(case f
[(,x ,body ,env)
(interp (cons (cons x arg) env) body)]

[,other (error ”in application, expected a closure”)])))

Figure 1. An example of gradual typing: an interpreter with varying amounts of type annotations.

notated terms, is equivalent to that of the simply-typed lambda cal-
culus (Theorem 1). This property ensures that for fully-annotated
programs all type errors are caught at compile-time. Our type sys-
tem is the first gradual type system for structural types to have this
property. To show that our approach to gradual typing is suitable
for imperative languages, we extend �?

! with ML-style references
and assignment (Section 4).
We define the run-time semantics of �?

! via a translation to a
simply-typed calculus with explicit casts, �h⌧i

! , for which we de-
fine a call-by-value operational semantics (Section 5). When ap-
plied to fully-annotated terms, the translation does not insert casts
(Lemma 4), so the semantics exactly matches that of the simply-
typed �-calculus. The translation preserves typing (Lemma 3) and
�h⌧i
! is type safe (Lemma 8), and therefore �?

! is type safe: if eval-
uation terminates, the result is either a value of the expected type
or a cast error, but never a type error (Theorem 2).
On the way to proving type safety, we prove Lemma 5 (Canonical
Forms), which is of particular interest because it shows that the
run-time cost of dynamism in �?

! can “pay-as-you-go”. Run-time
polymorphism is restricted to values of type ?, so for example,
a value of type int must actually be an integer, whereas a value
of type ? may contain an integer or a Boolean or anything at all.
Compilers for �?

! may use efficient, unboxed, representations for
values of ground and function type, achieving the performance
benefits of static typing for the parts of programs that are statically
typed.
The proofs of the lemmas and theorems in this paper were writ-
ten in the Isar proof language [28, 42] and verified by the Isabelle
proof assistant [29]. We provide proof sketches in this paper and
the full proofs are available in the companion technical report [39].
The statements of the definitions (including type systems and se-
mantics), lemmas, propositions, and theorems in this paper were
automatically generated from the Isabelle files. Free variables that
appear in these statements are universally quantified.

2. Introduction to Gradual Typing
The gradually-typed �-calculus, �?

!, is the simply-typed �-calculus
extended with a type ? to represent dynamic types. We present grad-
ual typing in the setting of the simply-typed �-calculus to reduce
unnecessary distractions. However, we intend to show how gradual

typing interacts with other common language features, and as a first
step combine gradual typing with ML-style references in Section 4.

Syntax of the Gradually-Typed Lambda Calculus e 2 �?
!

Variables x 2 X
Ground Types � 2 G
Constants c 2 C
Types ⌧ ::= � | ? | ⌧ ! ⌧
Expressions e ::= c | x | �x :⌧. e | e e

�x. e ⌘ �x :?. e

A procedure without a parameter type annotation is syntactic sugar
for a procedure with parameter type ?.
The main idea of our approach is the notion of a type whose struc-
ture may be partially known and partially unknown. The unknown
portions of a type are indicated by ?. So, for example, the type
number ⇤ ? is the type of a pair whose first element is of type
number and whose second element has an unknown type. To pro-
gram in a dynamically typed style, omit type annotations on pa-
rameters; they are by default assigned the type ?. To enlist more
help from the type checker, add type annotations, possibly with ?
occurring inside the types to retain some flexibility.
The job of the static type system is to reject programs that have
inconsistencies in the known parts of types. For example, the pro-
gram

((� (x : number) (succ x)) #t) ;; reject

should be rejected because the type of #t is not consistent with
the type of the parameter x, that is, boolean is not consistent with
number. On the other hand, the program

((� (x) (succ x)) #t) ;; accept

should be accepted by the type system because the type of x is
considered unknown (there is no type annotation) and therefore not
within the realm of static checking. Instead, the type error will be
caught at run-time (as is typical of dynamically typed languages),
which we describe in Section 5.

Figure 1 The lambda calculus interpreter from Siek and Taha (Figure 1 [87]).

information flow control [29, 33, 107], ownership types [85], effects [9], session types [55],
etc. The process of relaxation was characterized and made beautifully concrete in Garcia,
Clark, and Tanter’s “Abstracting Gradual Typing” (AGT) [42]. In AGT, one “abstracts” a
gradual type system starting from a syntax-directed, fully static type system that enjoys a
preservation-based proof of type safety. Matteo Cimini and Jeremy Siek built the Gradualizer,
a tool for automatically turning a variety of type systems gradual [27]. AGT is a human
methodology, but has been shown to apply to a broad swath of systems [9, 61, 107, 108].
The Gradualizer is automatic, but is substantially less general than the principles in AGT.

The type systems in the static-first lineage tend to look much more like those found in
the conventional types literature... unsurprising, in light of AGT! The resulting theories are
typically conservative extensions of their original system, where statically typed programs
remain acceptable – satisfying the static gradual guarantee (removing type information
retains typeability) [90]. Many systems also enjoy the dynamic gradual guarantee (removing
type information retains successful runs of the program), though notably not for several type
systems implementing hyperproperties [107, 108].

2 Dynamic trouble in static paradise

It is easy to design a type system, and it is reasonably straightforward to validate
some theoretical property. However, the true proof of a type system is a pragmatic
evaluation. To this end, it is imperative to integrate the novel ideas with an existing
programming language. Otherwise it is difficult to demonstrate that the type system
accommodates the kind of programming style that people find natural and that it
serves its intended purpose.
To evaluate occurrence typing rigorously, we have implemented Typed Scheme.

– Tobin-Hochstadt and Felleisen [103]

2.1 A distinction without a difference?
Does it matter whether one starts from dynamic typing and works up to static typing or
starts with static typing and relaxes to allow dynamic typing [53]? Only the dynamic-first
lineage addresses particular examples and the particular difficulties they introduce into the
resulting systems.
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1 ( define ( flatten x)
2 (cond
3 [( null? x) ’()]
4 [( cons? x) ( append ( flatten (car x)) ( flatten (cdr x)))]
5 [else (list x)]))

> ( flatten ’(1 (2 3) (((4) (5)) (6 7 8 (9))))) ; example
’(1 2 3 4 5 6 7 8 9)

Figure 2 The flatten function in Scheme/Racket.

Dynamic-first gradual typing is motivated by particular, existing legacy code in partic-
ular, existing languages. Whatever theory dynamic-first systems come up with must be
accommodated to the host language’s pre-existing conditions.

[D]ynamic language programmers often employ programming idioms that impede
precise yet sound static analysis. For example, programmers often give variables
flow-sensitive types that differ along different paths, or add or remove methods from
classes at run-time using dynamic features such as reflection and eval. [8]

Static-first gradual typing typically lacks such concrete examples as motivation, studying
interoperation more abstractly. Static-first gradual typing often studies type system features
without any attempt to accommodate the idiosyncrasies of any particular implementation of
those features. (There are, of course, laudable exceptions [85, 6].)

The distinction becomes clear when we see what is actually implemented: the overwhelm-
ing majority of the existing implementations of gradual typing start with a dynamic language
and grow an appropriate type system for it [103, 39, 8, 81, 80, 5, 112]. There are several
notable exceptions: Nom and Grift are direct implementations of the static-first theory
of gradual typing for new static languages [68, 60]; Thorn invents its own theory of “like”
types [13]; C# is a statically typed language which grew a dynamic runtime unrelated to the
theory of gradual types [65].

It is surprising that the theory takes a static-first approach, but the practice takes a
dynamic-first one. It would seem that nobody has tried to apply the static-first theory to
a pre-existing statically typed language. A set of concrete, desirable idioms from dynamic
typing would allow the dynamic-first and static-first lineages to address the same challenges
and benefit more from each other’s insights. I offer one such challenge in detail, followed by
some higher level challenges (Section 3).

2.2 A dynamic idiom: flatten
A canonical example of a dynamic programming idiom is the flatten function (Figure 2).
The flatten function takes arbitrarily nested lists (formed by cons cells) and produces a
single flat list containing all of the elements in a left-to-right traversal. Thinking of such
nested lists as trees, flatten computes the fringe of the tree. The flatten function works
because there are predicates null? and cons? of conceptual type ? → bool. While it is a
perfectly safe function – nothing in it can go wrong at runtime – it is hard to assign a type to
flatten, since the type of uniformly constructed, heterogeneous lists cannot be written down
in simple type languages. Like in Tobin-Hochstadt and Findler’s “gradual typing poem” [106],
we assign the dynamic type to patch over a programming idiom that our type system cannot
account for (there, cyclic data structures; here, heterogeneity and arbitrary nesting).
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2.2.1 flatten in dynamic-first gradual typing

Occurrence typing captures the reasoning in flatten perfectly, allowing Typed Racket to
infer the type of flatten without any annotations.3

Occurrence typing is not a standard type system feature. It is not even a particularly
desirable one according to the tastes of the static typing community, as evidenced by
its lack of adoption there. Folks who like static types seem to prefer dependent pattern
matching for flow-sensitive reasoning. Occurrence typing is used in Typed Racket because it
suffices to characterize many of the idioms used: it “accommodates ... modes of reasoning ...
programmers use” – Typed Racket was designed “to support Scheme idioms and programming
styles” [103]. To put it in terms of Ron Garcia’s 2018 ICFP keynote, Typed Racket is an
exercise in “type system anthropology”, finding the folk type system that corresponds to
Racket programmers’ mental models [40].

2.2.2 flatten in static-first gradual typing

How might one write flatten in the static-first lineage? First, let us be clear that statically
typed languages can already more or less accommodate the flatten function! Zhe Yang
implemented it in SML two ways: once with functors, and once with embeddings to and
projections from a universal-datatype [121]; the embedding/projection model is not too
hard to use but is not the most efficient [10, 11]. One can implement flatten in Haskell
using recent reflection support (see Figure 3). CDuce can express this function directly
(see Figure 4).

Static languages accommodate flatten with either significant runtime cost or fancy type
systems. Work in the static-first lineage of gradual typing has only recently devised systems
that can accommodate this simple function. Most static-first gradual type systems don’t offer
type tests, though there are noteworthy exceptions [62, 63, 16]. Siek and Tobin-Hochstadt’s
true union types [89] can handle the definition at the same moral type of ? → list ? (in
their notation, ?→ µX.unit ∪ ?×X). Recent work by Castagna, Lanvin, and others might
be able to accommodate the idiom, as well [24, 25].

3 An opportunity

We ought to (a) identify the particular new programs gradual typing allows us to write or
interoperate with and (b) verify that we can implement gradual type systems accommodating
these new programs. Enumerating concrete examples and implementing the theory will
stress-test our understanding, leading to refinements and improvements in both theory and
practice.

Since there are multiple motivations for wanting gradual typing, I’ve broken the chal-
lenges up into sections by motivation: added expressiveness (Section 3.1), interoperation
(Section 3.2), and types themselves (Section 3.3). I conclude by addressing possible objections
(Section 3.4).

3 Typed Racket assigns the type (-> Any (Listof Any)). Unfortunately, Typed Racket cannot
express the negation lurking in the codomain under the Listof, where one might want to write
(-> Any (Listof (- Any (Listof Any))).
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3.1 Gradual typing for expressiveness
For any interesting programming language, there will always be some programs that
[the] user must rewrite to accommodate a static type checker.

– Mike Fagan’s Fundamental Theorem of Static Typing [32]

If one studies gradual typing in order to be able to write new kinds of programs, I offer three
examples of dynamic idioms that might serve as motivating examples: heterogeneous struc-
tures, semi-structured data, and an object annotation strategy drawn from the “middleware”
approach to webservers.

3.1.1 Heterogeneous structures
It is very common to program with uniformly constructed, heterogeneous data structures
in dynamic programming languages: the lists in flatten nest arbitrarily and hold arbitrary
values (heterogeneity) but are constructed using only ’() and cons (uniformity). While
flatten is a “toy” function, it manipulates the heterogeneous lists with a non-trivial use
of type predicates in a way that is simultaneously realistic but also challenging to existing
static-first type theories. Fagan’s PhD thesis is rich in such examples [32].

Not only do static type systems limit the kinds of values that get put into data structures,
they often limit the shapes of those data structures themselves. It is not a trivial exercise
to construct a non-statically known, immutable, circular list in OCaml. Programming in a
static language, I might want to temporarily “cheat” and view my structured data a little less
formally than the type system would ordinarily allow. For example, one might temporarily
allow mutation to make a list circular before “freezing” it as an immutable one [106]. How
can such shenanigans be safely accommodated in languages that want types to mean things?
What does heterogeneity mean for more complicated structures like tree-based sets and maps
that, e.g., compare values to maintain invariants?

3.1.2 Semi-structured data, like JSON, YAML, and XML
A great deal of information is stored and exchanged in semi-structured formats like JSON,
YAML, and XML. Even when these formats don’t take advantage of recursion, they represent
heterogeneous data that isn’t easily accommodated by type systems. Much of XML can be
handled with some moderately fancy type system features – unions and recursive types [12] –
but a proper account of names has proven elusive, in part due to the challenging type system
features necessary (e.g., row types and first-class names). While Typed Racket is good at
working with heterogeneous structures, it accommodates semi-structured data less well. Can
gradual typing help us work with these common structures? Might we be able to gradualize
recent advances in reasoning about rows [67]? Might we offer a gradual treatment of the
row-based metaprogramming of Ur/Web [26]?

3.1.3 Attaching information to HTTP request and response objects
So-called “middleware” in web servers is typically implemented as a quasi-continuation-passing
function mw : Req × Resp × (unit → α) → α, where Req and Resp are (mutable) HTTP
request and response objects and the third argument is a (thunked) continuation. Middleware
can be used for many tasks: application transformers which, e.g., compress outgoing data
with gzip, but also session management and authentication regimes for tracking which user a
request belongs to. Such authentication middleware might look up user information and then
attach that user information to the request object, making it available for other portions of
the web application that rely on such user information being present.
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Authentication middleware amounts to a form of strong update, where a record – the
HTTP request object – gets a new field, or its field changes type. Sound gradual systems
can support strong update [91]; can we extend and implement these systems to write mostly
typed web-servers that can accommodate this “attachment” idiom?

3.2 Gradual typing for interoperation
If one studies gradual typing in order to interoperate programs from different idioms, what
better way to show it than by implementing an interoperation library for, say, OCaml and
Python or Haskell and Julia or Scala and Clojure?

There are several challenges left unaddressed by theoretical treatments of interoperation.
High level concerns include design issues surrounding numerics, annotations, type-driven
features, and how data structures (and their invariants) can be ported from one language
to another. There are also critical lower level concerns, like garbage collection, linking, and
debugging.

3.2.1 Numerics
Dynamic languages typically have a “numeric tower” with rules for when values move from
more precise types (e.g., unbounded bignum integers or precise rationals) to less precise ones
(e.g., fixed or floating point numbers). Statically typed languages typically require explicit
coercions (e.g., fromIntegral and other conversions in Haskell’s numeric type classes) and
sometimes have separate operations for each numeric type (e.g., + and +. in OCaml).

For static languages to interoperate with dynamic ones, the promotion rules will leak.
A statically polymorphic function run in the dynamic side could result in a promotion,
which might violate parametricity. These thorny questions have been studied for Racket’s
complicated numeric tower already [93]; what should happen in other settings?

3.2.2 Data structures, interfaces vs. translations, and guarantees
Tobin-Hochstadt and Felleisen assume that “the two languages share run-time values and
differ only in that one has a type system and the other doesn’t” [102]. This will not generally
hold. The representation of Racket and OCaml strings are different, but so are their interfaces:
string constants in Racket are immutable,4 while OCaml’s are mutable.

When we move a value from language A to language B, we may want to send it over as an
object with an interface – allowing B to use the object with A’s semantics – or to translate it
to one of many possible targets in B. Such translations will come with a computational cost –
typically linear but sometimes worse! – but allow several benefits: it may be more efficient
to avoid the A/B language barrier, B may have more efficient representations in general, and
B may provide guarantees that A does not. Can gradual typing theory or implementations
help us think about these questions? There has been some related work for contracts and
data structures [35]; how might it port over?

3.2.3 Type-driven features
Muehlboeck and Tate have shown that a variety of type-based features in C# lead to violations
of the dynamic gradual guarantee [68]. The core issue is that the runtime semantics of
some features depend on the decisions made during static typing. Haskell’s type classes are

4 Though Racket documentation indicates that not all strings are immutable [77].



M. Greenberg 6:9

another example of this phenomenon: it is determined statically how to resolve each call of a
constrained function, which determines, e.g., which monad to use. How might Haskell mix
with dynamic code that performs IO or other effects? How might dynamic values in Haskell
enjoy the Ord instances necessary to build, e.g., heterogeneous sets?

3.2.4 Minimizing annotation overhead
Static-first gradual typing typically studies elaborated core calculi – many papers do not
describe the surface language that generates the runtime checks. How can we minimize the
annotation overhead in the source language? What check insertion strategies are appropriate?
Swamy et al. give a theoretical starting point for thinking about coercions more generally [96],
subsuming Henglein’s seminal work [50] but not offering an algorithm.. Allende et al. offer a
concrete analysis of the issue and a novel, hybrid cast insertion strategy in an object-oriented
setting [7]. Greenman and Felleisen consider “a spectrum of type soundness” for cast insertion
but not alternative sound strategies [47]; What tool support do we need – inference [86]?
Something more exploratory, along the lines of Campora et al. [18, 19]? More tools for
eliminating checks [71]?

The idea of minimizing annotation overhead is implicit in gradual versions of fancy
type systems, where the “dynamic” side is a typical static type system and the “static”
side is a fancier type system (e.g., information flow [29, 33, 107]). Experiments with an
implementation are a natural next step.

3.2.5 Lower-level concerns: garbage collection, linking, and debugging
When two languages interoperate, which is responsible for allocating and deallocating? When
does each language’s GC run? This question is a serious one: in Ramsey’s Lua-ML, the thorny
issue of whose garbage collector is in charge led him to reimplement Lua in OCaml [79]! Not
only is such a “duplication of effort ... regrettable”, it means that Ramsey’s Lua may not
behave identically to the original Lua and won’t necessarily keep up as Lua evolves.

What is the right object/header format? It is a shame that if we were to try to link
Rust and Haskell, we would probably have to go through a C API! How does one take the
hodgepodge of stack frames, thunks, and continuations from mixing two real languages and
produce something intelligible?

3.3 Gradual typing for typing’s sake
One could summarize the gradual types approach as finding runtime-enforceable safety
properties that simultaneously (a) allow one to relax the strictures of type checking in part
of one’s program while (b) not compromising the safety guarantees in the checked parts of
the program. But types are more than safety guarantees! Folklore and substantial engineer
experience assign high value to what I called before the “putative benefits of static typing”.
Types are executable documentation [64]; they rule out whole classes of errors, assist in
maintenance [59], and can lead to more efficient code. So far, the literature on gradual types
has focused on the “rule out whole classes of errors” benefit. But there are others! To what
extent do the existing, implemented dynamic-first systems buy you the benefits of static
typing? To what extent would implementations of theoretical, static-first systems buy you
those same benefits?

For efficiency, it’s a mixed bag. Typed Racket sometimes generates better code than one
would get without the type systems [78]. But Typed Racket has a hard row to hoe: it lives
within the strictures of Racket’s dynamic-first world, where the primitives by default perform
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runtime checks. Typed Racket already adds its own checks at module boundaries; avoiding
checks on internal uses of primitives takes both effort and care. Working in ActionScript,
which has a less constrained runtime, Rastogi et al. find an average 1.6x improvement when
using their type inference algorithm over partially annotated programs. Nom and Grift both
show that gradual types can be implemented efficiently [68, 60]; while both can generate
good static code, neither recovers global, type-based optimizations.

For maintenance, Typed Racket exhibits some of the desirable behaviors: on changing an
algebraic datatype definition to include new possibilities, the type system can find functions
that are now missing cases. But having the right features in the small and behaving correctly
in the large are two different things. A ten-year retrospective on Typed Racket’s “migratory
typing” suggests that deeper study is required [105].

3.4 In which I am gravely mistaken
“No, no,” you say, “that’s not right. We can already do all of this!” There has indeed been
good progress towards meeting these challenges! I don’t mean to diminish the substantial
literature on these topics, but rather to help direct its aims. What do we have so far, and
how close are we to meeting the challenges I’ve laid out?

3.4.1 Static languages can accommodate those idioms
You can just make a datatype for JSON; OCaml already has S-expression support instead of
the general dynamic type. Polymorphic variants offer some of the flexibility and reuse of
dynamic types while also admitting a meaningful typing discipline [43].

Standard examples like heterogeneous lists and maps are typeable using some of the
fancier features of Haskell’s type system [58, 57, 115]. Haskell has dependency, Data.Dynamic
and Type.Reflection, and the Aeson library.
I Response. Maybe the static world never really wanted to interoperate with dynamic types.
But there are still challenges.

Type-based programming in Haskell is strong medicine, and every project has a limited
complexity budget. Not everyone wants to spend their complexity budget on types, even if
some claim (tongue in cheek) that Haskell is already gradually typed [31]. For example, the
flatten function can be written in Haskell (Figure 3), but it is somewhat less readable than
its Racket counterpart. The definition itself is not so much longer than the Racket code,
and the supporting functions could live in a library. One could presumably write a similar
program in Scala using the Dynamic trait.

Or consider Yesod, a mature Haskell web application framework [92]. Yesod uses idioms
like routing and middleware for specifying servers, as is common in dynamic web frameworks
like ExpressJS [37].

Yesod supports sessions directly, using cookies to allow a notion of continuity in stateless
HTTP sessions. Yesod’s sessions are implemented as maps from Text to ByteString. Could
one build a version of Yesod that used Haskell’s type system to guarantee that user information
was available in the session map for stages of processing that needed it? Could we construct
a gradual version of that system?

3.4.2 We can use linking types
Patterson and Ahmed’s linking types solve this problem [76].
I Response. Let’s implement it! Linking types have been successful for proving things about
translations [15, 14]. Do they have any bearing on implementations? Work by Matthews et
al. offers some gestures in this direction [63, 62];
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1 {-# LANGUAGE
2 GADTs , TypeApplications , ScopedTypeVariables , ViewPatterns ,
3 PolyKinds , DataKinds
4 # -}
5 module Flatten where
6
7 import Data. Dynamic
8 import Type. Reflection
9

10 data MaybeMatch (a :: k1) (b :: k2) where
11 Match :: MaybeMatch a a
12 NoMatch :: MaybeMatch a b
13
14 isType :: forall a b. Typeable a => TypeRep b -> MaybeMatch a b
15 isType ( eqTypeRep ( typeRep @a) -> Just HRefl) = Match
16 isType _ = NoMatch
17
18 smartToDyn :: TypeRep a -> a -> Dynamic
19 smartToDyn ( isType @Dynamic -> Match) x = x
20 smartToDyn rep x = Dynamic rep x
21
22 flatten :: [ Dynamic ] -> [ Dynamic ]
23 flatten [] = []
24 flatten (dx@( Dynamic rep x): dxs) = x’ ++ flatten dxs
25 where
26 x’ | App ( isType @[] -> Match) arg <- rep
27 = flatten (map ( smartToDyn arg) x)
28 | otherwise
29 = [dx]

Figure 3 A version of flatten using Haskell’s Dynamic type.

3.4.3 These ideas are already implemented
Typed Racket, Gradualtalk, DRuby/rtc/Rubydust, Reticulated Python, Thorn, Nom and
Grift are implementations [103, 5, 39, 8, 81, 112, 13, 68, 60]; some theoretical work offers
web interfaces for experimentation with their type theory [107].
I Response. Let’s do more! Let’s scale them to real, existing languages; let’s implement the
various challenge problems I’ve described.

GradualTalk, DRuby/Rubydust/rtc, Reticulated Python, and the various TypeScript
dialects are all more or less in the dynamic-first lineage, since they are put on top of existing
dynamic languages. While Reticulated Python is inspired by gradual typing, the transient
checking strategy they invented for it only loosely corresponds to anything found in the
static-first lineage [113] (see Greenman and Felleisen [47] and Greenman and Migeed [48]).

Of course, there are exceptions. C# is an example of a statically typed language that
added dynamic features; this effort doesn’t seem particularly informed by gradual typing
theory, but its dynamic language runtime draws on some of the challenges here as motivation,
e.g., working with JSON and XML [65].

Nick Benton showed how to use call/cc to get clean errors at the dynamic/static interface
when mixing untyped and typed code [11], but never scaled up to a real language. Similar
embedding/projection pairs can be found in Yang’s work, Benton’s earlier work on embedding
languages in ML, and Ramsey’s Lua-ML [121, 10, 79]. The idea of embedding/projection
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1 let flatten ( Any -> [ (Any \[ Any *])* ] )
2 | [] -> []
3 | (h,t) -> ( flatten h)@( flatten t)
4 | x -> [x]
5
6 type Tree(’a) = (’a\[ Any *]) | [ (Tree(’a))* ]
7
8 let flattenTree ( (Tree(’a)) -> [’a*] )
9 | [] -> []

10 | [h ; t] -> ( flattenTree h)@( flattenTree t)
11 | x -> [x]

Figure 4 Flatten in CDuce, with and without a custom type.

pairs as a core idea in gradual types goes back at least to Henglein [51], but has seen a
resurgence in recent work by New et al. [69, 70]. Only Ramsey’s work seems to have ever
enjoyed a serious implementation; even so, it seems that the up-to-date Lua-OCaml interface
is via a more conventional, ctypes-based API [30]. Gray et al.’s reflection-based approach
offer a substantial interface between two very different languages (Java and Scheme) [44].
Their interface compiles the Java to Scheme, though, sidestepping the “two runtimes” issue
in much the same way Ramsey does.

CDuce deserves particular attention, as its set-theoretic types allow for concise implemen-
tations of functions like flatten [12]. We can write two good implementations of flatten
in CDuce (Figure 4): the first version uses ordinary types, while the second uses a custom
type definition to better characterize the list structure of the input. CDuce doesn’t address
issues of interoperation at all, but recent work has shown that CDuce’s set-theoretic types
are relevant to gradual typing [25]. How much of the reasoning done in dynamic languages
can be done using set-theoretic types? What kinds of reasoning lie outside those types?

Various recent systems have moved beyond core calculi, studying surface syntax di-
rectly [120, 66, 24, 25]; why not try practical experiments?

3.4.4 That’s not what gradual typing is about
The dynamic and static ends of the gradual typing spectrum are relative. As Ron Garcia
shows in his 2018 ICFP keynote, one could consider SML as a dynamic language in light of
the static verification of partial pattern matches used in the datasort refinement system of
Refined ML [38, 40]. Some of the gradual notions of, e.g., security typing [29, 33, 107], have
this flavor.
I Response. The particular challenge problems may change, but a focus on implementations
will help the community relate efforts in the world of gradual types and efforts outside.

Taking security typing as a concrete instance, there are already researchers working hard
on runtime enforcement mechanisms for information flow control [95, 54, 52, 94, 110]. While
these systems generally don’t support a notion of graduality, they do support important
security properties overlooked in the gradual types approaches (for example, protection from
side channels and termination sensitivity). It would be productive to hold a “Build It, Break
It, Fix it” contest between gradual and conventional systems [83]. LIO’s implementation
has already been used to build systems of moderate size [75]; why not build a comparable
system in a gradual security-typed language?
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There has been some work on enforcing linearity at runtime, with ALMS being a realistic
implementation [109]; Scherer et al.’s theory comes with a toy implementation [84]. To test
these ideas, why not implement such a system for Rust, allowing runtime checking for affinity
as an alternative to unsafe blocks?

Finally, the first question asked after Ron Garcia’s keynote was, “I’d like to use ‘dynamic‘
Haskell programs from Agda. What do I do about nontermination?” A good deal of
work studies how to gracefully allow nontermination in languages with consistent logical
interpretations of their types [116, 22, 74, 23, 97, 111, 28]. What might a “gradual” system
look like here? Does the AGT methodology help?

The gradual types approach is to find safety properties – i.e., runtime enforcement
mechanisms – that are sufficient to guarantee the desirable properties of a given type system.
Nguyen et al.’s runtime semantics for checking size-change termination is related: their
runtime checks can be lifted to static ones via an analysis [72]. Their implementation isn’t
“gradual”, though, as there’s no notion of “mixed” dynamic and static checking.

More broadly, is “graduality” even the right fit for thinking about nontermination? There
is some recent evidence that the dynamic gradual guarantee – which some see as essential to
gradual typing [70] – is incompatible with various hyperproperties, like noninterference [107]
and parametricity [108]. Binary formulations of parametricity generalize unary formulations
of termination arguments. Can a language satisfy the gradual guarantees but also preserve
strong properties like logical consistency in mixed programs?

4 Conclusion

I come to praise gradual types, not to bury them.

– with apologies to William Shakespeare

Gradual types is a thriving research area. Work is plentiful in both the implementation-
focused dynamic-first lineage and the theoretically-focused static-first lineage. Our community
has made good progress so far, and recent implementation efforts give me hope that the
two lineages will enter into a more fruitful dialog. Significant challenges remain for both
the theory and practice of gradual types; there are thorny practical questions that deserve
immediate attention, as they will determine the direction of our efforts. Which programs do
we want to write? How do theoretical models generalize to whole languages? What of the
low-level concerns of interoperation, viz. the “two runtimes” problem?

Finally, perhaps I am wrong. Maybe the distinction between these lineages is a trivial
one, and the theory is already applicable to practice. The best proof that the distinction I
draw is trivial would be an interoperation layer for an existing language that follows existing
theory directly, without any need to adapt to pre-existing conditions. I would welcome such
proof, and I encourage the gradual types community to take advantage of this opportunity
and implement their ideas.
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Abstract
Leading experts have declared that there is an impending golden age of computer architecture. During
this age, the rate at which architects will be able to innovate will be directly tied to the design and
implementation of the hardware description languages they use. Thus, the programming languages
community stands on the critical path to this new golden age. This implies that we are also on the
cusp of a golden age of hardware description languages. In this paper, we discuss the intellectual
challenges facing researchers interested in hardware description language design, compilers, and
formal methods. The major theme will be identifying opportunities to apply programming language
techniques to address issues in hardware design productivity. Then, we present a vision for a
multi-language system that provides a framework for developing solutions to these intellectual
problems. This vision is based on a meta-programmed host language combined with a core embedded
hardware description language that is used as the basis for the research and development of a sea of
domain-specific languages. Central to the design of this system is the core language which is based
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7:2 A Golden Age of Hardware Description Languages

1 Introduction

Turing award winners John Hennessy and David Patterson recently declared that we are
on the cusp of a new golden age of computer architecture [29, 30]. Current trends in
silicon manufacturing are signaling the end of Moore’s law and Dennard scaling. This,
combined with the inherent inefficiencies in general-purpose processor design, indicates that
new innovations in computer architecture will come from the design of domain-specific
architectures. The recent proliferation of application accelerators, such as Apple’s neural
engine for the A12 and Google’s Tensor Processing Unit, support the idea that the hardware
community is transitioning to specialized chip design. This shift signals a new golden age
because researchers have an opportunity to develop radically different architectures rather
than incremental improvements to existing processor designs.

Domain-specific chips necessarily target smaller markets which implies that design teams
will become smaller and demand more of their tools in order to be productive. This
indicates that we are also on the cusp of a new golden age of hardware description languages
(HDLs) because hardware designers are actively seeking radically new technologies that will
dramatically reduce design time and cost. A major impediment to design productivity is the
fact that the hardware ecosystem is a monoculture comprised of a few chip designs from a
small number of manufacturers. It is essential that the hardware community shifts towards a
diverse ecosystem of easily accessible intellectual property blocks that can be composed to
construct new chip designs. Underlying this shift will be advances in HDLs that promote the
proliferation of hardware libraries.

The development of HDL abstractions that promote reuse, correctness, and performance
represents the main challenge for this new golden age of HDLs. Fortunately, the programming
languages (PL) community has enjoyed a rich history of success in developing techniques to
address these issues. HDL researchers have already started to tackle the reuse problem by
applying standard software programming language techniques such as meta-programming,
polymorphism, and abstract data types [4, 11]. Evidently HDL researchers stand to benefit
greatly from the lessons learned by their software language counterparts.

This paper identifies three problem domains that lie at the intersection of programming
languages and hardware: language design, compiler infrastructure, and formal methods. For
those unfamiliar with the hardware design process or HDLs, Section 2 covers the essential
concepts required to understand the intellectual challenges discussed in Section 3. Section 4
presents a vision of a multi-language system for constructing hardware that is designed to
address these intellectual challenges. With this impending golden age of HDLs, it is an
exciting time to be interested in programming languages and hardware.

2 Background

A hardware description language (HDL) is an instance of a programming language that has
been designed to provide abstractions for describing circuits. This paper will focus on the
discussion of digital hardware, where circuits are described as logic operating on discrete,
binary signals. Digital hardware can be further divided into two categories: synchronous and
asynchronous. In a synchronous circuit, state changes are synchronized by a clock signal.
In contrast, asynchronous circuits can contain state elements that change at any time. A
majority of modern digital designs are synchronous, but the increasing demand for efficiency
has renewed interest in asynchronous designs or hybrid models such as globally asynchronous,
locally synchronous [58]. A digital HDL is defined to be expressively complete if it can be
used to express both synchronous and asynchronous designs.
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Figure 1 An abstract depiction of a sequential logic circuit constructed as the composition of
combinational logic with state. Notice that the outputs could depend on the inputs, implying that
the circuit could describe a Mealey machine [43]. Depending on the mechanism chosen for storing
state, the circuit could be synchronous or asynchronous. See Section 2.1 for more details.

2.1 Digital Design
In digital circuit theory, combinational logic refers to circuits where the output is a pure and
total function of the inputs. In contrast, sequential logic refers circuits where the outputs are
dependent on the sequence of past inputs. Figure 1 depicts the canonical design pattern for
using combinational logic circuits composed with state to construct sequential logic circuits.
Sequential logic circuits are used to implement finite-state machines (FSMs), a fundamental
component of building digital systems.

When discussing FSMs in the context of hardware design, it is important to recognize
the distinction between Mealey [43] and Moore [45] machines. For a Mealey machine, the
output of the circuit is a function of the state and the inputs, while for a Moore machine, the
output of the circuit is purely dependent on the state. The differences between these classes
of FSMs are more pronounced in hardware than in software because they exhibit different
timing characteristics. When using registers to store state, a Moore machine can be viewed
as a purely synchronous entity where changes to the state and output values are triggered
by a clock, while a Mealey machine can exhibit asynchronous behavior where output values
immediately respond to changes to input values. An expressively complete HDL will be able
to describe and compose both Moore and Mealey machines.

2.2 Verilog
The Verilog language is the dominant HDL used in practice today [23]. The language was
originally developed as a commercial verification and simulation product [24] and was later
adopted as a basis for logic synthesis. As a result, the semantics of the language are defined
in terms of a hardware simulation being executed as a software program [57]. The design
of the language is directly inspired by C, exhibiting many of the same features including a
preprocessor, control flow, and operators. Like C, Verilog has become the lingua franca of
the HDL ecosystem and is used as the common interchange format for design tools.

The core of Verilog’s semantics is based on a module abstraction which shares many
similarities to function abstraction from software languages. A module has an interface and
a definition. An interface is a set of typed ports. A port is similar to a function argument
or return value and represents a named entity that is used to consume or produce data. A
definition is a list of statements that describe the module behavior using various language
features such as the wiring and module instancing operators. Verilog designs are comprised
of hierarchically composed modules that are simulated using a dataflow execution model.
Figure 2 shows an edge detector FSM written in Verilog.
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1 module edge_detector (input in , output out , input clk );
2 localparam A=0, B=1, C=2;
3
4 reg [1:0] state , // Current state
5 nextState ; // Next state
6
7 always @( posedge clk) begin
8 if (reset) begin
9 state <= A; // Initial state

10 end else begin
11 state <= nextState ;
12 end
13 end
14
15 always @(*) begin
16 nextState = state;
17 out = 0;
18 case (state)
19 A : if (in) nextState = C;
20 else nextState = B;
21 B : if (in) begin
22 out = 1;
23 nextState = C;
24 end
25 C : if (~in) begin
26 out = 1;
27 nextState = B;
28 end
29 default : begin
30 out = 1’bX;
31 nextState = 3’bX;
32 end
33 endcase
34 end
35 endmodule

Figure 2 Verilog implementation of an edge detector FSM adapted from the University of
Washington CSE370 course materials [20]. The circuit has two inputs and one output and is designed
as a Mealey machine where the output is 1 if the current value of in is the inverse of the previous
value of in (i.e., the input is changing from 1 to 0 or from 0 to 1). Line 1 declares the module name
and interface. The ports have an implicit width of 1 bit and are qualified with a direction input or
output. Line 2 declares a set of constants that are used to abstract the encoding of the FSM states.
Lines 4 and 5 declare variables to hold the current and next state. Lines 7-13 describe the state
update logic inside a Verilog always block. This block of code defines a procedure to run when a
posedge clk event occurs. That is, on a positive clock edge, update or reset the state variable.
Lines 15-34 define another always block that is sensitive to changes to any input signal, denoted
by the @(*). This means that if any input value changes, this block of code will fire. The block
encodes the combinational logic for computing the output and next state values as a function of the
input and current state values. Because the second always block is sensitive to any input change,
the semantics are defined asynchronously. Contrast this with the first always block which enforces
the state updates to be synchronous by only executing on the positive edge of the clock. On lines
30 and 31, the values of out and nextState are assigned the value X to explicitly indicate they are
undefined and can be any value. See Section 2.2 for more details.
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1 acc1 :: Stream Word -> Stream Word
2 acc1 in = out
3 where
4 out = (delay out 0) + in
5
6 -- input -> current state -> (new state , output )
7 acc2 :: Word -> Word -> (Word , Word)
8 acc2 in s = (s’, out)
9 where

10 out = s + in
11 s’ = out

Figure 3 An example of two mechanisms for encoding state in a Haskell embedded HDL adapted
from the Clash documentation [39]. Both functions describe an accumulator architecture that stores
a running count of the input values over time. The function acc1 shows the first approach which
is based on a Stream data structure with a delay operator. The delay operator returns the input
stream with the values shifted by one cycle. The second argument to delay is used to specify the
first value of the stream. The function acc2 uses a different approach where the current state is
passed as an argument and the next state is returned as an output. See Section 2.3 for more details.

2.3 Functional HDLs
HDL development has a long tradition in the functional languages community [46]. Functional
HDLs leverage the idea that a pure function can be used to model combinational logic. The
fundamental problem these languages face is integrating the concepts of time and state in
order to enable the description of sequential logic.

µFP [55] and Daisy [35] both introduced a technique based on reactive programming
where a stream data structure is used to describe circuits where the output can depend on
the history of the inputs. µFP extends the FP language with a recursively defined µ operator
which takes a function and produces a new function with internal state. The essence of the
µ operator is that it supplies the current value of the state as an input to the function, and
it uses an output of the function to set the next value of the state. Daisy uses a different
approach by modeling sequential logic using recursive equations. Both these approaches
required the development of a new language in order to implement their ideas. The designers
of Clash [39] recognized that Haskell’s lazy evaluation can be used to construct infinite
streams, indicating that it could serve as a host for an embedded HDL. Figure 3 shows how
Haskell’s semantics enable the description of sequential logic circuits.

One interesting technique applied to functional HDLs is the use of combinators to describe
circuit structure. Hydra [50] showed that a recursive, stream-based abstraction enabled the
use of higher-order functions to capture structural patterns. Lava [11] extended the use of
recursive data types with the ability to describe general circuit networks rather than just
tree-like structures. This technique provides powerful facilities for code reuse by enabling
the description of circuits as a regular pattern of components. In practice, this approach has
proved particularly useful when applied to the problem of circuit layout [56].

2.4 Term Rewriting Systems
Another lineage of work [32] has explored the application of term rewriting systems (TRS) [52]
to the description of hardware. In these systems, circuits are described as a set of rewrite
rules which are applied to the inputs and state values to produce the outputs and next
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1 module mkCounter ( Counter );
2 Reg #( Bit #(8)) value <- mkReg (0);
3
4 method Bit #(8) read ();
5 return value;
6 endmethod
7
8 method Action load(Bit #(8) newval );
9 value <= newval ;

10 endmethod
11
12 method Action increment ();
13 value <= value + 1;
14 endmethod
15 endmodule

Figure 4 Implementation of a synchronous counter adapted from the Bluespec tutorial [12] with
the module interface specification omitted. Line 2 declares an 8-bit register named value. Lines 4-14
define the implementation of the read, load, and increment methods which define the behavior of
the module. Notice that the compiler must handle the data race between load and increment on
value. See Section 2.4 for more details.

state values. An important quality of TRS is that they model the non-determinism and
concurrency that are intrinsically present in hardware. For example, a conflict could occur
when two rules match the same input data and try to update the same state element. The
development of schemes for detecting and arbitrating conflicts represents the main intellectual
challenge for these systems. Figure 4 shows a synchronous counter written in Bluespec [47],
an established HDL based on TRS.

2.5 High-level Synthesis

High-level synthesis (HLS) is a technique that is broadly defined as compiling general software
programs to hardware [65]. This paper will eschew the use of the term HLS due to the
ambiguity of what is considered high-level. For example, a recent survey evaluated HLS
tools using benchmarks written in C [46]. However, the PL community would consider C
to be a low-level language. Instead, this paper will use the concept of the virtual machine
abstraction to encompass the languages used as input to HLS systems. Languages based
on a virtual machine abstraction provide some notion of unbounded resources such as an
infinite register space. Section 3.1.3 discusses this in more detail.

A hardware compiler for a general purpose programming language relies on a strategy for
mapping a program that may be unbounded in time and space into a finite set of resources.
Typically this involves exploring the trade-offs between scheduling computation in space
or time. If the compiler can determine parallelism in some computation, this logic can be
mapped into concurrently executing hardware modules. However, data dependencies, finite
resources, and suboptimal cost models complicate the task for larger applications. The
compiler must use heuristics to schedule computation into the time dimension and insert
the requisite logic to orchestrate the sequencing of the computation. Figure 5 shows a
synchronous counter implemented in SystemC [22], a subset of the C language used for HLS.
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1 SC_MODULE ( counter ) {
2 sc_in_clk clock;
3 sc_in <bool > reset;
4 sc_out <sc_uint <4> > counter_out ;
5
6 sc_uint <4> count;
7
8 void incr_count () {
9 if (reset.read () == 1) {

10 count = 0;
11 counter_out .write(count );
12 } else {
13 count = count + 1;
14 counter_out .write(count );
15 }
16 }
17
18 SC_CTOR ( counter ) {
19 SC_METHOD ( incr_count );
20 sensitive << reset;
21 sensitive << clock.pos ();
22 }
23 };

Figure 5 Example of a 4-bit counter defined in SystemC adapted from EDAplayground [1]. Lines
2-4 declare the interface of the module. Line 6 declares an internal state variable. Lines 8-16 define
a method incr_count which implements the behavior of the counter using the SystemC data types.
Notice that input ports are read using the read method and outputs are written using the write
method. The rest of the body of the definition is interpreted as normal C code. Lines 18-22 define a
constructor for the counter object and is mainly responsible for defining the sensitivity of the module
to the reset input as well as the positive edge of the clock input. See Section 2.5 for more details.

3 Intellectual Challenges

This section divides the concerns of HDL research into three intellectual domains: language
design, compiler infrastructure, and formal methods. Each of these domains represents a
subset of a more general research area that is of interest to the broader PL community.

3.1 Language Design
The general discipline of programming language design revolves around the development
of abstractions. A language designer will employ abstractions to enable the user to ignore
certain details about a program. Well-designed abstractions make the development and
maintenance of programs easier. In some cases, such as in domain-specific languages (DSLs),
abstractions also serve as a basis for the development of compiler optimizations. In this
impending golden age, the main challenge for HDL designers will be devising and composing
abstractions that enable code reuse, improve correctness of programs, and that can be used
to construct designs that produce high quality results from a compiler.

There are three major levels of abstractions employed in modern HDL design. The
lowest level is the circuit abstraction where hardware is modeled as a graph of connected
components. The next level is the register-transfer abstraction where hardware is described
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as the computation on data flowing between registers. The highest level is the virtual machine
abstraction where hardware is modeled as a set of instructions for an abstract machine. Many
HDLs incorporate abstractions from multiple levels. For example, the Verilog language is
based on the circuit abstraction but also provides various facilities for describing hardware
using the register-transfer abstraction.

3.1.1 Circuit Abstraction
In the circuit abstraction, hardware is described as a graph of connected components. The
abstraction consists of three primitive concepts: circuits, ports, and wires. A circuit has an
interface and a definition. An interface consists of a set of ports. A port is a named entity
that is used to consume or produce data. A definition contains a set of circuit instances and
wires. A wire connects two ports. In the hardware community, language features based on
the circuit abstraction are described as structural. For example, a design written in structural
Verilog will only use the language features for defining, instancing and wiring up Verilog
modules. Purely structural designs are called netlists.

The dominant structural HDL in use today is Verilog. Chisel [4] and Magma [27] are
examples of an emerging subclass of structural languages called Hardware Construction Lan-
guages. These languages embed the circuit abstraction into a general purpose programming
language which provides a mechanism for meta-programming circuit definitions. This ap-
proach exhibits a distinct advantage over Verilog; moving features related to parametrization
and code generation to the host language simplifies the precise specification of the HDL.

In theory, a purely structural HDL is expressive enough to capture any real world digital
hardware design. This is argued by the fact that the physical result from manufacturing
hardware is always a component that is composed of connected sub-components, recursing all
the way down to the transistors. Based on this fact, we posit that the circuit abstraction is the
fundamental primitive upon which all other HDL abstractions can be constructed. Remark
that the abstraction is agnostic as to whether the behavior of the circuit is synchronous or
asynchronous which indicates that it is expressively complete.

The main challenge for the circuit abstraction is determining whether the connection
between two ports is semantically correct with respect to the intended behavior of the design.
Most HDLs attach a notion of direction to ports which enables the use of a type system to
check that only an output can be connected to an input. An interesting research direction
moving forward will be increasing the expressiveness of the types used for circuit ports.
Ideally these types are able to capture the semantics of the protocols used to communicate
between two components. Section 3.3.2 provides a more detailed discussion on how session
types might be used to address this issue.

An interesting quality of the circuit abstraction is that, while it is based on the low-level
details of hardware design, it can be used to compose black box modules at any level in
the design hierarchy. This makes it a compelling basis for the development of hardware
libraries. As discussed in Section 2.3, functional HDLs with a circuit abstraction can leverage
combinator patterns to construct reusable circuit structures. Further research on language
facilities that enable the construction of hardware libraries based on the circuit abstraction
will be an essential component of this new golden age of HDLs.

3.1.2 Register-Transfer Abstraction
The register-transfer abstraction models hardware as computation on data flowing between
registers. Registers are defined as primitive data storage elements that update their values
based on a clock signal. Because register semantics are intrinsically tied to a clock, this
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abstraction is concerned with the description synchronous digital circuits. However, it
important to note that this abstraction could be composed with other abstractions for
describing asynchronous logic. In the hardware community, languages using the register-
transfer abstraction are described as register-transfer level (RTL) languages.

A structural HDL that includes a notion of a register provides a register-transfer ab-
straction; the computation on data flowing between registers is described using circuit
instances and connections. However, the register-transfer level of abstraction encompasses a
broader set of concepts such as functions and operators. In practice, most HDLs combine
the register-transfer abstraction with the circuit abstraction by extending the concept of a
circuit definition to include constructs such as expressions, statements, and procedures. This
technique raises the level of abstraction by removing the need to explicitly define, instance,
and wire up register circuits. Instead registers are treated as language primitives that behave
similarly to variables in a standard software programming language.

The fundamental issue in RTL language design is the precise choice of semantics for
abstracting the concept of a register. For example, the Verilog always block provides a
procedural abstraction for describing the simulation behavior of a component. To model a
register, the designer uses variables to store data across clock events. The Verilog specification
is explicit in stating that a variable does not imply a hardware register [57], instead it is
left to the synthesis tool to determine how the simulation behavior of an always block can
be mapped into an implementation using concrete hardware registers. This design choice
raises the level of abstraction by enabling the user to ignore details about how the program
is concretely implemented in hardware. However, it also removes the ability for the user to
explicitly specify the registers used in the synthesized design. In practice, this choice can
result in a mismatch between the results of register synthesis and the designer’s intent. To
remedy this, Verilog design teams enforce style guidelines that restrict the usage of always
blocks such that the synthesis results are transparent. An alternative design could use
qualifiers to explicitly declare variables that should be hardware registers.

Choosing how to map the concept of a variable to a register is a fundamental design
issue for all imperative RTL HDLs. A related issue is reconciling the synchronous update
semantics of registers with the asynchronous update semantics of standard variables. For
example, given standard imperative evaluation semantics, writing to two different variables in
a procedure would happen at different steps in the evaluation. However, if both variables are
mapped to hardware registers, they would be updated at the same time in the synthesized
hardware. One design choice would be to explicitly model the synchronized temporal update
semantics of a register variable in the evaluation semantics of the language, ensuring that the
user’s model of the computation exactly matches the behavior of the synthesized hardware.

Verilog’s non-blocking assignments provide the capability to explicitly model synchronous
storage. In Verilog, a blocking assignment is executed before the subsequent statements in a
block of sequential code. In contrast, a non-blocking assignment does not block procedural
flow and is performed near the end of a time-step. When combined with clock events, the
non-blocking assignment can be used to model the synchronous update semantics of hardware
registers by delaying variable updates until the end of a clock period.

The interplay between these two forms of assignments comprise a major component of the
complexity of the Verilog specification. One might think that the semantics of non-blocking
assignment could be simply to delay the evaluation until all blocking assignments have
been completed. However, the evaluation of a non-blocking assignment will trigger an event
on the variable being assigned, which in turn may trigger an event involving a blocking
assignment. To handle this, Verilog’s semantics include a loop for each time step that moves
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between blocking and non-blocking assignments until there are no events left to process.
The complexity of these evaluation semantics can make it difficult to reason about a Verilog
design involving both forms of assignment. In practice, Verilog design teams will follow style
guides that enforce the usage of assignments in a reasonable to understand manner.

The functional HDLs described in Section 2.3 demonstrate two more techniques for
abstracting the concept of a register. One approach is to encode the state in the interface of
a function. This is done by describing a circuit as a function that consumes the current state
as one of its inputs and produces the next state as one of its outputs. A function of this
form describes the transition function of a finite-state transducer (FST), providing a basis
for a simple hardware synthesis algorithm where the current state is stored in registers. This
technique necessarily implies a synchronized state update because the next values of the
state are produced at the end of the evaluation of a function. There is no means to specify a
state update at any other time.

The second approach uses a stream-based abstraction to encode state. The inputs and
outputs of a function are a Stream data structure with a special delay operator that allows
the user to look into the past values of a Stream. Given this operator, the user may describe
a circuit where the values of an output stream depend on the values of an input stream
at a prior clock cycle. The simplest compilation algorithm for this approach will insert
registers to implement the behavior specified by the delay operator. This approach provides
a convenient abstraction for working with the past values of the input, but prevents the user
from explicitly managing state. For example, the output of a circuit could depend on some
computation on a window values of the input. In this case, it may be most efficient to store a
partial computation on the input value as the state, but the stream-based abstraction forces
the user to describe the computation as a function of the delayed input stream values. The
compiler is then responsible for discovering the fact that the intermediate computation can
be stored as opposed to storing just the stream values and redoing computation.

Term rewriting systems for hardware [32] abstract registers by mapping terms to syn-
chronous storage elements and rewrite rules to combinational logic. This approach shares
many similarities to the functional HDLs that encode state in the interface of a function.
However, TRS faces a unique challenge because the technique introduces the possibility of
conflicts during state updates. Two rules may fire and try to update the same register which
means the compiler must be sophisticated enough to detect conflicts and insert arbitration
logic when possible. This issue is compounded when considering the modular composition of
rules. The compiler could schedule the rules for each module separately, or it could lift the
rules into a single top-level module which is then scheduled as a single unit. Prior work has
shown that both approaches could be viable depending on the input design [36]. Minimizing
the overhead of the compiler generated logic for scheduling rewrite rules is the key challenge
for applying term rewriting systems as a register-transfer abstraction.

Devising abstractions for FSMs is another essential design problem for RTL languages.
For example, Verilog provides abstractions that enable logic synthesis to generate optimized
implementations of FSMs. A key issue for FSM synthesis is choosing the best representation
for state. Consider a design where the state of an FSM is being consumed by a circuit
performing an arithmetic operation. In this case, using a non-binary state encoding would
require the insertion of decode logic. On the other hand, if the target platform is an FPGA,
a one-hot state encoding often maps more efficiently to a lookup table architecture. As
shown in Figure 2, Verilog designers can use parameters to abstract the encoding of the state.
Control logic dispatches on the abstract parameters, and the concrete parameter values can
be easily changed or selected by an automated tool.
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Related to the abstraction of state encoding is the synthesis of control logic for the
FSM. The canonical pattern for describing a Verilog FSM, shown in Figure 2, uses a case
statement that dispatches on a state variable. The semantics of the Verilog case statement
introduces complexity for the synthesis tool because cases are not necessarily mutually
exclusive. Furthermore, the tool must also synthesize logic to handle behavior for cases that
have not been listed. For example, consider a binary encoded FSM with 12 states. The
state will be stored in a 4-bit quantity that is used to dispatch a case statement. Without
guidance, the synthesis tool must be sophisticated enough to prove that there are only 12
possible values of the 4-bit quantity, otherwise it must insert extra logic to handle the illegal
values. The SystemVerilog language avoids this issue by introducing the unique qualifier for
indicating that all legal cases have been listed and are mutually exclusive.

One major issue in the canonical design pattern for Verilog FSMs is that for large FSMs
with complex transitions, the description exhibits a serious lack of structure. For example,
a simple SDRAM controller in Verilog contains 25 states with the entire FSM transition
behavior defined in a single case statement [21]. Understanding the code requires the
reader to follow large jumps between arbitrary cases. This design pattern incurs a significant
cognitive load on the designer who must manage a large amount of complex temporal behavior
to read the code. There is a direct relation between the use of large case statements to the
use of goto statements, and we consider this design pattern to be similarly harmful [19].

It is important to remark that this program structuring issue is not restricted to the
description of hardware FSMs, but is in fact an instance of a more general problem for
imperative languages. Fortunately, the software community has found a promising solution
based on coroutines [10]. Recent work is investigating the application of this technique to
hardware FSMs by restricting the semantics of a coroutine so it can be precisely compiled to
a circuit [60]. The main challenge is restricting the coroutine semantics to be only able to
describe FSMs while still enabling the use of coroutine composition.

The essence of this technique is to augment the semantics of the Verilog always block
to describe a coroutine. The designer may suspend the procedure in arbitrary locations to
incorporate more structure in the code. For example, the sequencing of two states can be
achieved by separating the logic with a yield statement, and the looping of a state can
be described using a while loop containing a yield. Compare this to the case statement
pattern where the structure of sequences and loops are not explicit in the flat list of cases.

A related issue is the description of the sequential composition of FSMs. Using just
the circuit abstraction composed with a basic RTL abstraction, the sequential composition
of distinct FSM circuits is achieved by using wires between the two circuits. These wires
are used to relay signals indicating that an FSM should start or that an FSM has ended.
In order to abstract away these wires and the accompanying control logic, the creators of
Lava developed the Pace [13] language. Blarney, a modern variant Lava, provides a similar
concept in the form of Recipes [44]. The developers of Bluespec also created similar language
called STMTFSM [48]. Underlying all these languages is a notion of modular, sequential
composition of program fragments. Early work on the Silica language [60] is exploring the
use of coroutine composition as another abstraction for modular, sequential composition.

3.1.3 Virtual Machine Abstraction
The virtual machine abstraction models hardware as a set of instructions for an abstract
machine. This technique hides certain details found in lower levels of abstraction such as
the finiteness of resources. For example, the C language provides an abstraction over a
virtual machine that can store an infinite number of variables. In order to synthesize a
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hardware implementation of a C program, the compiler must perform a variant of register
allocation that maps variables to registers depending on a set of constraints provided by the
user. Historically, this approach has been mostly applied to the synthesis of hardware from
traditional software languages such as C, but an emerging body of work is exploring the
application of this technique to software DSLs.

The major advantage of this approach is that it greatly improves the productivity of the
user by enabling them to design hardware as if they were developing software. However, in
practice, the user is required to have deep knowledge of the hardware they are trying to
generate in order to achieve the desired performance [46]. This negates much of the advantage
of using a traditional software language because instead of simply reasoning about a software
program, the user must break the virtual machine abstraction and reason about how the
program will be mapped to hardware. The central challenge for designing languages based
on the virtual machine abstraction is to find what aspects of hardware can be abstracted in
order to improve productivity without weakening the performance of the compiler.

The problem of compiling a general software program into hardware shares many of
qualities found in the problem of automatically parallelizing a general software program.
Fortunately, recent work has mirrored the domain of parallel computing by leveraging DSLs
to facilitate better compiler mappings to hardware. DSLs are able to provide productivity
and performance by leveraging domain-specific abstractions.

For example, recent work on Halide, a DSL for high performance array and image pro-
cessing code, extended the compiler to support hardware synthesis by introducing directives
for hardware-specific optimizations [53]. This approach maintains the virtual machine ab-
straction for describing image processing algorithms while giving the user a level control over
how the compiler synthesizes hardware. While this technique still requires the user to think
about the hardware they are designing, it avoids changing the original source input in order
to effect change in the compiler output. The main advantage of this approach is that the
user can achieve the desired synthesis results by guiding the compiler rather than relying on
optimizations based on heuristics.

The Spatial [38] DSL takes another approach to simplifying the problem by introducing
a virtual machine abstraction with an alternative design for memory. Instead of using
the uniformly accessible address space abstraction presented by standard CPUs, Spatial
programs explicitly interact with the memory hierarchy. This design choice is motivated
by the fact that a major challenge for compiling a general software program to hardware
is determining an optimal memory architecture. Spatial allows the user to explicitly set a
memory architecture using a template while still leveraging the compiler to schedule other
aspects of the computation. Spatial is an example of discarding the traditional virtual
machine abstraction used by most modern software languages and replacing it with a new
abstraction that is tailored to the problem of hardware compilation.

Underlying both the Halide and Spatial approaches is a technique that involves identifying
a key problem for the compiler and developing a language abstraction to simplify this problem.
Moving forward, researchers interested in developing HDLs based on a virtual machine
abstraction should explore techniques that balance the productivity of the user with the
quality of the hardware synthesized by the compiler.

3.2 Compiler Infrastructure
The proliferation of software languages based on LLVM [40] demonstrates the value of
shared compiler infrastructure for both industrial and academic purposes. For researchers,
LLVM provides a means for rapidly prototyping languages without having to implement
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standard compiler passes or create backends for standard architectures. Efforts to develop
common infrastructure for hardware compilers are underway and have elucidated key issues
when compared to their software compiler counterparts [34, 15]. There is a clear need for
the development of hardware-specific compiler passes. Optimization passes are of critical
importance because new ideas in HDLs will see no practical use unless they can be compiled
into high performance implementations.

While some standard compiler passes, such as constant folding, can be directly applied
to HDLs, there exists an entire class of passes that are specific to hardware. As an example,
hardware computations are always predicated in the sense that if a computation is mapped
to physical components, those components will be continuously executing. Conditional logic
is implemented using multiplexers on the flow of data. In order to simplify the lowering of
conditional logic, programs can be rewritten into single-static assignment form. In software,
leaving it in this form would incur a cost because instructions in a non-traversed branch
would always be executed. However, this is already the case for hardware, so leaving the
program description in this form incurs no cost. In fact, this simplifies the synthesis stage
of the compiler by enabling a one-to-one mapping from phi nodes to multiplexers. The key
challenge facing researchers interested in developing HDL compiler infrastructure will be
devising reusable, hardware-specific analysis and transformation passes.

Another impediment to design productivity is the development of software compilers
that target a novel architecture. For example, developing an extension to the RISC-V
ISA [3, 64] would require extending an existing compiler backend to target the new instructions.
This means that hardware design teams must include compiler experts, which in turn
indicates a need for the ability to automatically synthesize compiler backends for new
hardware architectures. The Tensilica processor generator [25] demonstrated the feasibility of
automatically generating a compiler that targets new instructions. However, this capability
required that the user conform to a fixed processor architecture. Future work should explore
extending this technique to support the extension of a broader class of architectures.

Given that many software compilers have converged on the ISA abstraction for backend
targets, it is essential that the HDL community converge on an ISA specification language that
is machine readable. Convergence would allow researchers to experiment with automatically
synthesizing compiler backends for a new ISA described using a standard input format.
ISP [7] is an older example of a processor specification language that could describe ISAs.
Early stage research on the Peak language [28] is exploring the use of smt-lib [9] to develop
a modern variant of ISP with formal semantics.

Finally, a critical issue facing hardware compiler developers is performance of the compiler
itself. For example, a recent paper [37] touting a new methodology for high productivity
hardware design reported that compiling their RTL design to an integrated circuit layout took
only 12 hours. This is an obvious bottleneck in the design space exploration process. Their
technique for reducing the runtime of the compiler was based on reducing the complexity
of place and route, a stage in the compiler where logical components of the design are
placed into physical space. Optimizing the place and route phase of hardware compilers
is just one opportunity for researchers interested in improving the runtime performance of
HDL compilers.

3.3 Formal Methods
Programming languages have long enjoyed an abundance of elegant theories that form the
basis of useful formal methods. In the style of Grothendieck [42], researchers working on
foundational theories have created a sea of techniques for developing practical solutions to
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difficult problems. The recent development and proliferation of WebAssembly [26] demon-
strates the utility of designing a new language with formal specification in mind. Rather
than face the challenge of retrofitting formal methods to old language designs, researchers
in this new golden age of HDLs should leverage the opportunity to develop new languages
specifically designed for the application of advanced formal methods.

3.3.1 Execution Semantics
Formalizing the execution semantics of an HDL is essential requirement for the integration
with formal tools such as model checkers [14]. The major challenge is capturing the intrinsic
concurrency and parallelism in hardware. Process calculi [5], specifically with a notion of
time [6] present one approach. Real and discrete time could be used to describe the semantics
of analog and digital circuits respectively. One issue is the integration of real and discrete
time for the modeling of mixed-signal circuits. A similar issue is the modeling of synchronous
and asynchronous digital logic. Communicating sequential processes [31] are one technique
that have been applied to modeling of asynchronous circuits [62].

The existence of the circuit abstraction as an expressively complete primitive is reminiscent
of function abstraction from the domain of software languages. This raises the question as to
whether a core calculus can be constructed that captures the execution semantics of the circuit
abstraction in the same way that the lambda calculus [8] captures the semantics of function
abstraction. While function abstraction presents a compelling basis for the development
of this calculus, there are two key issues that must be addressed: circuits can hold state
and must have finite size. Contrast this with the basic definition of function abstraction
which can be used to describe infinite computation through recursion. A type system can
be used to enforce the finiteness of computation [49], which leaves the issue of managing
state. Section 2.3 discusses two techniques for encoding state in a functional HDL. One of
the key challenges with using these techniques is that it restricts the language to describing
synchronous circuits. An essential contribution to the community will be the development of
a state encoding mechanism that can capture both synchronous and asynchronous logic.

3.3.2 Type Systems
The fact that Verilog is the dominant HDL indicates that the hardware community has not
enjoyed the benefits of the latest advances in type systems. The consequences of this is
demonstrated by the fact that the ARM Advanced Peripheral Bus (APB) interface [41] uses
special prefixes in port names to indicate that they are part of the protocol. This requires
users to manage interface connections using name matching, which is considerably less safe
than what embedding this in the type system could offer.

One major issue is that the Verilog type system does not provide a concept of algebraic
data types. Introducing the concept of a finite size product type would enable the APB
interface specification to be defined as a tuple or record type rather than using a naming
convention. The use of a product type offers the same benefits to HDL designers as it does
to software developers. They are also an example of an abstraction without overhead [61]
because they can be compiled out of a design by flattening the types into their leaf elements.
Compare this to sum types which would require inserting extra logic into the generated design
to distinguish between variants. Despite this cost, sum types still provide the same useful
static guarantees as they do for software. They also provide a mechanism for abstracting away
the details of the control logic, which creates an opportunity for the compiler to synthesize
an optimized implementation.
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Another interesting avenue of research is the application of behavioral types [2], specifically
session types [33], to hardware interfaces. Hardware communication protocols exhibit many of
the same characteristics as the software protocols that session types have already been applied
to. The core problem will be weaving the session type semantics into HDL execution semantics.
Researchers interested in this problem should consider how the domain of hardware protocols
differ from more general software protocols, with the intention of finding opportunities to
make the problem simpler. One crucial aspect of hardware protocols is the use of magic
bit patterns to encode portions of the protocol. More generally, hardware protocols can
involve data-dependent communication. This reveals an opportunity for the application of
dependent type techniques to specify properties on the values of data moving through an
interface. While this is a generally difficult problem, restricting the domain to hardware
protocols might provide opportunities for practical applications of these ideas.

4 Vision: A Multi-Language System for Hardware Construction

A golden age of HDLs presents an opportunity to experiment with alternative HDL designs.
This section presents a vision for a multi-language system where a meta-programmed host
language is used to implement embedded DSLs for hardware construction. The multi-
language approach is directly inspired by Lua/Terra [17, 16, 18], a two-language system that
integrates a statically typed, low-level programming language with a dynamically typed,
high-level language. Much like software development, hardware design involves components
written in multiple languages. For example, a software model of a specific component could
be implemented in C and used by a test written in Verilog. Furthermore, the hardware
implementation of the module may be defined using Verilog generated by a Perl meta-program.

Rather than treat an HDL as a standalone language like Verilog, this vision adopts the
approach of embedding an HDL in a general purpose programming language. This vision
is based on a core structural embedded DSL that is used as a common compilation target
for a sea of DSLs each targeting various aspects of the hardware design process. Unifying
all aspects of the hardware design process into subsets of the same language reduces the
cognitive load on the hardware designer. They are only required to learn a single syntax and
integration via embedding enables DSLs to be composed without requiring glue code.

4.1 Meta-programmed Host Language
The vision of this multi-language system is based on a meta-programmed host language. The
extent to which it may be meta-programmed must enable the implementation of rich DSLs.
For example, Magma [27] uses Python’s metaclass features to embed a circuit abstraction, and
Silica [60] inspects the Python AST to compile coroutines to hardware finite-state machines.
The implementation of these DSLs require language support for meta-programming that
is much richer than simple preprocessing. A side-effect of this requirement is that the
meta-programming features of the host language will become meta-programming features for
the embedded DSLs.

A standard multi-stage programming approach is sufficient for supporting the flexible
code generation required for implementing hardware generators [51]. A hardware generator
is a program that consumes a set of parameters and produces an instance of a hardware
design [54]. Embedding an HDL in a meta-programmed host language enables hardware
generators to be implemented using standard meta-programming techniques. Applying the
technique of multi-stage programming to hardware generators is somewhat easier than in
the software domain because, in practice, the interaction between the meta-language and
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the HDL is one directional. Compare this to Lua/Terra where control can be transferred
between both languages. In hardware generators, meta-programs construct fragments of
HDL programs, but the generated HDL code does not typically invoke code in the host
language. In theory this might be possible given a reconfigurable hardware system, but in
practice this is limited by the slow performance of hardware compilers. Improving compiler
performance could enable the construction of JIT compiler systems for hardware, which
could then leverage two way interaction between generator code and generated hardware.

One key issue is whether the host language is statically or dynamically typed. The
major trade-off is between productivity and correctness. A statically typed host language
would provide increased safety, which could be viable for large, complex systems. However,
a dynamically typed language would promote rapid design space exploration and provide
the flexibility required for more complex hardware generators. For example, generators in
dynamically typed languages can employ dynamically constructed types. Another important
issue is the cognitive load placed on the user by the type system. Hardware designers are not
experts in software engineering and therefore stand to benefit greatly from a type system that
is simple and easy to understand. Furthermore, the correctness of the generated hardware
design is of greater importance than the correctness of the generators used to construct the
design fragments. These requirements suggest that a system based on a dynamically typed
host language such as Python composed with a statically typed embedded DSL presents
a compelling solution that balances productivity and correctness. A ubiquitous language
like Python has the added benefit that many hardware engineers are likely to have already
encountered it for scripting purposes. Compare this to a language like Scala; while it provides
many compelling language features for building DSLs, it is highly unlikely that a hardware
engineer has encountered the language in their schooling or professional work.

4.2 The Core Structural DSL
After the host language, the second essential ingredient of the vision is an embedded DSL
that provides a structural circuit abstraction. The definition of this core DSL should be
simple and precise because many of the complexities of a traditional HDL will be offloaded
to other DSLs or the host language. As discussed in Section 3.1.1, a circuit abstraction is
expressively complete, which means that this structural DSL can serve as a common compiler
target for all other languages in the system. This design enables the structural abstraction to
be used to compose modules defined in different DSLs. This is achieved by performing staged
execution where in the final stage, all program fragments have been compiled to the core
DSL. During this final phase of execution, the user defines a program to structurally compose
the various components. Magma [27] and Chisel [4] are concrete examples of embedded
structural languages that could serve this purpose. An important requirement is that this
core language be formally specified, which then provides a consistent basis for the formal
specification of other DSLs in the system.

4.3 A Sea of Hardware DSLs
The combination of a host language with an embedded core structural HDL serves as the
basis for the research and development of other DSLs to address the intellectual challenges
discussed in Section 3. For example, recent work has used Magma [27] and Python as the
basis for developing the Peak language [28] for specifying processing elements. Peak supports
compilation to Magma, which can then be composed with other components written in
other DSLs such as a Silica [60], a DSL for describing hardware finite-state machines using
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coroutines. A major theme in this design is separation of concerns through separation of
languages. That is, the description of different hardware components may benefit from being
described using a different set of abstractions. If this is the case, these components can be
implemented using different DSLs and composed through a well-defined structural interface.

The aforementioned DSLs address issues specific to the design of concrete hardware.
This vision includes another class of DSLs that target accelerating specific applications. For
example, a DSL based on Numpy [63] could be used to compile numerical computation
algorithms into hardware circuits. While these languages should be designed primarily to
provide application specific abstractions to the user, they should also be designed to interop-
erate with the core structural DSL. This would enable code written in application oriented
DSLs to be integrated with libraries that generate harnesses for application accelerators. In
this case, a library routine could instance the compiled version of the algorithm and wire it
up to other components using the core structural DSL.

4.4 Verification
Because the host language is a general purpose programming language, it provides the
necessary facilities for performing verification tasks. Underlying this will be a connection
between general purpose code in the host language and circuits defined in the core structural
DSL. Recent work on fault [59] has explored solutions to this by developing an embedded
DSL that allows users to interact with circuits through a set of actions. A key advantage of
this approach is that it enables verification components, such as random number generation,
to be implemented as libraries in the host language. Also, the tests can be meta-programmed
in the same fashion as the hardware, which reduces verification cost through more flexible
testing infrastructure. Compare this approach to SystemVerilog, where the core language for
describing hardware was extended with abstractions specifically for verification such as a class
system and string data type. Overtime, this has resulted in feature creep and complexity in
the SystemVerilog specification. This is another example of the vision’s fundamental design
pattern based on decoupling features that are not hardware specific from the HDL.

5 Conclusion

The PL community stands on the critical path to a new golden age of computer architecture.
Fortunately, there is an abundance of intellectual challenges that indicate that we are on
the cusp of a new golden age of HDLs. This paper develops a vision for a multi-language
system for hardware construction that will provide the productivity gains required to induce
this new golden age of computer architecture. This is an exciting time to be a researcher
interested in PL and hardware.
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Abstract
Programmers regularly use distributed version control systems (DVCS) such as Git to facilitate
collaborative software development. The primary purpose of a DVCS is to maintain integrity of
source code in the presence of concurrent, possibly conflicting edits from collaborators. In addition to
safely merging concurrent non-conflicting edits, a DVCS extensively tracks source code provenance
to help programmers contextualize and resolve conflicts. Provenance also facilitates debugging by
letting programmers see diffs between versions and quickly find those edits that introduced the
offending conflict (e.g., via git blame).

In this paper, we posit that analogous workflows to collaborative software development also arise
in distributed software execution; we argue that the characteristics that make a DVCS an ideal fit
for the former also make it an ideal fit for the latter. Building on this observation, we propose a
distributed programming model, called carmot that views distributed shared state as an entity
evolving in time, manifested as a sequence of persistent versions, and relies on an explicitly defined
merge semantics to reconcile concurrent conflicting versions. We show examples demonstrating how
carmot simplifies distributed programming, while also enabling novel workflows integral to modern
applications such as blockchains. We also describe a prototype implementation of carmot that we
use to evaluate its practicality.
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1 Introduction

Building distributed applications is hard. The crux of the problem is the management
of concurrent updates to distributed shared state that maintain user-level invariants and
properties. The problem is especially pronounced in the context of modern data-intensive
applications, which replicate large amounts of data across geographically diverse locations
to enable trust decentralization, guarantee low latency access to state, and provide high
availability even in the face of node and network failures. In general, these systems allow
each replica instance of a distributed application to concurrently accept updates to shared
data, which could potentially conflict with other updates, and consequently violate data
integrity. In addition, transient faults in the underlying network, such as network partitions,
message reorderings etc., can yield counter-intuitive anomalous executions that are hard
to predict and even harder to preempt [9, 25, 15]. While conventional concurrency control
criteria, such as linearizability and serializability, are designed to preclude such executions,
applications are reluctant to impose them given their prohibitive cost in a distributed
setting (an observation succinctly captured in the CAP theorem [12]). Instead, applications
mostly operate within the weak guarantees provided by an asynchronous state replication
model, occasionally resorting to stronger forms of concurrency control for “risky” operations,
using ad hoc and error-prone reasoning to distinguish between them. Another available
alternative is to restructure applications around a library of distributed data structures that
are carefully designed by experts and proven to be correct under an asynchronous distributed
setting1. Such re-engineering, however, may not always be feasible since applications often
use bespoke data structures to serve specific needs. Consequently, the cognitive overhead in
building distributed applications remains high, limiting program development to distributed
system experts.

It may therefore come as a surprise to note that programmers, as humans, are exposed to
the complex realities of distributed computing almost on a daily basis, and they seem to be
doing just fine. Almost all programmers these days use some form of a distributed version
control system (DVCS), such as Git or Mercurial, and when doing so, emulate the logic of a
distributed application consciously or otherwise. A DVCS lets a programmer safely merge
concurrent versions of source code created by her collaborators working independently and
concurrently, fork-off her own branch from any existing version to work in isolation, group
together multiple related changes as a single commit to be pushed to a remote, look at the
provenance information to understand how the code has evolved across multiple versions, and
track which collaborator is responsible for which piece of code. The overwhelming adoption
of DVCS as a paradigm for distributed and collaborative software development is indicative
of the utility of the model it supports. Much of its attractiveness stems from the intuitive
mental picture it offers the developer to reason about the integrity of source code as it evolves
in the face of concurrent modifications.

In this paper, we ask whether the benefits of DVCS can be transplanted to manage data
in addition to source code. In particular, we propose the thesis that building safe distributed
applications would be dramatically simpler if concurrent conflicting updates to application
state are explicitly recognized and resolved, rather than preempted. Supporting this thesis
requires addressing a number of challenging questions: (a) How can the provenance of data
be systematically exploited to automate the resolution of merge conflicts? (b) Would the

1 Analogous, for example, to carefully designed lock-free data structures in a concurrent programming
language [24, 13].
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module Counter : sig
type t
val zero: t
val add: int -> t -> t
val sub: int -> t -> t
val read: t -> int

end = struct
type t = int
let zero = 0
let add x v = v + x
let sub x v = v - x
let read v = v

end

(a) Counter data type in OCaml.

5

7 4

6

+2

-1

(b) Counter merge visualized.

Figure 1 The Counter example.

ability to fork-off a version of the state, and group together multiple changes to the state as a
single commit give useful transactional semantics? (c) Can we generate sufficiently high-level
provenance data to serve as a transaction ledger and satisfy the auditing requirements of
emerging applications such as those built on distributed blockchains ledgers? It is to explore
the answers to these questions that we conceived carmot- a distributed programming model
build around the same concepts as distributed version control systems.

At the core of carmot is the principle that any data structure that ascribes a well-defined
merge semantics to merge its concurrent versions becomes a distributed data structure. Our
experience with DVCS informs us that provenance information greatly helps in contextualizing
merges and resolving conflicts. True to that spirit, carmot allows a data structure to define
a merge semantics for its concurrent versions in the context of their lowest common ancestor
(LCA) version, resulting in a three-way merge. Thus, any ordinary data structure equipped
with a three-way merge function becomes eligible to be a distributed data structure. As
we describe in Sec. 2, the simplicity of this criterion lets us build bespoke distributed data
structures and develop applications around such data structures with a relative ease. We
subsequently demonstrate how carmot can build on the branch-and-merge model of DVCS
to define a transactional semantics with a well-defined isolation model at no additional cost.
Lastly, we show that extensive provenance tracking, similar to a DVCS, helps carmot
naturally express blockchain applications, which otherwise have to rely and specialized
shim layer, such as the Hyperledger Fabric [2]. However, all the aforementioned benefits
would amount to naught if carmot as a programming model cannot be realized in an
asynchronous distributed setting. In Sec. 3 we describe a prototype implementation of
carmot that sits atop Git that can actually run carmot distributed applications seamlessly
with low overheads.

2 An Overview of Programming with Version Controlled Data

2.1 Version Control-Inspired Replication
Fig. 1a shows a simple counter data type in OCaml that admits additions and subtractions.
Suppose Alice wants to use the counter in a distributed setting, meaning she wants to replicate
the counter state across various machines, allow the state to be updated concurrently on each
replica, and let the updates be propagated asynchronously to other (remote) replicas. One
way she could achieve this is by maintaining a log of operations performed at each replica,
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periodically flushing the log to other replicas either on demand or by default. A replica
receiving a remote operation has to apply it on the local state to keep it consistent with the
remote state. Operations may be received and applied at different replicas in different orders,
but since additions and subtractions commute, the resultant counter state would eventually
guaranteed to be the same on all the replicas. Indeed, this is how asynchronous replication
is often implemented in distributed applications [11, 23, 22, 16, 25].

An alternative take on replication would be one where Alice views the counter state as
data being managed by a version control system, and sees various replicas as her collaborators
creating concurrent versions of the counter state. In order to fetch her collaborators’ updates,
she would then be obligated to write a merge function that reconciles concurrent versions of
the counter in the context of their lowest common ancestor (LCA). An example merge scenario
is shown in Fig. 1b, where counter versions (with values) 7 and 4 have evolved concurrently
from the original version 5. Alice could observe that the concurrent versions represent an
addition of 2 and a subtraction of 1 on the ancestor state, and hence may choose to reconcile
them as a single operation performing an addition of 1 on 5, to compute the merged version
as 6. Alice’s merge logic could be generalized as the following merge function:

let merge lca v1 v2 =
lca + (v1 - lca) + (v2 - lca)

Indeed, such merge function is what carmot requires to promote a counter data type to the
status of a distributed data type.

The version control-inspired view of replication really stands out when Alice decides
to add a mult operation to multiply the value of the counter. Perhaps Alice wants to use
the counter to count the account balance in a banking application, and she needs mult to
compute the interest on the balance. She defines mult straightforwardly:

let mult x v = x * v

The mult operation serves Alice well as long as she uses her counters on a single machine.
In a distributed setting however, under the conventional model of replication, Alice may
see unexpected results as mult doesn’t commute with add and sub, thus yielding different
counter states on different machines. In other words, Alice’s counter implementation, which
is still correct in a single machine setting, is no longer correct in a distributed setting. She
is now forced to abandon her recent additions to Counter, and restructure her banking
application to express interest addition in different terms, perhaps using add to specify the
increase in balance. Version control-based replication on the other hand lets Alice continue
using her latest counter implementation (with mult) in a distributed setting as the counter’s
merge semantics already capture the effect of interest computation in terms of an increase
in balance.

2.2 Application-specific Bespoke Merges
We provide further motivation using a more colorful data type - a pixel. We might write a
pixel data type in OCaml as a triple with three fields (Fig. 2a), each standing for a red, blue
and green color components respectively (following the rgb coloring scheme). Pixel supports
a single operation - set_color that sets the color of the pixel to the given rgb values. A
get_color function returns the color triple of the pixel.

Alice originally defined the pixel data type to use in her drawing board application she
calls Canvas. She now wants to add collaborative drawing features to Canvas, and hence is
interested in replicating the state of a pixel. Following the conventional model of replication,
Alice sets up the pixel data type to asynchronously propagate set_color operations across
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module Pixel: sig
type t
val white: t
val set_color : (int*int*int) -> t -> t
val get_color : t -> (int*int*int)

end = struct
type t = {r:int; g:int; b:int}
let white= {r=255; g=255; b=255}
let set_color (x,y,z) _ = {r=x;g=y;b=z}
let get_color {r;g;b} = (r,g,b)

end

(a) A Pixel data type in OCaml.

5

7 4

6
(b) Pixel merge visualized.

Figure 2 The Pixel example.

let merge lca ({r=r1;g=g1;b=b1} as v1) ({r=r2;g=g2;b=b2} as v2) =
let mix (x,y) = min (x+y) 255 in
if lca = v1 then v2
else if lca = v2 then v1
else {r=mix(r1 ,r2); g=mix(g1 ,g2); b=mix(b1 ,b2)}

Figure 3 Pixel merge function.

replicas, but quickly discovers that this leads to diverging pixel states across replicas. For
instance, when Bob colors the pixel green on one replica, and Alice colors it red on a different
replica, each’s set_color operation may overwrite the other’s on the remote replica, leading
to diverging states. Unfortunately, unlike the previous example, Alice doesn’t know how to
redefine the set_color operation or restructure the Canvas application to solve the problem
of diverging states. Nor can she find an appropriate consistency model [9, 26] weaker than
linearizability that preempts such anomalous executions even if it comes at some expense.
Alice is therefore stuck.

With version control-based replication, however, Alice starts with the assumption that
her collaborators could create concurrent versions of the pixel state, and specifies the logic to
merge such versions under the context of their LCA version (Fig. 3). She could, for example,
reconcile the concurrent updates to the pixel color by using an additive color mixing scheme
to mix the colors (Fig. 2b). When there are no concurrent updates, i.e., when at least one of
the two versions is same as the ancestor version (thus causally preceding the other version),
the successor version trivially becomes the result of the merge.

2.3 Transactional Semantics
Because version control-based replication lets Alice promote her pixel type to a distributed
data type, she moves ahead with the development of her collaborative drawing app - Canvas.
She defines a canvas type as a two-dimensional composition of pixels:

type canvas = Pixel.t list list

Alice initially emulates free-hand drawing by coloring individual pixels via Pixel.set_color,
but soon realizes that it would be nice to have a few basic shapes, such as a circle or a
rectangle, that she could draw in a single stroke. The functionality requires several pixels
to be colored atomically and in isolation; atomically because Alice’s collaborators should
only see her draw a full circle or a rectangle rather than coloring an assortment of pixels,
and isolation because Alice would like to draw the circle completely before she deals with
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conflicting writes from her collaborators2. In other words, the application needs transactional
semantics. With version control-based replication , Alice gets that for free. An atomic action,
such as drawing a basic shape, can be performed on Alice’s local version of canvas as a series
of set_color operations on pixels making up the basic shape. Only the resulting canvas
version is committed and pushed to Alice’s collaborators, effectively enforcing the atomicity
of writes. Furthermore, Alice wouldn’t “pull” her collaborator’s updates while her basic
shape is in progress, thus guaranteeing the isolation of basic shape drawing operation.

2.4 Distributed Ledger
An important benefit of the carmot programming model is its inherent support for proven-
ance. Such support is critical in applications where some form of consensus is required. In
this applications, divergent states found on different replicas can be merged to a convergent
(consensus) value based on application semantics, A particularly noteworthy instance of such
applications is a distributed ledger.

As typically conceived, a distributed ledger is a safety-critical distributed data type
that requires every node to maintain an untamperable ledger of operations that were ever
performed on the shared state it represents. The ledger is colloquially called a blockchain
due to its organization in terms of a sequence of blocks, where each block refers to its
predecessor in the sequence. The untamperability of blocks is ensured by making the blocks
content-addressable, i.e., by making the address of the block depend on its contents (e.g.,
an address could be the block’s SHA1 hash as explained in the following section). Thus,
tampering with a block results in the construction of a new block with a different address that
does not belong to the chain, hence leaving the chain unchanged. Provenance information
available to programmers in a version control-based replication model allows us to build
untamperable distributed ledgers (blockchains) effortlessly, as we shall demonstrate through
an extensive example.

2.4.1 Blockchain Preliminaries
At a high level, a blockchain represents a distributed bank-like application involving multiple
peers, each maintaining a replica of a shared ledger of transactions. The ledger represents
some form of consensus among the peers about the set of valid transactions performed
thus far (since the beginning of time), and their relative order. Note that the distributed
ledger is the only source of truth in a blockchain application; all relevant information (e.g.,
the account balances (in a banking application) is computed by reading the contents of
the ledger. A transaction in a blockchain application transfers something of value between
anonymous users. The thing of value could be a Bitcoin, but we simply refer to it as money
in this discussion. If a transaction makes its way into the ledger, it is said to have been
confirmed, meaning that there is a consensus that the transaction is valid, i.e., it does not
engage in illegitimate behaviors, such as double spending available money. A transaction,
when submitted, is initially unconfirmed, and the application maintains a set of such yet-
unconfirmed transactions, which is also replicated across peers. Simply put, the task of a peer
is to pick a yet-unconfirmed transaction, validate it, and if it is deemed to be valid, confirm
it by adding to the distributed ledger. However, doing so in an uncontrolled fashion in a

2 Alice could, for example, define a merge function for canvas that removes or retains an entire basic shape
in case of a conflicting write. For pixels not part of a basic shape, she could default to the Pixel.merge
function.



G. Kaki, KC Sivaramakrishan, and S. Jagannathan 8:7

type txn = { timestamp : float;
sender : pub_key ;
receiver : pub_key ;
amount : int}

type block = {txns: txn set;
timestamp : float;
proof:int64}

type t = {txns: txn set;
chain: block list}

Figure 4 Blockchain type definitions in OCaml.

large system of peers (e.g., Bitcoin) leads to the divergence of the ledger state across replicas,
resulting in a disagreement among peers about the contents of the ledger, and the consequent
confirmation of invalid transactions. To prevent this, blockchain applications define a soft
consensus protocol that limits the rate at which transactions can be appended to the ledger,
and specifies how to resolve conflicts in case there are competing versions of the ledger.
Most public blockchains, such as Bitcoin and Ethereum, employ proof-of-work as the rate
limiting mechanism, where a peer has to solve a computationally hard problem to earn the
right to append to the ledger (and a financial reward for mining the solution). The solution
to this hard problem is also appended to the ledger to let other peers verify the solution.
Unlike computing proof-of-work, verification is expected to be easy, i.e., the computational
problem should ideally be NP-complete. In practice, various kinds of problems are used,
whose description is out of scope for this paper. The problem we choose for this example is
explained below. To ameliorate transaction confirmation latency, a peer which earns the right
to append to the ledger is allowed to append a block of transactions, confirming them all in a
single action. The new block links to the previous block, thus making the ledger a blockchain.

Note that proof-of-work is only a rate limiting mechanism; it makes concurrent appends
to the ledger unlikely, but not impossible. Occasionally, when two peers simultaneously
compute a proof-of-work, they both append their respective blocks to the ledger, resulting
in a fork. Peers aware of only one of the two forked versions continue to mine and append
blocks to their respective versions. At some point, if a peer becomes aware of two competing
versions, it chooses one version over the other based on a predefined set of heuristics. For
instance, if there are two competing chains of Bitcoin ledgers, then the longer chain is chosen
as it represents more work confirming large number of transactions than the shorter one.
The transactions of the shorter chain that do not belong to the longer chain are re-added to
the pool of unconfirmed transactions and need to be confirmed again by a mining peer3.

2.4.2 A Blockchain Application in OCaml
Having introduced a blockchain’s conceptual underpinnings, we now describe how we can
support its necessary functionality in a version control-based programming model. Fig. 4
shows the type definitions needed to build a simple blockchain application in OCaml. A
transaction is simply a record documenting the transfer of a given amount of money from
a sender to a receiver, both identified only by their public key. As mentioned earlier, a
blockchain ledger is a chain of blocks, where each block consists of a set of transactions being
confirmed, and a proof-of-work justifying the block’s presence in the chain. Application
state is defined via type t, which is a record containing a set txns of as-of-yet-unconfirmed
transactions, and a list of blocks named chain, which is the blockchain.

3 It is thus possible for a confirmed transaction to become unconfirmed again. Bitcoin therefore defines
number of confirmations of a transaction based on how many blocks deep the transaction is inside the
ledger. The greater the number of confirmations, the deeper the transaction sits inside the ledger, and
the less likely it is to become unconfirmed again.
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let mine_block my_key t =
let valid_txns =

filter_valid_txns t.txns in
let last_block = hd t.chain in
let last_proof =

last_block .proof in
let proof = proof_of_work

last_proof in
let ts = gettimeofday () in
let reward_txn =

{ timestamp =ts;
sender = genesis_key ;
receiver = my_key ;
amount =25;} in

let block =
{txns=Set.add reward_txn

valid_txns ;
timestamp =ts;
proof=proof} in

let txns ’ = Set.diff t.txns
valid_txns in

let chain ’ = block ::t.chain in
{txns=txns ’; chain=chain ’}

let valid_txn chain txn = ...

let filter_valid_txns =
Set. filter

( valid_txn t.chain)

let valid_proof last_proof proof =
let str1 = Int64. to_string

last_proof in
let str2 = Int64. to_string

proof in
let str = str1^str2 in
let hex = SHA1. to_hex @@

SHA1. digest_string str in
String .sub hex 0 3 = "000"

let proof_of_work last_proof =
let rec loop_iter i =

if i >= Int64. max_int
then failwith "No proof!"
else

if valid_proof last_proof i
then i
else loop_iter (i + 1) in

loop_iter 0

Figure 5 mine_block - a function that creates a new block, mines a proof-of-work, and adds it
to the chain. Other relevant functions are also shown.

Operations can be defined that map one application state to another. The new_txn
operation, for instance, creates a new transaction with the given user keys and the amount,
and adds it to the pool of unconfirmed transactions. Its type is as shown below:

val new_txn : pub_key -> pub_key -> int -> t -> t

The second, and most important operation, is mine_block that composes a new block
using the available pool of unconfirmed transactions, mines a proof-of-work, and adds the
block to the chain. Fig. 5 shows the (abridged) code. The function first filters the set of
valid transactions from the available pool of unconfirmed transactions using the function
filter_valid_txns (shown on the right), which in turn uses valid_txn predicate of type
shown below (definition elided in Fig. 5):

val valid_txn : block list -> txn -> bool

Given a blockchain ledger and a transaction, the function returns true if and only if the
transaction is legitimate under the ledger, i.e., if and only if the account balance of the
sender, computed from the ledger, is enough to carry out the transaction. Once the set of
valid transactions is computed, mine_block proceeds to confirm them by computing the
proof-of-work necessary to create a new block. In this example, we define proof-of-work as a
solution to pi+1 in the following equation, where pi denotes the proof-of-work of the previous
block (last_block.proof in Fig. 5), and · denotes the (string) concatenation operation:

sha1(pi · pi+1) < 2148

The function valid_proof implements the above check in a slightly different form, given
a pi+1 (proof) and pi (last_proof). Instead of checking if the hash is less than 2148, it
checks if the leading 3 hex digits of the 40-digit SHA1 hash are zero. Given that it is in
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let merge old v1 v2 =
let oldc = old.chain in
let v1c = v1.chain in
let v2c = v2.chain in
let x = valid_extension

oldc v1c in
let y = valid_extension

oldc v2c in
match x,y with
| None , Some new2 -> v2
| Some _, None -> v1
| Some _, Some _

when v1=v2 -> v1
| Some _, Some new2

when len v1c > len v2c ->
add (union new2 v2.txns) ~to:v1

| Some new1 , Some _
when len v1c < len v2c ->
add (union new1 v1.txns) ~to:v2

| Some new1 , Some new2 ->
let add_prf a b = a+b.proof in
let prf_sum1 =

fold_left add_prf 0 new1 in
let prf_sum2 =

fold_left add_prf 0 new2 in
if prf_sum1 > prf_sum2
then add (union new2 v2.txns)

~to:v1
else add (union new1 v1.txns)

~to:v1
| None , None -> error ()

let valid_extension oldc newc =
try

let newbs = get_prefix newc
~ suffix :oldc in

let _ = fold_right
(fun b chain ->

if valid_block chain b
then b:: chain
else raise Invalid_arg )

newbs oldc in
Some newbs

with Invalid_arg _ -> None

let rec get_prefix v ~ suffix :s =
match v with
| v when v = s -> []
| x::xs when xs = s -> [x]
| x::xs -> x::( get_prefix xs s)
| [] -> raise ( Invalid_arg )

let add (txns:txn set) ~to:t =
Set.fold

(fun txn t’ ->
let chn = t’. chain
if confirmed_txn chn txn
then t’
else {t’ with txns=

Set.add txn t’. txns })
txns t

let confirmed_txn chain txn = ...

Figure 6 merge function for a blockchain. Other relevant functions also shown.

general impossible to invert a SHA1 hash in polynomial time, we solve the above equation by
painstakingly iterating through all possible values of pi+1, which in this case is every 64-bit
integer, until we find the solution. The corresponding logic is implemented by the function
proof_of_work.

Once the proof-of-work is computed, mine_block has everything it needs to compose a
new block and add it to the chain. To incentivize mining, blockchain protocols allow mining
peers to add a special transaction rewarding themselves a fixed pre-determined value. The
reward_txn in Fig. 5 denotes such a transaction, which uses a special “genesis user” as the
source of such rewards. The transaction is added to the set of valid transactions, following
which the new block is composed and added to the chain. The transactions that could not
be validated (txns’) are left in the pool of unconfirmed transactions.

Beyond new_txn and mine_block, a third init operation need also be defined to initialize
the blockchain with a special “genesis block” that bootstraps the ledger with initial money
(subsequent to genesis, the only way to add money to the system is through mining rewards).
We elide discussion of init to focus on other aspects relevant to this paper.

2.4.3 Merge function
Blockchain applications are, by definition, distributed with the state of the ledger replicated
across all the participating peers. To make our blockchain application distributed under a
version control-based replication model, we provide a three-way merge function that merges
the competing versions of blockchains given their provenance information in form of their
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lowest common ancestor (LCA) version. Fig. 6 shows the merge function. The merge strategy
is based on the heuristic employed in Bitcoin to pick the longest valid chain among the
competing chains. The merge function first checks that the two competing chains are indeed
valid chains through the function valid_extension. The function ensures that the old chain
(the LCA) is a suffix of the competing chain newc, and that each block in the newly added
prefix is valid. Validity of a block is checked through the predicate valid_block (not shown),
which in turn checks the valid_txn predicate for each transaction in the block. The valid
prefix is then returned. If the chain newc is not a valid extension of the LCA, then None is
returned. Note that valid_prefix uses the get_prefix function on lists (definition shown),
which compares the lists for structural equality (e.g., v = s). While determining structural
equality is in general expensive, it can be resolved in constant time for versions obtained
through carmot; we elaborate on this point in Sec. 3.

A notable aspect of valid_extension is that it uses provenance information available as
the LCA version to determine if the chain has been tampered with. If the new version has
tampered with the chain, for example, by sliding a new transaction in to an older block, then
the LCA version oldc is no longer the suffix of the new version, leading valid_extension
to return None.

In the merge function, if valid_extension returns None for one of the two chains, then
the other (valid) chain is returned as the result of the merge. If both chains are valid but
are not equal, then the longer one is picked. In such case, the transactions newly confirmed
in the shorted chain are no longer considered confirmed, and need to be re-added to the
unconfirmed pool (along with the transactions in the unconfirmed pool accompanying the
shorter chain). This is done via the add function (shown) that adds the new transactions
from the shorter chain and the corresponding unconfirmed pool, that are not confirmed by
the longer chain, to the unconfirmed pool accompanying the longer chain. The predicate
confirmed_txn (definition elided) returns true if and only if the transaction txn is listed
in the chain chain. If both the competing chains are of equal length, then merge picks the
chain whose extension w.r.t oldc was “harder” to compute, where hardness is assumed to be
proportional to the value of the proof. Finally, if both chains are invalid, then merge throws
an error, but this case never occurs in practice as one the two chains is a local chain which is
guaranteed to be valid by mine_block.

We have thus far presented various examples of how version control-based replication lets
one build non-trivial distributed applications by defining merge semantics in the convenient
form of a three-way merge function. To make such applications operational, however, we
need a programming interface that lets developers take advantage of the version control
model to define and compose distributed computations around applications. carmot is such
a programming model, whose details are presented in the next section.

3 Realizing The CARMOT Programming Model

We have realized the carmot programming model on top a basic Git programming abstraction
in OCaml [21]. In the following, we discuss the salient aspects of carmot’s implementation,
describe the API it exposes, and demonstrate how one can use carmot to orchestrate
complex distributed computations.

3.1 Content Addressability & Sharing
One of the key aspects of carmot is its reliance on a content-addressable file system/memory
to store arbitrary objects. We call it the carmot store. Like any other store, carmot lets
one write an object, or a collection of linked objects to the store. However, unlike other stores,
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Figure 7 Linked data structures composed of content-addressable objects.

the address of an object in carmot store is its own SHA1 hash, which means mutating the
object results in a new (version of) object being written to the store at a different address.
This property lets carmot store multiple versions of linked data structures succinctly by
sharing common objects, while simultaneously highlighting the diff between such versions.
Fig. 7 illustrates.

Fig. 7a shows a linked list structure laid out on a content-addressable store. Each node is
an object that stores some data and a link to the next object in the list, which is simply the
latter’s hash. For instance, a list object (call it A) could like the following:

{data = 24;
next = "2 aae6c35c94fcfb415dbe95f408b9ce91ee846ed "}

The value “2aa. . .6ed” is the SHA1 hash of the next object (call it B) in the list. If, for
some reason, B’s data is mutated, its hash value changes, making it necessary to update
A’s next field, which changing A’s hash, and the update cascades. This scenario is depicted
in Fig. 7a, where updating the i’th node in the list effectively creates a new version of the
list with new objects for nodes 1 through i. The two versions of the list however share the
common suffix containing nodes i + 1 through n. The diff and sharing between the two
versions is thus clearly highlighted in this representation. Fig. 7b describes similar scenario
for a tree structure, where inserting an element creates a new version of the tree that only
slightly differs from the previous version in the store (The diff is highlighted). Such succinct
representation of diff, and its easy computation, lets carmot efficiently support replicated
data structures over a network. Moreover, content addressability lets carmot support
constant-time structural equality checks by simply comparing hashes instead of iterating
through data structures.

Readers familiar with functional programming may find Fig. 7 reminiscent of the persist-
ence and sharing aspects of functional data structures. Indeed, hash-linked data structures
(as described above) and functional data structures are similar in that respect. However, one
notable difference is that the sharing in hash-linked data structures is based on the primitive
notion of common content, rather than data dependence, or other similar programmatic
notions. Thus, one could create OCaml lists [3;2;1] and [4;2;1] independent of one
another, whereas they share nothing on the OCaml heap, they nonetheless share the objects
corresponding to the common suffix [2;1] on a content-addressable store. This property is
crucially relied on by carmot to support distributed applications composed of high-level
(OCaml) data structures, as described below.

3.2 The CARMOT API
carmot hides the full complexity of a version control system behind a monadic abstraction
called a Versioned State (VST), and exposes just the right level of detail for programmers
to reap the benefits of version control-based replication. The API comprising the carmot
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module type VST = sig
type (’a, ’b) t
val return : ’b -> (’a, ’b) t
val bind : (’a, ’b) t -> (’b -> (’a, ’c) t) -> (’a, ’c) t
val get_current_version : unit -> (’a, ’a) t
val with_init_version_do : ’a -> (’a, ’b) t -> ’b
val with_forked_version_do : string -> (’a,’b) t -> ’b
val fork_version : ( string -> (’a,’b) t) -> (’a, string ) t
val sync_next_version : ’a -> string list -> (’a, ’a) t

end

Figure 8 The carmot API.

programming model is shown in Fig. 8. The VST monad couches a versioned state of type
’a. For instance, ’a can be a Counter.t, a Pixel.t, or even a composite data type such
as Counter.t list. The representation of these types in the underlying carmot store is
as described in the previous section, and not exposed by the VST interface. Instead the
interface orchestrates computations around the versioned state, translating between the
high-level and low-level representations as needed. Computations on the monad read the
latest version, commit a new version, or pull and merge concurrent versions. The type
(’a, ’b) t represents a monadic computation on the version state ’a that returns a result
of type ’b. Operation get_current_version returns the high-level representation of the
latest version of the state behind the monad. A programmer can initiate a computation
against an explicitly provided initial version of the state using with_init_version_do API.
Alternatively, computation can be run against an initial version forked from a remote using
with_forked_version_do API. The string argument to the API is the URL of the remote.
To fork off a new version of the state and run a (local) concurrent computation against
it, VST provides the fork_version API. The argument to the function is the computation
to run concurrently. The computation can expect the URL of the parent to be given as
a string argument. The return value of fork_version is also a URL string that identifies
the fork in the same terms as a remote. The underlying thread library is LWT [27]. Lastly,
sync_next_version API (simply called sync) does two things. First, it commits the given
’a argument as the new local version. Next, it pulls the latest versions from the given list of
remotes (string list), and successively merges them to the latest local version, creating a
later version each time. The latest version at the end of the merge sequence is returned. Note
that if some of the remotes are unreachable during the operation, they are merely skipped.
Consequently, sync is only guaranteed to sync with a subset of replicas. Functions return
and bind are the usual monadic glue. Following the convention, we use the infix operator
�= to denote bind.

3.3 CARMOT Examples
To understand how the carmot API helps orchestrate distributed computations, let us
reconsider the Canvas drawing application from the earlier section. Say Alice finished building
Canvas, and would now like to use it to collaborate with her friends Bob and Cheryl. She
could do that conveniently via the carmot API. A sample drawing session between the
three collaborators is shown in Fig. 10 A possible execution of the session is visualized in
Fig. 9. Assume that Alice starts her session on a 5 × 5 blank canvas, as shown below:

with_init_version_do ( Canvas . new_blank 5 5) alice_f
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t
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C0'
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C1'
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Figure 9 Collaborative drawing session visualized.

Bob and Cheryl, on the other hand, start their sessions with a version forked from Alice’s
initial version as shown below (Bob’s shown; Cheryl’s is similar):

with_forked_version_do "alice" bob_f

Assume Canvas.new_blank returns a blank canvas of a given dimension, and the function
Canvas.draw_line draws a line between the given pair of points (and returns the new
canvas). Alice starts by reading the current version of the canvas, which is blank. Alice
draws a red horizontal line from (0, 0) (top-left) to (4, 0) (top-right) using Canvas.draw_line.
Meanwhile, Bob draws a green vertical line from (0, 0) to (0, 4), and Cheryl draws a similar
line from (4, 0) to (4, 4). All three of them call sync to commit their latest versions (C ′

0).
While any partial ordering of concurrent syncs is valid, we consider a linear order where
Cheryl’s sync happens first, followed by Bob’s and then Alice’s. Cheryl’s sync does not
find any concurrent versions, hence installs the proposed version (C ′

0) as the next version at
Cheryl’s end. Bob’s sync finds Cheryl’s C ′

0 as a concurrent version, and merges it with its
proposal to produce the next version C1. Next, Alice’s sync finds Cheryl’s C ′

0 and Bob’s C1
as concurrent versions, and merges them successively with Alice’s latest version creating new
versions V1 and C1. The latest version C1 is returned. Next, Alice draws a red horizontal
line from (0, 4) to (4, 4), and commits the version C ′

1 via sync. Since there are no concurrent
versions, C ′

1 becomes the latest version on Alice’s end. The subsequent sync operations from
Bob and Cheryl simply install Alice’s C ′

1 as the latest version.
Computations at Blockchain peers can be similarly defined using the carmot API. The

peer that initiates the blockchain with a genesis block (using the init function of blockchain)
also starts the computation using carmot’s with_init_version_do (let init_user_url
stand for the initializing peer’s public key):

with_init_version_do
{txns=Set.empty; chain=init init_user_pkey }
( peer_f init_user_pkey )

Other peers start their computations by forking off the init user (let peer_key denote the
peer’s public key):

with_forked_version_do init_user_url ( peer_f peer_key )

SNAPL 2019
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let alice_f : ( Canvas .t,unit) VST.t =
get_current_version () >>= fun c0 ->
let c0 ’ = Canvas . draw_line c0

{x=0;y=0} {x=4;y=0} in
sync_next_version c0 ’

["bob"; " cheryl "] >>= fun c1 ->
let c1 ’ = Canvas . draw_line c1

{x=0;y=4} {x=4;y=4} in
sync_next_version c1 ’

["bob"; " cheryl "] >>= fun c2 ->
return ()

let bob_f : ( Canvas .t,unit) VST.t =
get_current_version () >>= fun c0 ->
let c0 ’ = Canvas . draw_line c0

{x=0;y=0} {x=0;y=4} in
sync_next_version c0 ’

["alice"; " cheryl "] >>= fun c1 ->
sync_next_version c1

["alice"; " cheryl "] >>= fun c2 ->
return ()

let cheryl_f : ( Canvas .t,unit) VST.t =
get_current_version () >>= fun c0 ->
let c0 ’ = Canvas . draw_line c0

{x=4;y=0} {x=4;y=0} in
sync_next_version c0 ’

["alice"; "bob"] >>= fun c1 ->
sync_next_version c1

["alice"; "bob"] >>= fun c2 ->
return ()

Figure 10 A collaborative drawing session between Alice, Bob, and Cheryl via the Canvas app.

Once initiated, the computation that runs on each peer is the same, and is defined by the
peer_f function. Each peer runs in an eternal loop, concurrently serving new transactions
and mining blocks, and periodically synchronizing with other (available) peers. operation.
A illustrative definition of peer_f is shown in Fig. 11. The peer initially forks two threads
- one for mining new blocks (miner_f) and other to serve incoming transaction requests
(server_f). Next, it enters a loop where it first synchronizes with the local miner and
server threads, and then synchronizes with other peers in the blockchain network, thereby
acting as a mediator between its miner and server, and also between the local threads and
remote peers. The loop repeats every 5ms. The lift_lwt API, which was not listed in
Fig. 8, is a helper function that lets an LWT computation [27] be treated as a carmot
computation. The mining thread (miner_f) repeatedly mines a new block and synchronizes
with the parent. Similarly, the server thread (server_f) repeatedly reads a new transaction
request (blocking until one is available), creates and adds a new transaction to the pool of
unconfirmed transactions, and subsequently synchronizes with the parent. This computation
is repeated on every peer, and all such peers together makeup the blockchain network.

4 Related Work

Our idea of versioning state bears resemblance to Concurrent Revisions [7], a programming
abstraction that provides deterministic concurrent execution. The idea of using revisions as a
means to programming eventually consistent distributed systems was further developed in [8].
The carmot programming model, however, differs from a concurrent revisions model because
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let rec miner_f peer_key parent_url =
get_current_version () >>= fun t ->
let t’ = mine_block peer_key t in
sync_next_version t’ [ parent_url ] >>= fun _ ->
miner_f peer_key parent_url

let rec server_f parent_url =
get_current_version () >>= fun t ->
get_txn_request () >>= fun req ->
let t’ = new_txn req.s_key req.r_key req.amt t in
sync_next_version t’ [ parent_url ] >>= fun _ ->
server_f parent_url

let peer_f peer_key =
fork_version ( miner_f peer_key ) >>= fun miner_url ->
fork_version server_f >>= fun server_url ->
let rec loop () =

get_current_version () -> fun t ->
sync_next_version t [ miner_url ; server_url ] -> fun t’ ->
sync_next_version t’ peer_urls
lift_lwt ( Lwt_unix .sleep 0.005) >>= fun _ ->
loop () in

loop ()

Figure 11 Computation at a blockchain peer expressed using carmot API.

it imposes no distinction between servers, machines that hold global state, and clients, devices
that operate on local, potentially stale, data. Any computation executing in a distributed
environment is free to fork new versions, and synchronize against other replicated state, i.e.,
the operation is fully decentralized, which lets carmot express unconventional applications
such as Blockchains. Just as significantly, carmot allows applications to customize join
semantics with programmable merge operations. Indeed, the integration of a version-based
mechanism within OCaml allows a degree of type safety, composability, and profitable use of
polymorphism not available in related systems.

[10] also presents an operational model of a replicated data store that is based on the
abstract system model presented in [9]; their design is similar to the model described
in [25]. In both approaches, coordination among replicas involves transmitting operations
on replicated objects that are performed locally on each replica. In contrast, carmot
allows programmers to use familiar state-based and functional abstractions when developing
distributed applications.

Modern distributed systems are often equipped with only parsimonious data models (e.g.,
key-value model) and poorly understood low-level consistency guarantees that complicate
program reasoning, and make it hard to enforce application integrity. Some authors [4] have
demonstrated that it is possible to bolt on high-level consistency guarantees (e.g., causal
consistency) [20, 6] as a shim layer service over existing stores without losing availability.
Version control-based replication model in carmot is causally consistent by construction,
and does not require any additional reasoning about consistency on behalf of programmers.

A number of verification techniques, programming abstractions, and tools have been
proposed to reason about program behavior in a geo-replicated weakly consistent environment.
These techniques treat replicated storage as a black box with a fixed pre-defined consistency
model [3, 1, 14, 18, 19, 5]. On the other hand, compositional proof techniques and mechanized
verification frameworks have been developed to rigorously reason about various components
of a distributed data store [28, 17]. carmot seeks to provide a rich high-level programming
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model, built on rigorous foundations, that can facilitate program reasoning and verification.
An important by-product of the programming model is that it does not require algorithmic
restructuring to transplant a sequential or concurrent program to a distributed, replicated
setting; the only additional burden imposed on the developer is the need to provide a merge
operator, a function that can be often easily written for many common data types.

carmot shares some resemblance to conflict-free replicated data types (CRDT) [24].
CRDTs define abstract data types such as counters, sets, etc., with commutative operations
such that the state of the data type always converges. Unlike CRDTs, the operations on data
types in carmot need not commute and the reconciliation protocol is defined by user-defined
merge functions. carmot uses 3-way merges using the lowest common ancestor, which is
critical for all of our user-defined merges. However, CRDTs do not have the benefit of lowest
common ancestor for merges and are only presented with the two concurrent versions. If a
3-way merge is desired, then the causal history has to be explicitly encoded in the data type.
As a result, constructing even simple data types like counters are more complicated using
CRDTs [24] compared to their implementation in carmot.

carmot uses 3-way merges using the lowest common ancestor, which is critical for all of
our user-defined merges. However, CRDTs do not have the benefit of lowest common ancestor
for merges and are only presented with the two concurrent versions. If a 3-way merge is
desired, then the causal history has to be explicitly encoded in the data type. As a result,
constructing even simple data types like counters are more complicated using CRDTs [24]
compared to their implementation in carmot. CRDTs also tend to be implemented directly
over the network protocols. Hence, low-level concerns such as duplicate delivery, lost messages,
message reordering are explicitly handled in the data type definition. Such low-level details
are abstracted away by carmot, which relies on the version control backend to implement a
high-level branch-consistent distributed store that handles fault tolerance and network errors
behind the screens.

References
1 Peter Alvaro, Neil Conway, Joe Hellerstein, and William R. Marczak. Consistency Analysis

in Bloom: a CALM and Collected Approach. In CIDR 2011, Fifth Biennial Conference
on Innovative Data Systems Research, Asilomar, CA, USA, January 9-12, 2011, Online
Proceedings, pages 249–260, 2011.

2 Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,
Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith
Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić, Sharon Weed Cocco,
and Jason Yellick. Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains. In Proceedings of the Thirteenth EuroSys Conference, EuroSys ’18, pages 30:1–
30:15, New York, NY, USA, 2018. ACM. doi:10.1145/3190508.3190538.

3 Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, and Ion
Stoica. Coordination Avoidance in Database Systems. Proc. VLDB Endow., 8(3):185–196,
November 2014. doi:10.14778/2735508.2735509.

4 Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Bolt-on Causal Consistency.
In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’13, pages 761–772, New York, NY, USA, 2013. ACM. doi:10.1145/2463676.
2465279.

5 Valter Balegas, Nuno Preguiça, Rodrigo Rodrigues, Sérgio Duarte, Carla Ferreira,
Mahsa Najafzadeh, and Marc Shapiro. Putting the Consistency back into Eventual
Consistency. In Proceedings of the Tenth European Conference on Computer System,
EuroSys ’15, Bordeaux, France, 2015. URL: http://lip6.fr/Marc.Shapiro/papers/
putting-consistency-back-EuroSys-2015.pdf.

http://dx.doi.org/10.1145/3190508.3190538
http://dx.doi.org/10.14778/2735508.2735509
http://dx.doi.org/10.1145/2463676.2465279
http://dx.doi.org/10.1145/2463676.2465279
http://lip6.fr/Marc.Shapiro/papers/putting-consistency-back-EuroSys-2015.pdf
http://lip6.fr/Marc.Shapiro/papers/putting-consistency-back-EuroSys-2015.pdf


G. Kaki, KC Sivaramakrishan, and S. Jagannathan 8:17

6 Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza. On Verifying
Causal Consistency. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL 2017, pages 626–638, New York, NY, USA, 2017. ACM.
doi:10.1145/3009837.3009888.

7 Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. Concurrent Programming with
Revisions and Isolation Types. In Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA ’10, pages 691–707,
New York, NY, USA, 2010. ACM. doi:10.1145/1869459.1869515.

8 Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Benjamin P. Wood. Cloud
Types for Eventual Consistency. In Proceedings of the 26th European Conference on Object-
Oriented Programming, ECOOP’12, pages 283–307, Berlin, Heidelberg, 2012. Springer-Verlag.
doi:10.1007/978-3-642-31057-7_14.

9 Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. Replicated Data
Types: Specification, Verification, Optimality. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, pages 271–284,
New York, NY, USA, 2014. ACM. doi:10.1145/2535838.2535848.

10 Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich. Global
Sequence Protocol: A Robust Abstraction for Replicated Shared State. In Proceedings of
the 29th European Conference on Object-Oriented Programming, ECOOP ’15, Prague, Czech
Republic, 2015. URL: http://research.microsoft.com/pubs/240462/gsp-tr-2015-2.pdf.

11 Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels.
Dynamo: Amazon’s Highly Available Key-value Store. In Proceedings of Twenty-first ACM
SIGOPS Symposium on Operating Systems Principles, SOSP ’07, pages 205–220, New York,
NY, USA, 2007. ACM. doi:10.1145/1294261.1294281.

12 Seth Gilbert and Nancy Lynch. Brewer’s Conjecture and the Feasibility of Consistent,
Available, Partition-tolerant Web Services. SIGACT News, 33(2):51–59, June 2002. doi:
10.1145/564585.564601.

13 Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and Alastair R. Beresford.
Verifying Strong Eventual Consistency in Distributed Systems. Proc. ACM Program. Lang.,
1(OOPSLA):109:1–109:28, October 2017. doi:10.1145/3133933.

14 Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro.
’Cause I’m Strong Enough: Reasoning About Consistency Choices in Distributed Systems.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, pages 371–384, New York, NY, USA, 2016. ACM.
doi:10.1145/2837614.2837625.

15 Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan. Safe
Replication Through Bounded Concurrency Verification. Proc. ACM Program. Lang.,
2(OOPSLA):164:1–164:27, October 2018. doi:10.1145/3276534.

16 Martin Kleppmann and Alastair R. Beresford. A Conflict-Free Replicated JSON Datatype.
IEEE Transactions on Parallel and Distributed Systems, PP, August 2016. doi:10.1109/TPDS.
2017.2697382.

17 Mohsen Lesani, Christian J. Bell, and Adam Chlipala. Chapar: Certified Causally Consistent
Distributed Key-value Stores. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’16, pages 357–370, New York,
NY, USA, 2016. ACM. doi:10.1145/2837614.2837622.

18 Cheng Li, João Leitão, Allen Clement, Nuno Preguiça, Rodrigo Rodrigues, and Viktor
Vafeiadis. Automating the Choice of Consistency Levels in Replicated Systems. In Proceedings
of the 2014 USENIX Conference on USENIX Annual Technical Conference, USENIX ATC’14,
pages 281–292, Berkeley, CA, USA, 2014. USENIX Association. URL: http://dl.acm.org/
citation.cfm?id=2643634.2643664.

SNAPL 2019

http://dx.doi.org/10.1145/3009837.3009888
http://dx.doi.org/10.1145/1869459.1869515
http://dx.doi.org/10.1007/978-3-642-31057-7_14
http://dx.doi.org/10.1145/2535838.2535848
http://research.microsoft.com/pubs/240462/gsp-tr-2015-2.pdf
http://dx.doi.org/10.1145/1294261.1294281
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1145/3133933
http://dx.doi.org/10.1145/2837614.2837625
http://dx.doi.org/10.1145/3276534
http://dx.doi.org/10.1109/TPDS.2017.2697382
http://dx.doi.org/10.1109/TPDS.2017.2697382
http://dx.doi.org/10.1145/2837614.2837622
http://dl.acm.org/citation.cfm?id=2643634.2643664
http://dl.acm.org/citation.cfm?id=2643634.2643664


8:18 Version Control Is for Your Data Too

19 Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Rodrigo
Rodrigues. Making Geo-replicated Systems Fast As Possible, Consistent when Necessary. In
Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation,
OSDI’12, pages 265–278, Berkeley, CA, USA, 2012. USENIX Association. URL: http:
//dl.acm.org/citation.cfm?id=2387880.2387906.

20 Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t Settle
for Eventual: Scalable Causal Consistency for Wide-area Storage with COPS. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, pages
401–416, New York, NY, USA, 2011. ACM. doi:10.1145/2043556.2043593.

21 2019. OCaml Git Library. URL: https://opam.ocaml.org/packages/git.
22 Nuno Preguica, Joan Manuel Marques, Marc Shapiro, and Mihai Letia. A Commutative

Replicated Data Type for Cooperative Editing. In Proceedings of the 2009 29th IEEE
International Conference on Distributed Computing Systems, ICDCS ’09, pages 395–403,
Washington, DC, USA, 2009. IEEE Computer Society. doi:10.1109/ICDCS.2009.20.

23 2019. CRDTs in Riak. URL: https://docs.basho.com/riak/kv/2.0.1/learn/concepts/
crdts/.

24 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-Free Replicated
Data Types. In Xavier Défago, Franck Petit, and Vincent Villain, editors, Stabilization, Safety,
and Security of Distributed Systems, volume 6976 of Lecture Notes in Computer Science, pages
386–400. Springer Berlin Heidelberg, 2011. doi:10.1007/978-3-642-24550-3_29.

25 KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. Declarative Programming
over Eventually Consistent Data Stores. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2015, pages 413–424, New York,
NY, USA, 2015. ACM. doi:10.1145/2737924.2737981.

26 Paolo Viotti and Marko Vukolic. Consistency in Non-Transactional Distributed Storage
Systems. CoRR, abs/1512.00168, 2015. arXiv:1512.00168.

27 Jérôme Vouillon. Lwt: A Cooperative Thread Library. In Proceedings of the 2008 ACM
SIGPLAN Workshop on ML, ML ’08, pages 3–12, New York, NY, USA, 2008. ACM. doi:
10.1145/1411304.1411307.

28 James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D.
Ernst, and Thomas Anderson. Verdi: A Framework for Implementing and Formally Verifying
Distributed Systems. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’15, pages 357–368, New York, NY, USA, 2015.
ACM. doi:10.1145/2737924.2737958.

http://dl.acm.org/citation.cfm?id=2387880.2387906
http://dl.acm.org/citation.cfm?id=2387880.2387906
http://dx.doi.org/10.1145/2043556.2043593
https://opam.ocaml.org/packages/git
http://dx.doi.org/10.1109/ICDCS.2009.20
https://docs.basho.com/riak/kv/2.0.1/learn/concepts/crdts/
https://docs.basho.com/riak/kv/2.0.1/learn/concepts/crdts/
http://dx.doi.org/10.1007/978-3-642-24550-3_29
http://dx.doi.org/10.1145/2737924.2737981
http://arxiv.org/abs/1512.00168
http://dx.doi.org/10.1145/1411304.1411307
http://dx.doi.org/10.1145/1411304.1411307
http://dx.doi.org/10.1145/2737924.2737958


The Next 700 Semantics: A Research Challenge
Shriram Krishnamurthi
Brown University, Providence, RI, USA
sk@cs.brown.edu

Benjamin S. Lerner
Northeastern University, Boston, MA, USA
blerner@ccs.neu.edu

Liam Elberty
Unaffiliated

Abstract
Modern systems consist of large numbers of languages, frameworks, libraries, APIs, and more.
Each has characteristic behavior and data. Capturing these in semantics is valuable not only for
understanding them but also essential for formal treatment (such as proofs). Unfortunately, most of
these systems are defined primarily through implementations, which means the semantics needs to
be learned. We describe the problem of learning a semantics, provide a structuring process that is
of potential value, and also outline our failed attempts at achieving this so far.

2012 ACM Subject Classification Software and its engineering → General programming languages;
Software and its engineering → Language features; Software and its engineering → Semantics;
Software and its engineering → Formal language definitions

Keywords and phrases Programming languages, desugaring, semantics, testing

Digital Object Identifier 10.4230/LIPIcs.SNAPL.2019.9

Funding This work was partially supported by the US National Science Foundation and Brown
University while all authors were at Brown University.

Acknowledgements The authors thank Eugene Charniak and Kevin Knight for useful conversations.
The reviewers provided useful feedback that improved the presentation.

© Shriram Krishnamurthi, Benjamin S. Lerner, and Liam Elberty;
licensed under Creative Commons License CC-BY

3rd Summit on Advances in Programming Languages (SNAPL 2019).
Editors: Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi; Article No. 9; pp. 9:1–9:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5184-1975
mailto:sk@cs.brown.edu
mailto:blerner@ccs.neu.edu
https://doi.org/10.4230/LIPIcs.SNAPL.2019.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


9:2 The Next 700 Semantics: A Research Challenge

1 Motivation

Semantics is central to the trade of programming language researchers and practitioners. A
useful semantics for a system helps us understand it better, guides us in building tools, and
provides us a basis for proving valuable properties such as soundness and completeness.

However, there are far fewer semantics than there are objects that need them. A few
languages (notably Scheme [5] and Standard ML [16]) are accompanied by a reasonably
thorough semantic description, but even these rarely cover the behavior of the language
that users use (such as libraries). Nevertheless, these semantics are valuable in that they
provide users a standpoint from which to evaluate an implementation: if it diverges from the
semantics, they can argue that the fault definitively lies with the implementation, since the
semantics was given as part of the process of defining the very language.

However, the need for and value of a semantics extends well beyond what we would
conventionally call a “language”. Consider, for instance, a Web program: there is value
to having a semantics for every layer in the stack, from the hardware’s instruction set to
the operating system’s API to the browser’s APIs to the JavaScript implemented by the
browser to the numerous frameworks that sit atop JavaScript and effectively create their
own ontologies (for page traversal, page transformation, etc.) to the libraries that sit atop
frameworks. Even if we draw a line at, say, the browser, we still need meaningful semantics
for the upper layers to make sense of what a program does. Thus, reasoning about the
security of a Web program effectively demands a “full-stack semantics”, as it were.

Unfortunately, virtually none of these levels enjoy the benefits of originating in a formal
semantics. They are instead defined by an ad hoc collection of implementations, documents,
and test suites. The task of the semanticist then becomes one of reverse engineering a
semantics in a way that ensures its conformance with reality: after all, if there is a divergence
between the semantics and the implementation, the implementors would not agree that they
are to blame and accordingly “fix” their systems. This is essentially a bottom-up discipline
akin to that practiced in the natural sciences.

2 Tested Semantics and a Small Core

Over the past decade, several researchers have begun to create so-called tested semantics:
one where the semantics shows conformance with the real-world artifact [1, 2, 3, 4, 7, 8, 10,
11, 12, 13, 15, 17, 18, 19]. A notable line of work has addressed the semantics of “scripting”
languages, which are ostensibly defined by trying to provide a meaning to as many utterances
as possible, as opposed to the less libertine behavior of more academic languages. Because
of their enormous set of behaviors, many of which are stumbled into by programmers and
exploited by attackers, it becomes especially important that a semantics conform to reality
rather than to a researcher’s mental idea of how the language ought to be.

However, not all tested semantics are equal in value. Some semantics come in the form
of hundreds of rules. In contrast, other projects (such as [11, 18, 19]) have followed the
pattern shown in Figure 1. In this style, the semantics is broken into two components.
The surface language P is reduced to an essential core version, λP , and all P programs are
mapped to λP using a desugaring function. We use the term “desugaring” to evoke the idea
that most of the surface language can be easily rexpressed (i.e., in a structured, recursive,
compositional manner) as idioms of the core language, and can therefore be dismissed as
ergonomic convenience rather than as novel features requiring analysis. (Strictly speaking,
this term is slightly misleading, since the core language λP might be a different language
rather than a subset of P itself; nevertheless, this term captures our design intent better



S. Krishnamurthi, B. Lerner, and L. Elberty 9:3

P Program λP Program

P out λP out

desugar

P evaluator λP evaluator

compare

Figure 1 Testing Strategy for λP .

than the more general “compilation”.) It is usually very straightforward to implement an
interpreter for λP (an appropriately-sized exercise for undergraduates), and composing this
implementation with desugaring gives us a new implementation of P . Of course, P already
has existing implementations. We can therefore then compare the results of running the two
implementations on a suitably large suite of programs, tweaking desugaring and λP until
the result is in harmony with the existing behavior of P . Since existing P implementations
may have values with opaque internal structure, we may not be able to translate them
directly into λP values; instead we may have to use coarser notions of equivalence (such
as textually comparing the output of two programs), or even more abstract ones, to check
that our desugaring preserves intended behavior.

This style has significant advantages over the brute-force generation of hundreds of rules.
First, it helps us reduce the complexity of the overall problem. Second, it forces us to find
general patterns in the language, which reduces the likelihood of overfitting to a particular
set of programs against which we run tests. Third, it gives us λP , which is a valuable artifact
in its own right. From the perspective of constructing proofs, λP – which might have five to
twenty constructs, in the typical lambda calculus fashion – is a far more accessible target than
having hundreds of rules. Additionally, λP reduces P to an essence (there may, of course, be
multiple λP ’s that provide different essential views of the language), thus accomplishing one of
the jobs of a semanticist: to give insight, not merely brutally reconstruct reality. In that light,
the desugaring function too is a useful artifact, and we want it to be both readable and terse.
An unreadable desugaring function yields no insight into the semantics of constructs in P ,
and in fact casts suspicion on whether all behaviors have been faithfully captured. Likewise,
a readable function that nevertheless has inordinately complicated behavior indicates that
the proposed λP does a poor job of modeling the intrinsically “interesting” parts of P .

The problem remains: how to create these artifacts? The first author has been involved
in several tested semantics efforts, and their labor demands are daunting: for instance, that
for Python [19] took approximately 72 person-months, including recruiting participants from
a mooc. This simply does not scale. Can we instead learn these semantics?

3 Learning a Semantics

Before we apply machine learning techniques, it helps to agree on the appropriate role for
human versus machine. It may be tempting to simply let machine-learning techniques run wild
and reconstruct a set of rules that match an existing implementation, but as we have argued
in Section 2, this would be counter-productive. Instead, we claim Figure 1 provides us with a
clear guide. The place for an expert is in the design of the core λP , using an understanding
of (a) the surface P itself, (b) general design principles in the design of semantics, and (c)
eventual goals for the use of the semantics. In contrast, the act of writing desugaring is
where the grunt work lies, and this is the part that would best be automated. In addition, in
our experience, engineering λP is both interesting and does not consume effort that is not
insightful, whereas constructing desugaring can take months and is only very rarely insightful.
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In our ideal workflow, then, the semantics engineer (who presumably understands P well)
proposes an initial design for λP , alongside an implementation for it (which, depending on
how λP is written, may even be obtained automatically). They also provide a conformance
suite, such as existing test suites for widely-used P implementations.1 A learning system
then attempts to construct the desugaring function.

The space of desugaring functions is of course unbounded. We believe a useful constraint
is given by Felleisen’s expressiveness framework [9], which (loosely) says that if a feature
can be expressed by local macro transformations (i.e. structural, compositional changes),
it is not “expressive”. We believe that (unless a semantics engineer explicitly chooses
otherwise) desugaring should not be expressive: if it is, a non-trivial feature of the language
is not captured by λP .

So long as the search for desugaring succeeds, all is well. But when the search has
proceeded for too long, it seems reasonable to present the input for which no reasonable
desugaring could be found: the semanticist is then in a position either to realize that λP

must grow, or to guide the desugaring system with a hint, or even to provide the desugaring
rule directly. Based on our experience manually constructing semantics in this style, these
interruptions grow far less frequent over time, and the rare situations where a desugaring
can’t easily be found are usually instructive about the nature of P .

Problem Definition

The essential problem, then, is as follows. Assuming we can obtain a parser for P (usually to
be found inside P implementations) and similarly for λP (which should be straightforward),
the goal is to learn a translation from P trees to λP trees – a tree transducer [6, chapter
6] – such that Figure 1 ensues. This problem is not new: it lies at the heart of natural
language translation (nlt).

A critical difference, however, is in the setup of the problem. In nlt, one is typically
translating, say, French to German. To do this, the learning system is given millions of
pairs of the “same” sentences in both languages: obtained from proceedings of national
bodies, book translations, and so on. From this large corpus of examples, an algorithm infers
a transducer. However, there is no oracle for ground truth; some use has been made of
crowdsourcing for this purpose [20], but it may not be straightforward to handle millions of
new proposed translations this way, and it would anyway be slow and somewhat unreliable.

In programming languages, we have the dual situation. The semantics engineer will not
have the patience to write more than a few dozen examples of P -to-λP translations. However,
we do have ground truth! A system can easily generate new instances of P programs and run
them; and also pass them through the candidate desugarer, compute their answer under the
semantics, and compare the two answers. If this succeeds, we have gained further trust in the
desugaring. If it fails, we have a P program for which our desugaring must be revised. The
system can run this loop automatically, correctly, and at scale (with extreme parallelization).

Unfortunately, there seems to be little literature on this problem in the nlt literature.
This is perhaps unsurprising: there is little use in natural languages in creating techniques
that assume perfect, mechanized ground truth. Thus, our dual problem is not only valuable
but also technically interesting.

1 Of course, different implementations may differ slightly. This only further reinforces the need for a
learning-based approach, because innocent programmers might stumble on these differences while
adversaries exploit them.
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x, y ∈ SIdentifiers

n ∈ Number
s ∈ Str
o ∈ SOp ::= 0-

∣∣ not
∣∣ +

∣∣ -
∣∣ and

∣∣ or
∣∣ <

∣∣ >

e ∈ SExp ::= SVar(x)
∣∣ SPrim(o, e⃗)

∣∣ SBetween(e1, e2, e3)∣∣ SNum(n)
∣∣ SStr(s)

∣∣ STrue
∣∣ SFalse∣∣ SIf(e1, e2, e3)

∣∣ SLet(x, e1, e2)
∣∣ SLetRec(x, e1, e2)∣∣ SLam(x⃗, e)

∣∣ SApp(e, e⃗)
∣∣ SAssign(x, e)∣∣ SList(e⃗)

∣∣ SListCase(e1, e2, e3)
∣∣ SFor(e1, b⃗, e2)

b ∈ SForBind ::= SFBind(x, e)

x, y ∈ CIdentifiers

n ∈ Number
s ∈ Str
b ∈ Bool
o ∈ COp ::= 0-

∣∣ not
∣∣ +

∣∣ -
∣∣ and

∣∣ or
∣∣ <

∣∣ >

e ∈ CExp ::= CVar(x)
∣∣ CPrim1(o, e)

∣∣ CPrim2(o, e1, e2)∣∣ CNum(n)
∣∣ CStr(s)

∣∣ CBool(b)∣∣ CIf(e1, e2, e3)
∣∣ CLet(x, e1, e2)

∣∣ CLetRec(x, e1, e2)∣∣ CLam(x⃗, e)
∣∣ CApp(e, e⃗)

∣∣ CAssign(x, e)∣∣ CList(e⃗)
∣∣ CListCase(e1, e2, e3)

Figure 2 Simple Source and Target Core languages.

4 Initial Non-Progress

In addition to formulating the problem, to date we have tried four different existing techniques,
with no real success. The rest of this paper documents what we have learned so far, but we cau-
tion that, since we are not experts in this area, one should not read too much into our failure.

4.1 Notation
We denote source programs (previously P ) in red monospaced text, core programs (pre-
viously λP ) in blue monospaced text, and the desugarers themselves in black sans-serif font.
Additionally, we prefix the names of source AST nodes with a S, and likewise prefix core
AST node names with a C. We use • to denote a hole in a tree, into which another tree may
be merged; when defining a desugarer, subscripts are used to indicate corresponding holes in
source and core terms. Finally, for expressions with arbitrary arity, we use · · · to indicate
the repetition of the preceding term (much as . . . are used in Racket macros).

4.2 Example Languages
Consider the languages in Figure 2. We have tried to learn a desugaring from the source to the
core. Most expression forms are straightforward to translate, and there are some characteristic
“impedance mismatches” between the two languages. The construction SBetween(lo, mid,
hi) is intended to be the chained comparison lo ≤ mid ≤ hi, where each expression
is evaluated at most once. Primitive operations are represented in the source via an
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ds(SVar(•)) = CVar(•)

ds(SPrim(•1, [•2])) = CPrim1(•1, •2)

ds(SPrim(•1, [•2, •3])) = CPrim2(•1, •2, •3)

ds(SBetween(•1, •2, •3)) = CLet(%t1, •1, CLet(%t2, •2, CLet(%t3, •3,

CPrim2(and, CPrim2(<, %t1, %t2),

CPrim2(<, %t2, %t3)))))

ds(SNum(•)) = CNum(•)

ds(SStr(•)) = CStr(•)

ds(STrue) = CBool(true)

ds(SFalse) = CBool(false)

ds(SIf(•1, •2, •3)) = CIf(•1, •2, •3)

ds(SLet(•1, •2, •3)) = CLet(•1, •2, •3)

ds(SLetRec(•1, •2, •3)) = CLetRec(•1, •2, •3)

ds(SLam([•1 · · · ], •2)) = CLam([•1 · · · ], •2)

ds(SApp(•1, [•2 · · · ])) = CApp(•1, [•2 · · · ])

ds(SAssign(•1, •2)) = CAssign(•1, •2)

ds(SList(• · · · )) = CList(• · · · )

ds(SListCase(•1, •2, •3)) = CListCase(•1, •2, •3)

ds(SFor(•1, [SFBind(•2, •3)· · · ], •4)) = CApp(•1, SLam([•2 · · · ], •4), [•3 · · · ])

Figure 3 Intended ground-truth translation from Simple Source to Target Core. %t1 etc are fresh
generated names for temporary variables.

arbitrary-arity SPrim constructor, and must be translated to either unary CPrim1 or binary
CPrim2 constructions. Booleans STrue and SFalse must be translated to actual booleans
inside a CBool constructor, and other primitive values are simply carried across. The SFor
construction is unique to the source language, and must be translated into simpler terms
in the core. Our intended translation is given in Figure 3.

4.3 First attempt: Naïve Tree Matching

4.3.1 Essential Ideas

As an initial guess, we posit that translating the AST of one language into a corresponding
tree in another language will result in a tree “of roughly the same shape”: that is, a source
node with N children will desugar to a tree with N disjoint descendants that correspond to
the source node’s children, respectively. For example, SPrim(+, [•1, •2]) might correspond
to CLet(%t1, •1, CLet(%t2, •2, CPrim2(+, %t1, %t2))).

With this as a guide, our initial attempt is to learn a tree transducer that transforms
source nodes into core subtrees in a uniform, top-down manner. Learning this transducer
from a corpus of tests amounts to learning an explanation for how each test output was
produced from its input. We can simplify the problem further under our assumption that
tree shape is roughly preserved.
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4.3.2 Worked Example
Consider the source program

SIf(SBetween(SNum 3, SNum 4, SPrim(-, [SNum 6, SNum 1])), STrue, SFalse)

Our ground-truth desugaring results in the desugared expression

CIf(CLet(%t1, CNum 3, CLet(%t2, CNum 4, CLet(%t3, CPrim2(-, CNum 6, CNum 1),
CPrim2(and, CPrim2(<, %t1, %t2), CPrim2(<, %t2, %t3))))),

CBool(true), CBool(false))

Graphically, these two trees are:

SIf

SFalseSTrueSBetween

SPrim

SNum

1

SNum

6

-

SNum

4

SNum

3

and

CIf

CBool

false

CBool

true

CLet

CLet

CLet

CPrim2

CPrim2

%t3%t2<

CPrim2

%t2%t1<

and

CPrim2

CNum

1

CNum

6

-

%t3

CNum

4

%t2

CNum

3

%t1

Our goal is to compute all possible alignments between these two trees, ignoring the labels
on the internal nodes. (We draw the core tree inverted, to make drawing the alignments
easier to read.) An alignment is simply a mapping of nodes in one tree to nodes in the other
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that preserves ancestry: if a source node S maps to a core node C, then all descendants
of S must map to descendants of C.

16

-43

falsetrue

%t3%t2<%t2%t1<

and

16

-

%t34

%t23

%t1

Note that in this example, one node (the root of SPrim(-, [SNum 6, SNum 1])) has two
possible alignments (shown in green). This leads to two possible desugarings for SBetween
and SPrim nodes: the correct one presented earlier, and the incorrect

ds(SBetween(•1, •2, •3)) ⇒ CLet(%t1, •1, CLet(%t2, •2, •3))

ds(SPrim(•1, [•2, •3])) ⇒ CLet(%t3, CPrim2(•1, •2, •3)

CPrim2(and,

CPrim2(<, %t1, %t2),

CPrim2(<, %t2, %t3)))

Such a mistake is possible in this test case, because only one instance of either SBetween
or SPrim is seen. With a larger test corpus, this mistaken desugaring could only appear as
part of a non-deterministic desugarer, and so would eventually be discarded by the algorithm.

4.3.3 Requirements on Developer
Developers must provide a corpus of tests that adequately covers the language semantics,
and also manually write the desugared ground-truth versions of the tests. This is potentially
as tedious as writing the desugaring itself, and not a viable long-term improvement.

4.3.4 Shortcomings
Unfortunately, of course, this algorithm is potentially absurdly expensive: if the core tree is
larger than the source (as it most likely will be), there are many possible alignments for
each node, and therefore exponentially many possible alignments in total.
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Additionally, this algorithm cannot learn the intended desugaring for our full language.
The SLam and SApp expressions are variable-arity, which means our desugaring would require
an infinite corpus to learn all the desugarings for every possible arity – when clearly the
desugaring is uniformly defined. Further, the desugaring of SFor expressions examines the
grand-children of the SFor node, and moreover does not preserve the ordering of children.
This is simply beyond the expressive power of this algorithm.

4.4 Second Attempt: Learning a Tree Transducer by Gibbs Sampling
4.4.1 Essential Ideas
To constrain the search-space explosion of the simple algorithm above, we try a sampling
approach instead: we relax our requirement that a desugarer be deterministic, and start
with one alignment, which induces some desugarer. We then perturb that desugarer by
picking some path in the source tree, from root to leaf, and attempting to “re-explain”
it, hoping to find an explanation that is more deterministic than the current one. We
then iterate this process until it converges on a deterministic desugarer that can explain
the full test corpus. Specifically:
1. As before, we start with a corpus of source and ground-truth core programs.
2. For each test, we compute an inclusion from source to core. Combining all these

inclusions produces a non-deterministic desugarer, where each translation rule is weighted
by how often it was used in the current explanations of the tests. Each translation from
source to core yields a derivation tree, whose nodes are labeled by desugarer rules and
whose shape is the same as the source tree. Moreover, these weights induce a probability
that describes how likely this derivation tree was to have occurred.

3. Repeat until convergence:
a. Pick a derivation tree of lowest probability. Pick a path within that tree of lowest

probability.
b. “Truncate” the corresponding source and core trees by removing all side branches

from that derivation path, and all core subtrees corresponding to the removed source
nodes. This produces two narrow trees.

c. Compute all possible inclusions of the truncated source into the truncated core
tree. The roots must obviously correspond, as must the sole remaining leaf and its
counterpart; the only nodes whose alignments could change are therefore the nodes
along the source path. This greatly limits the combinatorial explosion to a manageable
level.

d. Compute the probability of each of these new alignments, using weights that have been
adjusted to remove the existing alignment’s contribution, and choose a new alignment
based on these probabilities. This is essentially assigning a Dirichlet prior to the rules,
and it will tend to reuse explanations that have been used many times in other tests,
and tend to avoid explanations that have not been useful in many other cases.

e. Update the weights of all the relevant rules.

4.4.2 Worked Example
Consider again the example expression in Section 4.3.2, and suppose by step 2 we had
computed the mistaken desugaring shown there. In step 3.a, we would pick a path of lowest
probability: in this example, we choose the path leading to the leaf 6. We then truncate
both the source and core trees and prune away all branches not relevant to that path. (We
give the pruned nodes distinct labels, so we don’t have to worry about mis-aligning them.)
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•6•5

•4

6

•3

•2•1

•6•5

•

•4

6

•3

•

•2•

•1•

Now the two possible alignments are very easy to compute; in fact, they are the only
two possible alignments of these two trees (compared to potentially exponentially many
alignments in the original, non-truncated trees). We then compute the probability of either
alignment occurring given the frequencies with which the relevant desugaring rules have
appeared in other test cases. The correct alignment is seen more frequently in other tests,
leading to a higher probability here, which in turn reinforces the algorithm’s confidence
in the correctness of that alignment.

4.4.3 Requirements on Developer
Just like the naïve algorithm, this one requires the developer to supply a sufficient test corpus
and its ground-truth accompaniment. However, it does not take quite so long to run.

4.4.4 Shortcomings
There are four key failings with this approach. First, just as with the naïve approach, this
algorithm makes the key assumption that source trees will map to core trees of a similar
shape, and SFor breaks that assumption.

Second, as above, the algorithm cannot handle arbitrary-arity nodes such as SLam. (We
could shoehorn languages into fitting a fixed-arity model since no single program will ever
have unbounded-arity source expressions, but even so it is subjectively wrong to provide
completely disparate desugaring rules for binary functions from ternary ones, etc. Moreover,
while any individual program is of fixed arity, the desugaring must handle all possible
programs: the correctness of a single uniform rule is supported by all the programs of all
the arities that it translates correctly, while a set of arity-specific rules necessarily are each
supported by much smaller, independent sets of sample programs.)

Third, the algorithm cannot handle unbounded state during the desugaring process.
In particular, it is quite common to need to generate new names (i.e., gensym) for use in
the translated program. Nothing in the tree-transducer approach – regardless of how the
transducer is constructed – can support such a construction.
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Fourth, translation might sometimes need to inspect “deeply” into the source tree, i.e.,
examine more than just the root node and its immediate children, in order to translate it
correctly (as, for example, with SFor). An extended tree transducer can handle this case, but
the inference problem for extended tree transducers is known to be hard, and the algorithms
above have no representation for such deep rules.

4.5 Third attempt: Genetic Programming

4.5.1 Essential Ideas
We aim to fix the first, second, and fourth problems above, while still remaining tractably
expensive. Our main idea is to develop a domain specific language for describing translations.
Our desugarers are now explicit programs in this language, rather than implicit in the
mappings between two sets of trees. Because they are now explicit, we can mutate them
in various ways, and this leads us to a genetic algorithm for evolving a correct translator.
Our key observation is that rather than relying on extensive programmer effort to supply
the ground truth, we can instead use the evaluators to compute ground truth.

4.5.2 Requirements on Developer
Unlike the algorithms above, we no longer require the programmer to supply a comprehensive
corpus of source or core programs. Instead we can systematically generate source programs,
or generate new source programs from a small number of exemplars via fuzzing. Additionally,
the developer need never manually desugar a complete program.

Instead, our algorithm may ask the developer:
1. To say whether a given desugaring rule is at fault, or else provide a smaller source test

program that still translates incorrectly, and
2. To provide the correct desugaring of a particularly troublesome source language con-

struct, or suggested mutations to try when searching for such desugarings.
This latter point is precisely where the programmer’s attention should be focused – on
constructs whose semantics are not readily captured by “natural” tree transformations.

4.5.3 Shortcomings
Unfortunately, we were unable to make this scale well enough to find our desugaring. In
general, because it is a randomized algorithm that depends heavily on the history of a
particular run, convergence is troublesome, and like all genetic algorithms depends strongly
on the fitness function we use. Since correctness is a boolean property with no gradient
against which to optimize, our attempts at “smoothing” this into a useful fitness function
amounted to counting what fraction of programs were translated correctly. However at the
small scales we could attempt, this function was still too discrete to work well.

4.6 Fourth attempt: Synthesis
The first two approaches tried to exploit the tree-structure of the source and destination
languages. The third approach tried to incorporate the fact that desugaring should be a
computable function, and therefore a program in its own right. Perhaps techniques from
program synthesis might help generate this desugaring? We know of only one attempt in
this direction so far [14]. We highlight both the achievements and simplifications of this
work, to emphasize what makes this problem quite so challenging.
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The starting observation is that, because desugaring should not be expressive, and hence
essentially be a tree homomorphism, the skeleton of any such desugarer is a pattern match
across the source-language AST, followed by recursive desugaring calls to the subtrees, and
finally some core-language constructor(s) to connect the resulting pieces. To make the
problem tractable, the authors deeply embed the correctness criterion from Figure 1 as the
specification of a correct synthesis result. To derive a desugarer such that the results of
evaluation match up, when the authors encounter a subexpression of the outer term they leave
it marked as a symbolic input, so that when attempting to interpret the resulting translated
program, they replace the unknown output with the interpreted original source program.
This “inductive decomposition” provides an order-of-magnitude improvement in performance.

However, the approach there takes some crucial simplifying steps. They rely on a shared
value space for the interpreted answers for both languages; a more accurate representation of
Figure 1 would account for the translation of values across the languages, which defeats the
inductive decomposition property. Additionally, even in the sample language in Figure 3, the
desugaring of SFor is not a trivial tree homomorphism: the translation needs to reach more
deeply into the tree to rearrange binders and bound values. This form of manipulation is
commonplace for languages, and should be part of a full solution here. Finally, the authors
note that incorporating stateful semantics into their interpreters exploded the runtime cost
of their approach, yet state is a necessary component of nearly all language designs.

5 Conclusion

Programming language research is caught between two extremes. On the one hand, we aspire
to have pure, clean-slate designs that are designed well, accompanied by rich specifications,
and implemented faithfully. On the other hand we have the messy world of contemporary
systems, which have evolved haphazardly and democratically, and are encumbered with
awkward edge cases and legacy constraints.

While we applaud those who work to make the former world a reality (and hope to make
our own modest contributions to this effort), we want to call attention to the latter, which
is at least our present reality. In this world, errors and attacks abound. The rich toolkit
of programming languages can do much to defend against these problems, but only if we
can bring these systems within our ambit. A semantics seems a necessary and important
step in that direction. We believe the research program outlined here, with an emphasis
on core languages and on a great deal of accidental complexity swept away by desugaring,
is a smart way to proceed.

Earlier, we referred to (informal) semantics being defined in terms of “implementations,
documents, and test suites”. Our work shows how we can leverage implementations and test
suites to reverse-engineer the formal semantics. It is natural to wonder what documents
can contribute to this process. Do they make things worse, or do they actually make them
better? Might we be able to curtail the combinatorial searches demanded by this paper
by using information in prose? We do not know the answer, but hopefully others far more
qualified can answer that authoritatively.
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Abstract
To guard against machine failures, modern internet services store multiple replicas of the same
application data within and across data centers, which introduces the problem of keeping geo-
distributed replicas consistent with one another in the face of network partitions and unpredictable
message latency. To avoid costly and conservative synchronization protocols, many real-world
systems provide only weak consistency guarantees (e.g., eventual, causal, or PRAM consistency),
which permit certain kinds of disagreement among replicas.

There has been much recent interest in language support for specifying and verifying such
consistency properties. Although these properties are usually beyond the scope of what traditional
type checkers or compiler analyses can guarantee, solver-aided languages are up to the task. Inspired
by systems like Liquid Haskell [43] and Rosette [42], we believe that close integration between
a language and a solver is the right path to consistent-by-construction distributed applications.
Unfortunately, verifying distributed consistency properties requires reasoning about transitive
relations (e.g., causality or happens-before), partial orders (e.g., the lattice of replica states under a
convergent merge operation), and properties relevant to message processing or API invocation (e.g.,
commutativity and idempotence) that cannot be easily or efficiently carried out by general-purpose
SMT solvers that lack native support for this kind of reasoning.

We argue that domain-specific SMT-based tools that exploit the mathematical foundations of
distributed consistency would enable both more efficient verification and improved ease of use for
domain experts. The principle of exploiting domain knowledge for efficiency and expressivity that has
borne fruit elsewhere – such as in the development of high-performance domain-specific languages
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augmented with domain-specific, consistency-aware solvers would support the rapid implementation
of formally verified programming abstractions that guarantee distributed consistency. In the long
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reach of programmers who are not necessarily SMT solver internals experts.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Software
and its engineering → Consistency; Software and its engineering → Software verification

Keywords and phrases distributed consistency, SMT solving, theory solvers

Digital Object Identifier 10.4230/LIPIcs.SNAPL.2019.10

© Lindsey Kuper and Peter Alvaro;
licensed under Creative Commons License CC-BY

3rd Summit on Advances in Programming Languages (SNAPL 2019).
Editors: Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi; Article No. 10; pp. 10:1–10:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lkuper@ucsc.edu
mailto:palvaro@ucsc.edu
https://doi.org/10.4230/LIPIcs.SNAPL.2019.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


10:2 Toward Domain-Specific Solvers for Distributed Consistency

1 Introduction

Modern internet services store multiple replicas of the same application data within and
across data centers. Replication aids fault tolerance and data locality: if one replica fails or
is unreachable due to network partitions or congestion, another will be available in its place.
In addressing those problems, though, replication introduces a new problem: the problem of
keeping geo-distributed replicas consistent with one another.

In a replicated system that enforces strong consistency, clients cannot observe that the data
has been replicated at all – but strong consistency must come at the expense of availability, the
guarantee that every request from a client receives a meaningful response. Consider a banking
application in which a user’s account balance is stored in a replicated object, and where the
application must maintain the invariant that a user’s account balance is greater than zero.
When the user withdraws from the account, to maintain the balance ≥ 0 application invariant,
the replica processing the withdrawal must make sure that any concurrent withdrawals at other
replicas have also been applied to its local state before it allows a new withdraw operation
to proceed. In other words, the withdraw operation requires replicas to synchronize.

However, not every operation against a distributed data store requires strong consistency.
For instance, in our banking application, replicas need not synchronize with each other for
a deposit operation. Instead, the replica that processes the deposit can report success to
the user immediately and remain available to process more operations, while asynchronously
updating other replicas with the new balance at some point in the future.

Although it might seem like a good thing that at least some operations can proceed
without synchronization, the differing synchronization requirements for different operations
hugely complicate the application programmer’s task. In general, different operations on the
same data may require drastically different amounts of synchronization in order to maintain
application-level invariants.

1.1 Language-level tools for taming the consistency zoo
To make it easier for application developers to navigate this “consistency zoo”, a number of
lines of research on language-level abstractions and tools for programming against replicated
data have emerged. For instance:

Replicated data types (RDTs), such as conflict-free replicated data types (CRDTs) [38],
replicated abstract data types [36], Cloud Types [9], and replicated lists [4], are data
structures designed for replication, with an interface that limits the permissible operations
to those that will ensure convergence of replicated state despite message reordering or
duplication.
Mixed-consistency programming models augment existing languages with sophisticated
type systems, contract systems, or analyses for specifying and verifying various combina-
tions of consistency properties. Recent representative examples of this line of work include
the MixT domain-specific language for mixed-consistency transactions [32], Consistency
Types [20], and the Quelea contract system [39].
Fault injection infrastructures for distributed systems, such as lineage-driven fault in-
jection (LDFI) [3], systematically inject faults, including machine crashes and network
partitions, to test whether (ostensibly) fault-tolerant replicated systems maintain their
claimed consistency guarantees under these contingencies. In particular, to use LDFI for
implementing a distributed protocol, the programmer specifies the protocol as a program
in a Datalog-like distributed programming language; the LDFI system then simulates
execution of the protocol in the presence of faults and tries to determine the smallest (or
most likely) set of faults that reveal bugs in the program.
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All of these approaches try to lift the question of whether a given program upholds a
particular application-level correctness property to the level of the programming language.
Language-level tools for ensuring program correctness most often manifest as type systems or
program analyses that statically (and conservatively) rule out badly-behaved programs. But
traditional type systems and analyses are usually not expressive enough to statically rule
out programs that violate consistency properties. The desire to be able to enforce program
properties that are richer than those that can be enforced by traditional type checkers or
compiler analyses has led to a proliferation of work that relies on extending programming
languages with SAT or SMT solvers such as Z3 [15], CVC4 [5] or MathSAT [8]. Indeed,
Quelea [39] and LDFI [3] both work by augmenting languages (Quelea’s contract language
and LDFI’s protocol specification language, respectively) with solvers.

However, verifying distributed consistency properties requires reasoning about transitive
relations (e.g., causality or happens-before), partial orders (e.g., the lattice of replica states
under a convergent merge operation), and properties relevant to message processing or API
invocation (e.g., commutativity and idempotence) that cannot be easily or efficiently carried
out by general-purpose SMT solvers that lack native support for this kind of reasoning. For
example, ensuring the correctness of certain flavors of CRDT implementations involves show-
ing that replica states constitute a join-semilattice and the replica merge operation computes
a least upper bound over this lattice. Existing general-purpose SMT solvers lack native
support for reasoning efficiently about such order-theoretic properties [18]. Consequently,
proving these properties in an SMT-aided language like Liquid Haskell is harder than it
needs to be. Likewise, solver-aided tools like Quelea and LDFI must make use of simplifying
assumptions, compromises, or hacks in order to be able to use the solver to reason about
distributed programs.

1.2 Toward consistency-aware solvers and consistency-aware
solver-aided languages

We see an opportunity to address all of these shortcomings while unifying existing lines of
work on programming language support for consistency, replicated data types and SMT-based
tools for mixed-consistency programming. In doing so, we follow the lead of long traditions
of work on high-performance domain-specific theory solvers [22, 23] and high-performance
domain-specific languages [12]. Specifically, we advocate the development of domain-specific
SMT-based tools that bake in support for the mathematical foundations of consistency
to support the implementation of language-level abstractions and tools for ensuring the
correctness of distributed programs.

We aim to make the implementation and use of these tools accessible not only to systems
programmers who would ordinarily implement replicated data storage systems, but to
application programmers – the people who are usually most familiar with the application-
level invariants that their operations on replicated data will ultimately need to satisfy.
Domain-specific solvers for distributed consistency should be a double win, enabling both
improved ease of use by domain experts (because the constraints to be discharged to the
solver can be encoded in a more familiar way) and efficiency advantages over general-purpose,
off-the-shelf solvers (because the solver will be able to reason about those constraints at a
higher level).

An especially exciting way to make use of the considerable power of SAT and SMT solvers
is by means of solver-aided languages1 such as Liquid Haskell [43], which augments Haskell’s
type system with refinement types [37] which are compiled to equivalent constraints that can

1 The term “solver-aided languages” was coined by Torlak and Bodik in their work on Rosette [41].
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be discharged by an SMT solver. With the help of the external solver, Liquid Haskell can
check refinement types at compile time. We believe that close integration between a language
and a solver, as pioneered by systems like Rosette [42] and Liquid Haskell, is the right path
to consistent-by-construction distributed applications. Consistency-aware theory solvers
would be usable from existing solver-aided languages like Liquid Haskell, and they would
dovetail with Rosette’s support for building new solver-aided DSLs. New domain-specific
solvers call for new domain-specific solver-aided languages, and we hypothesize that building
consistency-aware languages on top of our proposed consistency-aware solvers would be an
ideal application of Rosette.

Finally, we hope to use the development of consistency-aware solvers as a jumping-off
point for a broader research agenda. Today, new theory solver implementation is considered
the territory of SMT internals experts. Even though the architecture of modern SMT solvers
appears to lend itself to a modular style of development in which theory solvers could be
developed independently, in practice it would seem that SMT solvers are monolithic and
SMT internals expertise is required for theory solver development. We aim to create a theory
solver development framework, inspired by existing frameworks for rapid development of
high-performance DSLs [12], to democratize the implementation of domain-specific theory
solvers. Our goal is to make it possible for domain experts – including and especially
distributed systems programmers – to implement their own domain-specific theory solvers
that modularly extend existing SMT solvers.

The rest of this paper is organized as follows. In Section 2, we give a brief tour of the zoo
of distributed consistency models and the guarantees that they do (and don’t) provide, in the
context of our example banking application with its balance ≥ 0 invariant. In Section 3, we
dig into three example use cases for a consistency-aware solver: efficient verification of CRDTs
with Liquid Haskell, reasoning about message reorderings in LDFI, and precisely reasoning
about the transitive closure of relations in the Quelea contract language. Finally, in Section 4,
we consider SMT and theory solver implementation, and the broader problem of how to
democratize the implementation of domain-specific theory solvers like the consistency-aware
solvers we aim to build.

2 Consistency anomalies: a brief tour of the zoo

The desire for applications to provide a responsive, “always-on” [16] experience to users has
motivated much work on systems that trade strong consistency for eventual consistency [40, 46]
and high availability. Under eventual consistency, updates may arrive at each replica in
arbitrary order, and replicas may diverge for an unbounded amount of time and only
eventually come to agree.

Between the extremes of eventual consistency and strong consistency are a bewildering
variety of intermediate consistency options [40, 30, 1, 31, 29, 34]. For instance, under causal
consistency [1, 27], if message m1 is sent before message m2 (in the sense of Lamport’s
happens-before relation [27]), then m1 must also be received before m2. Among other things,
this means that in our banking application, if, say, replica A processes a deposit of $25
followed by a withdrawal of $30, and sends a message to replica B for each operation in
that order, then replica B must apply them in that order, as well. The idea is that because
the deposit of $25 happened before the $30 withdrawal on replica A, the deposit potentially
caused the withdrawal, and so the withdrawal must not be allowed to happen on replica B
until the deposit has happened there first. This guarantee – that operations will occur in



L. Kuper and P. Alvaro 10:5

Figure 1 Examples of invariant-violating executions that are disallowed (left) and allowed (right)
under causal consistency. In the execution on the left, event 2 follows event 1 in the causal order, and
so the execution shown violates causal consistency. The execution on the right exhibits a different
violation of the same application invariant, but in this case, one that causal consistency does not
rule out: events 1 and 2 have no causal order, but the balance ≥ 0 invariant is still violated.

causal order – is enough to rule out a number of consistency-related anomalies, and suffices
for many applications. The execution shown in Figure 1 (left) shows a violation of the
balance ≥ 0 invariant in our bank application that would be ruled out by causal consistency.

For many applications, though, causal consistency is not enough in general. For our
banking application, if a deposit takes place on replica A and a concurrent withdrawal takes
place on replica B, then causal consistency says nothing about the order of the two operations.
Enforcing the balance ≥ 0 application invariant demands a stronger consistency guarantee.
Figure 1 (right) shows such an execution, which respects causal consistency but nevertheless
violates the balance ≥ 0 invariant.

The execution in Figure 1 (left) in fact also violates a slightly weaker form of consistency,
known as PRAM or FIFO consistency [30]. Under PRAM consistency, if two operations
take place in a particular order on a given replica, then on any other replica on which both
operations take place, the first operation must take place first. Figure 2 shows an execution
allowed under PRAM, but ruled out by causal consistency. A withdrawal originating on
replica B is delivered with no problem at replica A, but at replica C, it causes an invariant
violation because a causally earlier deposit has not yet arrived. On the other hand, even
PRAM consistency may be overkill for the deposit operation: if two deposits are delivered in
different orders on different replicas, then we have violated PRAM (and causal) consistency,
but no application invariant is violated, and we have saved the potentially substantial cost of
having to synchronize between replicas.

Clearly, choosing the consistency guarantee for each operation that will enforce exactly
as much synchronization as is necessary between replicas – but no more than that – can be a
daunting task for programmers, even when the data store or stores offer only two or three
consistency options to choose from [32, 39]. When there are more choices, the job only gets
harder. For example, read-your-writes consistency [40] occupies a space between PRAM and
weak consistency and is incomparable with eventual consistency. A recent survey paper [45]
catalogues over 50 distinct notions of consistency from the literature, ordering them by their
semantic strength. Figure 3 illustrates a small slice of this consistency hierarchy.
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Figure 2 An invariant-violating execution allowed by PRAM consistency, but disallowed by
causal consistency. Here, replica B attempts to send event 1 to replica C, but the message is lost or
delayed in transit. Meanwhile, the (causally later) event 2 arrives at replica C.

Figure 3 Some popular models of distributed consistency, ordered by strength: smaller regions
admit fewer executions.
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2.1 Discussion
The current state of the art of language-level support for distributed consistency discussed
in Section 1.1 can help to address some of the difficulties that arise when navigating
the consistency zoo. For example, if we programmed our banking application with a
mixed-consistency programming system like Quelea, we might be able to obtain assurance
that deposit operations may proceed without synchronization, and a warning that even
casual consistency is not sufficient to ensure that concurrent withdrawal operations are
safe. Alternatively, we might use RDTs to ensure that replicas eventually converge to the
same (possibly negative) balance after all operations are applied, and we could use LDFI to
ensure that the effects of these operations remain durable in the face of message loss and
machine crashes.

In principle, we could even combine these approaches in the same system. For instance,
a single solver-aided language could both identify which pairs of operations (e.g., deposits
and withdrawals that witnessed them) must be causally ordered, as in the Quelea contract
language, and ensure that a particular implementation of an RDT upholds its convergence
guarantee (e.g., for concurrent withdrawals), by means of rich type specifications like those
expressible in Liquid Haskell. The underlying solver for such a language would need to
reason efficiently about the causality relation and partial orders, respectively. Unfortunately,
general-purpose solvers are not necessarily well suited for such reasoning, as we elaborate on
in the next section.

3 The case for consistency-aware solvers

What could we do if we had a solver capable of natively reasoning about distributed
consistency? In this section, we motivate the need for consistency-aware solvers with three
example use cases, based both on our own experiences [3] and on our reading of the literature
on solver-aided language verification tools [39, 43, 44].

3.1 Efficient verification of CRDTs with Liquid Haskell
Liquid Haskell [43] is a tool that augments Haskell’s type system with refinement types,
calling off to an SMT solver (Z3 by default) under the hood for type checking and inference.
Refinement type checking and inference is undecidable in general, but Liquid Haskell gets
around this issue by employing liquid types [37], which require one to specify up front a fixed
set of logical qualifiers from which refinement predicates can be built. The solver can then
search over that set, returning the problem to the realm of decidability.

Liquid Haskell can be used to verify the commutativity, associativity, and idempotence of
functions – all properties that one would want to guarantee about operations that modify
replicated data structures. These are, in fact, exactly the properties that must hold of the
merge operation in CRDTs. Ensuring that an RDT implementation is correct amounts
to showing that certain order-theoretic properties (e.g., that replica states constitute a
join-semilattice and the replica merge operation computes a least upper bound over this
lattice) hold over program state. Unfortunately, these properties are difficult to verify in
practice. Even just specifying the desired RDT behavior is a hard problem in itself [10, 6],
and to our knowledge, the only mechanized proofs of correctness of RDT implementations
have been done in the context of a theorem prover [19, 48], rather than in a solver-aided
language like Liquid Haskell that might be usable for real implementations.

SNAPL 2019



10:8 Toward Domain-Specific Solvers for Distributed Consistency

In order to verify such properties in Liquid Haskell, though, one would need to make
use of its recently added refinement reflection mechanism [44], which goes far beyond what
traditional refinement types can express and which is only well understood by a handful of
experts. Furthermore, checking that the ordering laws hold for concurrent sets, for example,
took 40 seconds and hundreds of SMT queries [44]. What if, by hooking up Liquid Haskell
to a domain-specific solver with built-in knowledge of ordering constraints, we could get that
40 seconds down to 4 seconds or 0.4 seconds? Doing so would allow for fast, interactive
verification in the REPL, in the way that Haskell programmers are used to interacting with
the type checker.

3.2 Reasoning about message reorderings in a lineage-driven fault
injection tool

Lineage-driven fault injection (LDFI) [3] is a methodology for testing distributed systems for
fault tolerance by systematically causing certain messages to be dropped. LDFI makes use
of the concept of data lineage – that is, the combination of data and messages that led to a
particular successful execution outcome – to make decisions about which message omissions
would be most likely to reveal bugs.

However, the existing LDFI implementation [3] does not consider message reorderings at
all. Rather, it assumes a fixed, deterministic message ordering for a successful execution and
then uses a SAT solver to exhaustively produce possible ways to make the execution fail.
Yet many real-world bugs in distributed systems [47, 28] are triggered by a combination of
message omission faults with message races, in which (for example) messages delivered in a
unexpected order compromise a system’s response to a fault event. In order to bound the
(already astronomically large, due to the combinatorial explosion of possible faults) space of
possible executions to consider, LDFI must assume that messages are delivered in a fixed,
deterministic order. Hence bugs that are triggered by combinations of faults and message
races could be missed.

A naive solution that, for each combination of faults selected by LDFI to inject, exercised
all possible message delivery orders would be intractable for anything but small systems. Of
course, in a great many cases, the order in which messages are delivered to a particular replica
has no effect on the final state or behavior of that replica, because those messages commute
with respect to the downstream message-processing logic. A possible solution to this problem
would be to reason directly about the mathematical properties of the message-processing
program logic. This resembles the problem of verifying the properties of the CRDT merge
operation. With the help of a solver capable of reasoning about commutativity, we might be
able to prove that particular pairs of messages commute, and pay the cost of exploring a
larger state space only for those pairs of operations for which we cannot find such a proof.

3.3 Precise reasoning about transitive closure in a language of
consistency contracts

The Quelea programming model [39] offers an innovative approach to programming against
replicated data stores that offer a mix of consistency guarantees. The idea is that programmers
annotate functions that operate on replicated data with contracts that describe application-
level invariants, expressed in a small contract language. For example, to enforce the balance ≥
0 invariant from our example banking application, the programmer can annotate the withdraw
operation with a contract specifying that calls to it must synchronize with other withdraws
or deposits. A given operation might be executed against several different backing stores,
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Figure 4 A lazy SMT architecture.

each of which has its own consistency guarantee, specified using the same contract language.
Quelea then calls off to an SMT solver, which performs contract classification to determine
the weakest consistency level at which each operation must be run (and therefore the backing
store against which it can run with the least synchronization). Under this approach, the
application programmer is able to think in terms of the application-level invariants that their
code needs to satisfy, instead of having to think about the whole zoo of consistency options.

The Quelea contract language had to be carefully crafted to make contract classification
decidable. For example, causal consistency is defined in terms of a transitive happens-before
relation: if event 1 happens before event 2 and event 2 happens before event 3, then event
1 happens before event 3. However, transitive closure is not expressible in first-order logic,
so the developers of Quelea have to make do with a relation that expresses a superset of
transitive closure. As a result, in Quelea’s notion of happens-before, some events that are
actually independent are instead considered to have a happens-before relationship, leading
to more synchronization than is strictly necessary to enforce causal consistency. A custom
consistency-aware solver could make it possible to avoid such compromises.

4 Building a consistency-aware solver

SMT solvers allow us to check that an implementation satisfies a specification by encoding
both as a formula understood by the solver, where satisfiability (or unsatisfiability) of the
formula corresponds to the truth of the property we want to verify. The SMT problem is
a generalization of the famous SAT problem of determining whether a Boolean formula is
satisfiable. With SMT, formulas may additionally contain expressions that come from various
theories – the “T” in “SMT”. For instance, in the theory of linear real arithmetic, formulas
can contain real-valued variables, addition, subtraction, and multiplication operations, and
equalities or inequalities over the real numbers. Modern solvers such as Z3 come with a
variety of built-in theories, such as linear arithmetic, bit-vectors, strings, and so on.

SMT solvers may operate in either an eager or an lazy manner. In the eager approach,
the solver takes the SMT formula provided as input and essentially compiles it down to a
Boolean SAT formula, which it can then hand off to a SAT solver. This is possible to do as
long as the theory of the input formula is decidable, but in the process of compiling to the
Boolean SAT formula, one may lose the high-level structure of the problem, and with it the
ability to efficiently apply domain knowledge from the original theory. Modern SMT solvers
therefore tend to use the lazy approach, which also involves an underlying SAT solver, but
additionally involves a collection of theory solvers that are each specific to a certain theory.
Theory solvers reason at a higher level of abstraction than the underlying SAT solver, with
which they communicate via a solver core, as shown in Figure 4.
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The efficiency advantage of the lazy approach to SMT solving is an example of the
more general principle of exploiting domain knowledge for efficiency. For example, high-
performance embedded domain-specific languages (DSLs) such as those built using the Delite
DSL framework [33, 12, 7] trade off generality to gain both expressivity and efficiency; a
high-level representation of programmer intent enables the compiler to do optimizations that
it would not have enough information to do otherwise.

One particularly compelling recent example of a domain-specific SMT solver is the
Reluplex SMT solver for verifying properties of neural networks [22, 23]. In SMT-based
neural network verification, one encodes a description of a trained network and a property
to be proved about it as a formula that the solver can determine the (un)satisfiability
of. The tractability of the verification task depends on the ability of the solver to reason
efficiently about activation functions, which allow networks to learn potentially extremely
complex non-linear functions (indeed, without them, a network could only compute a linear
combination of its inputs). The Reluplex solver enables efficient reasoning about a particular
kind of activation function, the rectified linear unit (ReLU), by extending an existing theory
solver for linear real arithmetic to additionally handle a new ReLU primitive and allowing
SMT constraints representing ReLUs to be lazily split into disjunctions. This “lazy ReLU
splitting” approach changes many verification problems from intractable to tractable and
has made possible the verification of networks one to two orders of magnitude larger than
the previous state of the art could handle [35].

Although we are interested in a different domain than Reluplex, we are inspired by how
it illustrates the power of domain-specific solvers to bring about significant improvements in
solving efficiency. It might even be possible to apply the lessons learned from the Reluplex
work to our own domain of reasoning about distributed consistency. However, it is worth
pointing out that a consistency-aware solver might not necessarily extend an existing theory
solver with new primitives as Reluplex does. Instead, the best efficiency improvement might
come from taking functionality away from existing theory solvers. For instance, Ge et al. [18]
developed an custom solver for reasoning about ordering constraints in concurrent programs
by starting with an existing theory of integer difference logic and then customizing it to
remove unwanted functionality that was irrelevant to the problem at hand.

Regardless of the approach taken, a consistency-aware theory solver would need to reason
about partial orders, in both strict (irreflexive) and non-strict (reflexive) varieties. Partial
orders are essential for specifying CRDTs [38] and notions of consistency such as causal
consistency [27, 1], and have been a recurring theme in previous work on concurrent and
distributed programming models [2, 13, 24, 26, 25]. However, no off-the-shelf solver that
we are aware of provides a built-in theory of partial orders. Indeed, off-the-shelf solvers
have difficulty handling transitive relations, forcing systems to implement conservative
workarounds [39]. Partial orders are ubiquitous in computer science, in areas as diverse
as static analysis [14], information-flow security [17], and the semantics of inheritance in
object-oriented programming [11], and we anticipate that a solver capable of efficient native
reasoning about partial orders would have applications beyond our intended domain of
distributed consistency.

Finally, as part of our proposed research agenda of building consistency-aware solvers,
we want to consider the broader problem of theory solver development. The architecture
of a lazy SMT solver, as shown in Figure 4, appears to lend itself very well to a modular
style of development in which theory solvers can be developed independently. Unfortunately,
in practice it would seem that SMT solvers are monolithic, and SMT internals expertise is
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required for implementing new theory solvers.2 Although much research in programming
languages (and distributed systems) now makes use of SMT solvers, the solver itself is
generally treated as a black box, and theory solver implementation is considered the territory
of the same SMT internals experts who implement the solver core.

We argue that programmers should not have to be SMT internals experts in order to
implement theory solvers for their domain of interest. We propose to evaluate that claim by
developing a framework for implementing custom, efficient domain-specific solvers. In doing
so, we hope to democratize theory solver development and make it accessible to programmers
who are not SMT internals experts, in the same way that Delite aimed to democratize DSL
implementation and make it accessible to programmers who are not compiler experts.
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Abstract
Programming efficient distributed, concurrent systems requires new abstractions that go beyond
traditional sequential programming. But programmers already have trouble getting sequential code
right, so simplicity is essential. The core problem is that low-latency, high-availability access to
data requires replication of mutable state. Keeping replicas fully consistent is expensive, so the
question is how to expose asynchronously replicated objects to programmers in a way that allows
them to reason simply about their code. We propose an answer to this question in our ongoing
work designing a new language, Gallifrey, which provides orthogonal replication through restrictions
with merge strategies, contingencies for conflicts arising from concurrency, and branches, a novel
concurrency control construct inspired by version control, to contain provisional behavior.
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11:2 A Tour of Gallifrey, a Language for Geodistributed Programming

1 Introduction

The modern internet landscape is filled with geodistributed programs: single logical applica-
tions split among thousands of machines across the globe. These programs present the illusion
of a single available object – be it a Twitter feed, a Facebook timeline, or a Gmail inbox –
which is implemented as a constellation of copies, loosely synchronized across perhaps dozens
of data centers. This weakly consistent replication became popular due to its performance
benefits, but at a significant cost: where objects were once stored on databases offering strong
consistency, consistency must now be recovered through the careful effort of application
programmers.

Needless to say, it is hard to correctly synchronize replicated objects in this setting.
And while past work (Section 6) has created an excellent foundation, existing solutions
lack modularity and compositionality. Typically, they either fail to provide whole-program
guarantees or rigidly constrain what can be replicated and how it should be replicated. Few
systems provide consistency guarantees without forcing the entire program into a single
consistency model.

This paper proposes Gallifrey, a general-purpose language for distributed programming,
whose guiding principles are extensibility, modularity, and flexible consistency. Gallifrey’s
design encourages extensibility and modularity through the principle of orthogonal replication.1
Under orthogonal replication, the conflict-handling strategy for a replicated object is separated
from the implementation of the object itself. Any object can be replicated, yet no object
must be replicated.

Gallifrey embodies this principle through a language mechanism, restrictions. Restrictions
refine the interface of a sequential object and provide a merge function to resolve concurrent
use of allowed methods. Crucially, objects are not tied to a single restriction: programmers
may implement many restrictions for a given interface, and may use these restrictions on any
object which satisfies this interface. Further, the restrictions on an object may change over
time.

Gallifrey combines restrictions with a strong type system to ensure strong consistency
and race freedom by default. Objects in Gallifrey are subject to an ownership-based linear
type system to ensure that at most a single thread has access to any given object at a
time, and that fields of replicated objects can only be accessed via a correct restriction.
Further, restrictions are statically checked to ensure all permitted operations commute,
allowing programs to safely operate against replicated state asynchronously, without needing
to coordinate during normal execution.

But strong consistency without coordination does not constitute a sufficiently powerful
programming model. Gallifrey goes further by introducing the idea that restrictions can
specify provisional operations that are not required to commute and are therefore, in general,
unsafe to use without coordination. Provisional operations can be used only from within
explicit branches, a new primitive inspired by distributed version control. Branches represent
explicit forking of state and serve as the basis for threads, transactions, and speculative
execution. Branches and provisional operations combine to allow speculative execution;
provisional methods executed within a branch remain isolated in that branch until it is
explicitly merged, either synchronously or asynchronously. When merged synchronously,
branches have the semantics of optimistic transactions, and thus sacrifice no consistency;
when merged asynchronously, branches have a weakly consistent semantics, as provisional

1 The name is inspired by orthogonal persistence [6].
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1 interface Library {
2 int numItems ();
3
4 unique Set[Item] getItems ( unique String col)
5 requires collection (col );
6
7 void addCollection ( unique String col)
8 ensures collection (col );
9

10 void addItem ( unique Item i, local String col)
11 requires collection (col)
12 ensures next( numItems ()) >= numItems ();
13
14 // also moves items in col to a default collection
15 void removeCollection (local String col)
16 ensures ! collection (col) && (next( numItems ()) == numItems ());
17 }

Figure 1 Library interface. requires and ensures refer to pre- and postconditions respectively.
collection is an abstract predicate indicating the presence of a collection in the library.

operations contained within a branch may conflict with other concurrent operations. To
compensate for such conflicts, programmers provide a callback as a contingency to be executed
if a conflict does occur.

We are working toward a formalization and implementation of Gallifrey, and we hope that
it adds to the recent resurgence in designing language abstractions for distributed systems.

2 A running example

To better understand the difficulties of programming with replicated objects and how
Gallifrey makes this task easier, we introduce a running example. Consider a “library” object
(Figure 1) that maintains a set of items grouped by collections – for example, a set of
books collected under “Programming Languages” might include Structure and Interpretation
of Computer Programs [1] and Types and Programming Languages [46]. Alice and Bob
use this library object to keep citations for a paper they are writing together. Like many
academics, Alice and Bob find themselves frequently traveling to conferences, working on
their bibliography on the go – including in places with limited internet connectivity. Their
bibliography application must allow them to continue working while disconnected. Now,
suppose Alice adds a book to the collection, How to Design Programs [27], while at the
same time Bob removes the “Programming Languages” collection itself, adding its orphaned
contents to a default collection. To what state of the library should Alice and Bob’s devices
both eventually converge?

There are two strategies for responding to such irreconcilable conflicts. One is prevention:
restrict concurrent execution of operations that might conflict. For example, Alice and Bob
might agree to not remove collections from the library so that either of them can add books
safely. The second is restoration: provide a way to safely merge conflicting operations.2 Alice
and Bob can agree on a restorative strategy by allowing book additions and provisionally

2 Indigo [10] makes a similar distinction between conflict avoidance and conflict resolution.
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1 class RemoveCollectionLost {
2 local String collection ;
3 RemoveCollectionLost ( unique String col) { collection = col; }
4 }
5
6 restriction AddOnly for Library {
7 allows addItem ;
8 }
9

10 restriction AddWins for Library {
11 allows addItem ;
12 allows removeCollection contingent RemoveCollectionLost ;
13 test sizeAtLeast (int n) { return numItems () >= n; }
14
15 merge (op1 , op2)
16 where op1 = addItem (_,c) && op2 = removeCollection (c) {
17 delete op2 with RemoveCollectionLost (c);
18 }
19 }

Figure 2 Restrictions for Library interface.

allowing collection removals (with contents moved to a default collection), understanding
that in the case of a concurrent addition and removal, the removal will be invalidated. If
Bob removes a collection under this restorative strategy, he needs to understand that his
removal could be invalidated, and likely wants to be notified if the invalidation happens.

Now suppose Alice gets on a plane and wants to see what books are in the library.
Without being connected to Bob, Alice can’t be sure that the list of books she’s seeing
contains all the books in the library; after all, Bob could have added more books while Alice
wasn’t looking. Alice might be fine with this. She might just want an estimate of the state
of the library – with the option to receive a notification later if her estimate was inaccurate.
Or perhaps she was only interested in checking if the library was at least a certain size. This
she can do safely even without Bob, since Alice and Bob both agreed not to remove items
from the library.

Gallifrey’s programming model is designed for this challenging setting.

3 Restrictions for shared objects

The primary purpose of Gallifrey– safely sharing objects via asynchronous replication – is
enabled by restrictions. Restrictions represent the conflict-handling strategies for replicated
objects. Restrictions are a part of the type of a replicated object, and Gallifrey uses them at
compile time to ensure that all replicas agree on a conflict-handling strategy. Syntactically,
an object declared with type shared[R] T is of class T and is shared under a restriction R.

Restrictions are defined against a specific interface. For example, Figure 2 shows two
possible restrictions for library objects: AddOnly, which only allows addItem operations, and
AddWins, which allows addItem and removeCollection but invalidates removeCollection
in case of conflicts. These correspond to the two conflict-handling strategies in Section 2. A
restriction consists of the following parts:
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Interface refinements. Restrictions specify exactly which operations of an interface are
allowed under them. Any operation not specified in a restriction cannot be executed under
it, thus allowing for preventative conflict-handling strategies. For example, in Figure 2
AddOnly prohibits collection removals. Allowed operations in a restriction can also be marked
contingent, indicating that they are a provisional operation; this operation may need to be
rolled back due to conflicts. Client code that executes such provisional actions can register
contingency callbacks3 for such cases of invalidation (Section 5.1). For example, in Figure 2,
the AddWins restriction allows for both adding items and removing collections; the latter
is provisional and can be later invalidated with a RemoveCollectionLost contingency. In
the scenario from Section 2, this contingency could be used to send Bob a message if he
attempted to remove a collection while Alice was concurrently adding items to it.

Merge functions. Restrictions include merge functions to handle any conflicts that may
arise when two operations execute concurrently, thus allowing for restorative conflict-handling
strategies. Merge functions pattern-match over pairs of operations and their arguments, and
then dictate whether to edit the operations, delete them, or synthesize new ones. Merge func-
tions can also call contingencies of provisional operations as needed. For example, in Figure 2,
the merge function for AddWins invalidates collection-removal operations concurrent with op-
erations that add an item to the same collection, and then calls the RemoveCollectionLost
contingency of the invalidated remove operations.

Monotonic tests. Because updates to replicated objects can be reordered, reads of the
object’s state before convergence can vary across replicas. Thus, reading a replicated object’s
state directly is usually eschewed: instead, a special class of reads, found in programming
models such as LVars (threshold reads) and Lasp (monotonic reads), is defined [36, 41].
Restrictions provide a similar functionality with monotonic tests: boolean expressions whose
value is guaranteed to remain true once it becomes true, no matter what further operations
are received by the replica. With this property, monotonic tests can be used for triggers, code
whose execution is blocked until a monotonic test becomes true. For example, in Figure 2
the AddWins restriction has a sizeAtLeast test that returns whether the number of items in
the library has passed some threshold. If Alice (from Section 2) is worried that the library is
getting too big, then this test can be used to inform her that the library is bigger than some
threshold size. This test cannot be invalidated because collection removals do not remove
items, but rather move them to a default collection.

3.1 Safety guarantees
Importantly, restrictions are intended to offer the following type-safety guarantees:

No object can perform an operation forbidden by the restriction under which it is shared.
Merge functions are exhaustive: all possible conflicts between operations allowed under a
restriction are handled by a merge function declared in the restriction.
Monotonic tests cannot be invalidated: once their value is true, their value will always be
true afterward until replicas explicitly coordinate.

Taken together, these three guarantees provide a strong safety result: a program with
correct merge functions, correct precondition and postcondition annotations, and no contin-
gencies, always enjoys strong consistency.

3 Helland and Campbell call these “apologies.” [34].
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To support these guarantees, we take inspiration from Indigo [10] and annotate interfaces
of shared objects with pre- and postconditions, which are written as logical formulas over
abstract predicates and read operations defined in the interface. Abstract predicates do not
have a concrete definition; they are asserted directly in pre- or postconditions in order to
describe the assumptions and effects of an operation over an object’s state. Including read
operations in the language of postconditions allows us to connect these postconditions with
the state of the object, describing how subsequent reads will be affected by an operation.
These annotations allow the detection of conflicts that arise from concurrent operations – for
example, when the postcondition of one operation violates the precondition of another, or
when two operations have conflicting postconditions. Thus the type checker can determine
whether all such conflicts are handled by the merge function. The annotations can also be
used to determine whether operations can violate the monotonicity of tests. Like Indigo,
we plan to use an SMT solver to verify that the pre- and postcondition annotations on
operations are consistent with our desired safety guarantees [10].

Consider the annotated Library interface in Figure 1 and its restrictions in Figure 2.
Here, addItem adds an item to an existing collection if it is not already in the collection,
so its postcondition says that the return value of numItems after invocation of addItem (i.e.
next(numItems())) is at least the return value of numItems before invocation – the number of
items in the library remains the same or it increases by one. Meanwhile, removeCollection
removes a collection from the library without removing the items in it from the library,
instead moving orphaned items (those not in any other collection) to a default collection.
Since the postcondition of removeCollection violates the precondition of addItem when
their arguments reference the same collection, the concurrent operations conflict, which
is handled by the merge function for AddWins – otherwise, if the merge function does not
handle this conflict, AddWins will be rejected at compile time because its merge function is
not exhaustive. Note that the sizeAtLeast test in AddWins is verified to be monotonic at
compile time because the allowable operations under AddWins have postconditions that do
not decrease the value of numItems().

3.2 Transitioning between restrictions
One might find shared object restrictions too restrictive: since they are essentially static
contracts, they might appear to ban certain operations throughout the entire lifetime of a
shared object. Prior work [40,48,57] has shown that loosely synchronized replicas can eschew
coordination for most operations, and then coordinate only to safely change established
invariants. Taking a cue from this work, we propose the ability to transition shared objects
across restrictions. The strict separation of object implementations and conflict resolution
strategies allows programs to dynamically transition between restrictions, changing the
conflict-handling strategy of shared objects over time. Coordination between replicas during
transition points ensures that replicas always agree on the conflict-handling strategy for an
object. We introduce new language constructs to support this feature.

Union restrictions. First, we introduce a new kind of restriction, a union restriction, which
is composed of a set of restrictions. Replicated objects shared under a union restriction
always are associated with a concrete restriction, which must be a member of the union, at
runtime. Like regular restrictions, union restrictions are part of the type of a shared object:
syntactically, an object declared with type shared[U] T is of class T and is shared under a
union restriction U. For example, Figure 3 defines a union restriction Threshold defined for
the Library interface at line 5, ranging over the AddWins and ReadOnly restrictions, and
the field library is declared as a shared[Threshold] Library.
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1 restriction ReadOnly for Library {
2 allows getItems ;
3 }
4
5 restriction Threshold = AddWins | ReadOnly
6
7 class LibraryClient {
8 shared [ Threshold ] Library library ;
9 shared [ Messaging ] User user;

10
11 public LibraryClient ( shared [ Threshold ] Library lib ,
12 shared [ Messaging ] User u) {
13 library = lib;
14 user = u;
15 match_restriction library with
16 | shared [ AddWins ] Library awlib {
17 changeRestriction (awlib );
18 }
19 | shared [ ReadOnly ] Library rolib { }
20 }
21
22 void addItem ( unique Item item , unique String collection ) {
23 match_restriction library with
24 | shared [ AddWins ] Library awlib {
25 awlib. addItem (item , collection );
26 }
27 | shared [ ReadOnly ] Library rolib {
28 throw ClientException (" Library is read only!");
29 }
30 }
31
32 void removeCollection ( unique String collection ) {
33 match_restriction library with
34 | shared [ AddWins ] Library awlib {
35 provisionallyRemove (awlib , collection );
36 }
37 | shared [ ReadOnly ] Library rolib {
38 throw ClientException (" Library is read only!");
39 }
40 }
41
42 unique Set[Item] getItems ( unique String collection ) {
43 match_restriction library with
44 | shared [ AddWins ] Library awlib {
45 throw ClientException (" Library must be read only!");
46 }
47 | shared [ ReadOnly ] Library rolib {
48 return rolib. getItems ( collection );
49 }
50 }
51
52 void changeRestriction ( shared [ AddWins ] Library awlib) {...}
53
54 void provisionallyRemove ( shared [ AddWins ] Library awlib ,
55 unique String collection ){...}
56 }

Figure 3 Client that uses a shared library object.
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1 void changeRestriction ( shared [ AddWins ] Library awlib ){
2 thread (awlib , user) {
3 when (awlib. sizeAtLeast (100)) {
4 user. sendMessage (" Library is too big!");
5 transition (awlib , ReadOnly );
6 }
7 }
8 }

Figure 4 Using a trigger to transition restrictions.

Matching restrictions. Objects shared under union restrictions can at run time be in
any of the restrictions specified; but all replicas must agree on which concrete restriction
they are under. To determine the current restriction of an object shared under a union
restriction, Gallifrey provides a match_restriction construct, which allows the programmer
to exhaustively match over all the constituent restrictions of the union restriction. For example,
at Figure 3 line 23, the addItem method uses this construct to test whether the library
currently allows modification. Gallifrey may synchronize before this match_restriction to
ensure that all replicas of the shared object agree on the shared object’s current restriction.

Transitioning restrictions. Next, we introduce the ability to transition between restrictions.
The primitive operation transition() creates a request to transition an object shared
under a union restriction to one of its constituent restrictions. After any replica requests a
transition, Gallifrey’s runtime asynchronously initiates a transition at all replicas. A reference
shared with a union restriction allows transitioning only among its constituent restrictions,
ensuring a statically known bound on the possible restrictions on referenced shared objects.
A transition induces coordination among nodes that hold a reference to the shared object to
establish consensus on the new restriction for the shared object. This process is asynchronous;
the transition does not necessarily take place immediately, so to use the shared object under
the new restriction, one must match over the union restriction. When a transition is in
progress, match_restriction may block until it is complete, after which the arm for the
new restriction is executed. Note that transition() is a request: it does not guarantee
that the transition occurs, since it can fail for various reasons (e.g., coordination times out,
or there is a concurrent transition to another restriction that overrides the request). Thus,
match_restriction is needed to check if the transition actually succeeds.

For an example of transitions between restrictions, consider Figure 4. The LibraryClient
constructor calls changeRestriction, which creates a thread with a new replica of the
library object that adds a trigger to transition its library object to ReadOnly when the library
reaches a certain size using the sizeAtLeast test defined in AddWins. The addItem and
removeCollection methods match on the current restriction of the library to ensure it is
AddWins; otherwise the methods throw an exception. The getItems method does something
similar for the ReadOnly restriction.

4 Tracking aliasing and replication

Restrictions are an answer to how objects are shared – but not all objects need to be shared,
and we do not want to pay the cost and complexity of sharing unnecessarily. Therefore
Gallifrey must support both replicated and non-replicated objects. When these replicated and
non-replicated objects interact, Gallifrey needs to guarantee restriction safety: all fields of a
replicated object, if not explicitly shared under their own restriction, can only be accessed
via the object’s restriction.



M. Milano, R. Recto, T. Magrino, and A. C. Myers 11:9

To see why this rule is important, consider the following example: an implementation
of the Library interface (Figure 1) which internally uses a Set to store its contents. When
an instance of this Library is shared under some restriction, Gallifrey relies on the fact
that all mutations to the internal state of this shared library occur via operations on its
restricted interface. If the internal Set is accessed via an alias outside of the shared library’s
restriction, then there is no guarantee any mutations made via this outside alias adhere to
the restriction’s requirements.

Gallifrey captures the interactions between replicated and non-replicated objects via three
reference qualifications: shared, unique, and local. The shared qualifier indicates that
objects of the qualified type are replicated. When a shared reference is passed to a new
branch or thread (Section 5.1), it implicitly constructs a new replica owned by that thread.
These shared references can be created by combining an existing unique reference with a
restriction, after which the original unique reference is destroyed. Due to the implications of
orthogonal replication, the implementation of a shared object need not know it is shared; an
object sealed under a restriction and shared reference still has unrestricted access to itself.
We see shared references in use in Figure 3.

Handling non-replicated references is somewhat more complex. Our type system for
unique and local (collectively, unshared) references must provide two core guarantees: that
at most a single thread has access to an unshared reference at a time (race freedom) and
that no references to the unshared fields of shared objects exist outside of those shared
objects (restriction safety). To enforce these guarantees, we propose to combine a linear type
system with a notion of ownership (as has been done previously [29]). Unshared references
in Gallifrey are always ultimately owned by a thread or shared object. We treat unique
references linearly, while local references, which can be aliased within an owner, must be
externally reachable via only their owner.

The unique reference qualification denotes transferable ownership. A unique reference is
an affine resource; its use is tracked by the type system and it cannot be aliased. A unique
reference dominates its object graph: all references transitively reachable via a unique
reference are reachable via no other external references. This provides an isolation guarantee:
a unique reference is the only way to access the object graph to which it refers. This
guarantee in turn allows Gallifrey to send unique references across concurrency boundaries
without inviting race conditions or requiring costly run-time techniques. Similar unique
references have received a great deal of support in recent language designs, including Rust [49],
C++-11 [18], Wyvern [43], and Pony [22]. Unlike many of these languages, Gallifrey does
not propose to use linearity to track memory usage, but rather only to prevent concurrent
access. Because of their ability to cross concurrency boundaries, unique references are the
correct reference to use when sending messages to shared objects, as we see in Figure 3.

The local reference qualification denotes non-transferable ownership. A local reference
statically knows its direct owner but is not linearly tracked. Direct owners of local references
are inferred at creation time based on the context in which the local reference is created; for
example, a local reference created in a constructor which received only unique references
as parameters is directly owned by the object under construction. We see a use of local
references in Figure 2. Local references cannot escape their owner without destroying it; in
exchange for this restriction, local references enjoy relaxed aliasing rules. Local references
can be freely aliased so long as all aliases share the same owner. For example, a set of local
references owned by a single object are allowed to form cycles to each other. Like unique
references, local references are inspired by a long history of language design [3, 14,15,21].
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1 void provisionallyRemove ( shared [ AddWins ] Library awlib ,
2 unique String collection ){
3 Branch tok = branch (awlib , collection ) {
4 awlib. removeCollection ( collection );
5 };
6 tok.pull( RemoveCollectionLost rclost => {
7 user. sendMsg (" Cannot remove collection " + rclost . collection );
8 }, Success succ => {
9 user. sendMsg (" Removed collection " + succ. collection );

10 });
11 }

Figure 5 Using branches for a provisional operation with contingency.

5 Revisiting provisionality: branches and contingencies

Section 3 discussed Gallifrey’s use of restrictions to guarantee strong consistency and whole-
program convergence in the absence of provisional methods. But without provisional methods,
only very limited sets of operations may appear in a restriction – for example, commutative
writes and tests, or exclusively reads. These limitations are impractical for many common
programs; sometimes programs may need to read and write a shared object, without stopping
for consensus between operations.

This is exactly the role of provisional methods. Provisional methods leave open the
possibility of conflicts; in exchange, there are no limitations on what a provisional method
can do. These methods are executed optimistically, allowing users to continue operating
against replicated state without stopping for consensus.

But one cannot simply execute potentially conflicting actions without acknowledging the
significant inconsistency invited by doing so. To partially recover from this, Gallifrey pairs
every provisional method with a contingency: a named callback intended to recover from –
or at least apologize for – any consistency error resulting from using a provisional method.
Contingencies are invoked directly from the merge function for the associated restriction,
and so can receive any necessary information from the merge. As a simple example of the
use of these features, recall the running example introduced in Section 2. In this example, we
considered allowing Bob to provisionally remove a collection from the library, while leaving
open the possibility that a merge function would reject this operation. To compensate, Bob
registers a contingency callback, which sends an error message indicating the removal did
not take place (Figure 5, line 7).

5.1 Branches
Using provisional methods and contingencies raises important semantic questions. After
the invocation of a provisional method on a shared object, are all subsequent uses of this
object also provisional? If a provisional observation from an object flows to other values in
the program, should those values also be considered provisional? What if that flow reaches
different, unrelated shared objects? And precisely where is the right place to register a
contingency callback – close to the provisional invocation, or close to the eventual visible use
of its result?

In Gallifrey, the key to answering all these questions is a new mechanism called branches.
Branches exist to contain provisionality; like their namesake in the world of version control,
every branch possesses its own fork of state, isolated from external mutations until it is merged
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back into its parent. Programmers may enter and exit (“check out”) in-progress branches,
spawn sub-branches, and freely choose to discard or merge branches. When a provisional
operation occurs within a branch, then the entire branch is considered provisional; any code
that executes after a provisional operation may be tainted by that provisional operation,
and so inherits all of its potential for conflict. Helpfully, branches also allow deferring the
point at which contingencies are required. Because branches are strongly isolated from the
remainder of the system, any potential conflicts are safely contained within the branch; the
only point at which these conflicts become visible is when the branch attempts to merge
with the outside world. It is precisely this point at which we require programmers to supply
contingencies.

Syntactically, branches are created by the syntax branch(args...){body}, as in Figure 5.
The args... is a list of shared or unique objects that the branch now owns, and which
are available within the branch’s body. When a unique object passes into a branch, its
ownership is moved; thus past references to these objects are no longer valid. When a shared
reference first passes into a branch, a new replica is made for the branch. The branch’s
body is executed immediately, after which control proceeds with the statement immediately
following the branch. The branch construct also returns a token via which programmers can
interact with the branch. This token is linear; it cannot be aliased, and it must be either
merged or aborted before it goes out of scope.

A typical use of the branch’s token, as seen in Figure 5 on line 6, is to optimistically
merge the branch into the calling context via pull. This construct immediately merges
everything in the branch with pull’s calling context, leaving open the potential for conflict
with other, as-yet-unmerged branches. Because of this potential for future conflict, users
must provide a set of contingency callbacks covering all provisional behavior that occurred
on this branch. These callbacks are intended as a means to repair any damage done in the
case of a consistency violation caused by any conflict.

To avoid the possibility of conflict, Gallifrey’s branches also support a synchronous commit
operation. commit blocks until a consensus can be reached among replicas, deciding which
provisional operations are consistent with global state, and which, having been found in
conflict with already accepted operations, should be rejected by the system. After commit,
all effects from within the branch become visible to the wider system; operations rejected
due to conflict are re-executed against consistent state, with the new results replacing the
old. With commit, branches become a generalization of transactions. Branches operate on an
isolated snapshot of state, apply the effect of all their operations, verify that their snapshot
remains consistent with the system at large, and re-execute their operations if not.

This token can be used for more advanced features as well. With token.abort(),
programmers can explicitly abandon the branch. With token.peek, programmers can steal
a reference to the branch’s state without first merging the branch, and without needing to
supply contingencies so long as the result of peek does not influence any visible actions
outside the branch.

These features are illustrated in Figure 6. This figure introduces the example of with-
drawing from an ATM. The method takes a shared bank account which supports provisional
withdraw() and provisional balance(), with contingencies Overdraft and UpdatedBalance
respectively. The withdrawal is allowed to proceed provisionally if the chance for overdraft is
low; if the chance of overdraft is high then it instead chooses to synchronously commit the
withdrawal.
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1 void atm_withdraw ( shared [All] Account acct , unique Integer amnt) {
2 Branch tok = branch (acct ,amnt ){
3 unique Integer withdrawn_amnt = acct. withdraw (amnt );
4 unique Double percent = withdrawn_amnt / acct. balance ();
5 };
6 if (tok.peek[ percent ] <= 0.25){
7 tok.pull( Overdraft amnt => { charge_overdraft (acct) },
8 UpdatedBalance => { /* ignore */ });
9 } else tok. commit ();

10 }

Figure 6 More advanced features of branches.

5.2 Information flow in branches

Branches in general – and peek in particular – require fine-grained tracking of provisionality.
Gallifrey tracks provisionality using an information flow type system [50].

In an information flow type system, values are associated with labels drawn from a
lattice. Our lattice contains elements that are sets of provisional methods, ordered by subset
inclusion. Each value is labeled with the set of provisional methods which have influenced it.
Values labeled with the empty set (indicating they have not been influenced by provisional
behavior) live at the bottom of the lattice (⊥), while values which have been influenced by
all possible provisional behavior live at the top (⊤). To prevent computation from depending
on provisional observations, information should be influenced only by information whose
label is a subset of that of the influenced information. Information flow handles both direct
influence, like assignment, and indirect influence, like control flow.

Every reference and variable in Gallifrey – including unique, local, shared, and even
branch tokens – is associated with one of these provisional labels. Branch tokens are somewhat
special; branches contain computation, and so their labels indicate the set of provisional
methods that have been called within them. Similarly, in order to call a provisional method on
a shared reference it must be possible to type that reference with an appropriate provisional
label – which in turn means it must reside within a branch that can be typed with the
appropriate label.

Provisional labels define precisely where the effects of provisional behavior may be visible,
enabling the safe use of peek. With token.peek[ref], users can read a unique value from
a branch and use this value outside of the branch’s scope. This value’s label contains the
provisional operations from the branch which have influenced it. For example, a user can
use a peeked value to decide whether its branch should be synchronously commited or
asynchronously pulled (Figure 6 line 6).

Our information-flow types also delay the point at which contingency callbacks for peeked
values must be supplied. This is because contingencies are only necessary when provisional
operations have influenced some visible action; in Gallifrey, visible actions can only be
influenced by values with the empty provisional label (⊥). Thus our information-flow type
system will prevent a peeked value from influencing a visible action unless the peeked value
is endorsed, an operation which downgrades its label so that it can be used in contexts that
do not allow influence from provisional operations. It is at this point of endorsement that
the user must provide contingency callbacks. For example, a user might peek a value from
a branch, transform it, and print the result; it is at the point of printing the result that
the user must endorse the peek, making it easy to supply callbacks which apologize for the
observed effect of the peek – the printed value.
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6 Related work

Handling conflicts in concurrent operations. A recent trend is to treat conflict-handling
strategies as part of a shared object’s implementation, as seen in the literature on conflict-free
replicated data types [52] (CRDTs) and as seen in programming models such as Bloom [4],
Cloud Types [17], Lasp [41], and others [35, 36, 53]. Earlier systems – like Bayou [56],
Dynamo [25], and others [23, 51] – often specify conflict handling separately from an object’s
implementation. But these systems do not ensure that conflict handling is sensible: they
leave the job of merging inconsistent state entirely to the user, inviting errors by allowing
partial, incorrect, or even inconsistent merge functions. Gallifrey takes this second approach,
since restrictions are defined separately from interfaces, and can be defined without access
to implementation internals. However, it aims to provide stronger guarantees that these
systems by making restrictions part of a shared object’s type, allowing unsafe use of the
shared object to be rejected at compile time (e.g. when prohibited operations are used, when
a merge function is not exhaustive, when the monotonicity of a test can be violated by an
allowed operation).

Speculative operations. To provide higher availability in a geo-replicated setting, some
systems expose speculative operations in their programming model. Correctables [32] provides
a mechanism to speculate on preliminary values returned by weakly consistent operations.
If the final values returned by strongly consistent operations do not match the preliminary
values, then Correctables allows programmers to recompute or discard the effects of the
initial speculation. PLANET [45] provides callbacks that fire depending on what stage a
transaction is in before a specified timeout, also allowing users to specify a stage when it
speculatively commits (i.e., will commit “if all goes well”, with some explicit probability that
all will go well). It also provides callbacks that fire when the final status of the transaction
is known, allowing users to execute apologies [34] when it was speculated to have committed
but was ultimately aborted. In a different setting, Concurrent Revisions [16] provides an
intuitive programming model for parallel programs by allowing “revisions” to fork off the
state of objects and then to join revisions back into their parents by merge functions specified
using revision types. Gallifrey takes a similar approach, allowing programmers to speculate
at the language level within explicit branches (Section 5.1) that fork off the state of shared
objects. Branches can be used without coordination among replicas, in which case Gallifrey
requires our own notion of “apologies” via contingency callbacks; with coordination, branches
enjoy strong consistency – no apologies needed.

Coordination avoidance. Work on coordination avoidance in distributed databases has
shown that nodes need to coordinate only when they would otherwise execute operations which
violate specified invariants [7,10,40,47,48,57]. Gallifrey’s restrictions (Section 3) embody this
principle by refining the interface of a shared object such that only specific operations are
available at every replica. Restrictions are a type-safe mechanism for coordination avoidance,
rejecting programs that violate invariants at compile time. In particular, Indigo presents a
framework for users to develop replicated objects which allow commutative operations [10].
Indigo allows the programmer to specify pre- and postconditions, used to statically determine
which pairs of operations may conflict. When operations are determined to conflict, Indigo’s
compiler inserts appropriate code to use reservations [47] in a way that is analogous to
Gallifrey’s restrictions. We similarly use pre- and postcondition annotations to determine
when operations conflict in checking for the exhaustiveness of merge functions. Additionally,
we use these annotations to check that the monotonicity of tests are not violated by allowed
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operations in the restriction. Unlike Gallifrey Indigo does not support orthogonal replication;
its analysis is performed on the object interface, while ours is performed on the restrictions.

Linear and ownership types. Linear and ownership type systems have been long studied
as mechanisms to avoid races in concurrent code. Linear type systems were identified as a
mechanism by which ownership, or alias restriction, could be tracked at least as early as
Clarke’s work in 1998 [21]. Using ownership and linearity to allow for safe concurrency has
been explored several times, but was first investigated by Flanagan and Abadi [28]. Ownership
types without linearity have been used to avoid races in several previous works [12–15,20,24,
33,54]; linear type systems for concurrency safety have been similarly well-studied [26,30,31].
By ensuring that all owners are linear, Gallifrey can combine the concurrency protections
of linear references and ownership references. This combination is reminiscent of linear
regions [29].

7 Future work

We now give a high-level description of open questions, potential challenges, and possible
solutions as we flesh out Gallifrey’s design and implementation.

7.1 Extensions to the language design
Bootstrapping. Our language as described to this point works well for objects which require
symmetric replication across a potentially unbounded group of nodes. It is mute on the
question of bootstrapping: how does a newly-started node initially receive a replicated object
to use? For this, we take inspiration from Fabric [38] and provide syntax by which a program
can name a global variable located on some other Gallifrey node. Concretely, we plan to
support the syntax gal://hostname.tld/TypeName/Restriction/instance_name to name
the global object instance_name of type shared[Restriction] TypeName located on the
machine at hostname.tld.

Typestate and reopening branches. Earlier in this paper, we mentioned that Gallifrey
programmers can enter and exit in-progress branches.
With the syntax token.open(args...){body} programmers can re-enter a branch, passing
it new references to own and giving it a new body to execute. The body here has access
to all the objects the branch already owns in addition to the ones newly passed in via
open. To further refine our information-flow type information and to enable the token.open
feature, Gallifrey employs typestate on branch tokens and unique references. With typestate,
linear items can acquire additional labels on their types as the program evolves. Combining
information flow with typestate yields a novel variant of statically tracked, flow-sensitive
information flow. For token.open, this means that provisional behavior introduced during
open’s body does not require a provisional label on the token before the point of open. Using
this we can also extend abort and pull, allowing programmers to recover (via peek) unique
objects owned by branches even after they have completed.

Actors. Gallifrey’s replicated objects are best suited to a setting where all replicas are peers;
we cannot comfortably capture concepts like “all nodes may perform some operations and
a designated owner node may perform some additional operations”. To support explicitly
centralized objects, Gallifrey should include a native notion of actors [2]. We have not yet
explored how actors fit into the design of Gallifrey.
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Subtyping on restrictions. We desire subtyping on restrictions for two reasons. First, we
would like to make it easy for users to write parametric code. It should not be an error to
pass a more permissive restriction (i.e., more operations allowed) to a function that expects
a less permissive restriction. The second is for encapsulation: a programmer may wish to
expose a reference to a shared object via a restriction that permits fewer operations on that
object, retaining the more permissive restriction for themselves. To implement subtyping, we
plan to view restrictions as records of their allowed operations (with contingencies) and use
standard width subtyping on records.

Borrowing unshared values. Gallifrey’s type system guarantees race-freedom in the presence
of replicated objects, but relies on a strong set of linear types in order to do so. Using these
types is restrictive; writing something as simple as a print function involves one print that
takes and returns unique values, and another print which only works with local values.
Most linear or ownership type systems avoid this problem with an explicit notion of borrowing
– taking ownership of a resource temporarily, and returning it to the user afterwards. We
need to create a notion of borrowing that works with both local and unique objects.

Extensions to monotonic tests. Monotonic tests are used with when blocks to set up a
trigger. When the condition in the when block becomes true, then the body of the block
executes. We believe the language of conditions within the when block’s condition could
be enriched. In general, it should be safe to use any function on tests as part of a when’s
condition so long as those functions are monotonic with respect to boolean ordering. For
example, conjunctions of monotonic tests is also monotonic: it becomes true when its
conjuncts become true, and since its conjuncts never become subsequently false, it never
becomes subsequently false either. We hope to take advantage of recent work by Clancy and
Miller [19] to statically prove such functions monotonic and thus safe for use in triggers.

7.2 Implementation considerations
We envision Gallifrey as supporting the next generation of wide-area replicated applications.
It requires an efficient, correct implementation of a compiler and a runtime system.

Run-time consistency guarantees. In order to give our branches a fighting chance of
merging (without firing their contingencies) and to cut down on the number of distinct merge
events in the system, we expect to provide a baseline of at least causal+ consistency [39] or
even prefix consistency [55] for all objects within the system. As a result, there is a natural
tree-like ordering on all events for a given replicated object – in contrast to much of the
related work [5, 36,41], which do not assume causality.

Replicated object state. We expect to represent shared objects as a log of events, containing
both mutative operations (which determine the state of a shared object) and read or
test operations (whose results must be respected by provisional mutations). A common
performance concern for systems that maintain and merge histories for replicated objects
is compaction – when can the system safely drop a prefix of the history that is guaranteed
to be stable? One possible solution is to use a vector clock to track the latest committed
update known by each replica of an object [42]. Prefixes of the history that have been
committed to all replicas, as determined by minimum of the vector clock values, can be
safely garbage collected by the system, avoiding extreme memory or storage overheads for
long-living objects. Other potential solutions include using existing designs for consistent
replicated logs that perform compaction [8,9] or enforcing a more centralized approach to
common global history [17].
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Tracking active replicas and restrictions. In order to safely and consistently commit
potentially conflicting updates to a replicated object or transition the restrictions of shared
objects, Gallifrey must contact all other replicas and ensure they will behave consistently
with respect to the update. But in order to do this, the system must know who holds replicas
of shared objects and what restrictions are guaranteed by references to the replicas. Gallifrey
applications are intended to operate in settings with large numbers of nodes that go through
periods of disconnection, making it difficult to determine if a disconnected replica intends
to reconnect and continue making progress, has failed, or is simply no longer replicating
a given object or referencing it under a particular restriction. Existing systems solve this
either by running an external membership service or having replicas manage the membership
themselves as part of the protocol.

Consistent synchronous branch merges. As mentioned in Section 5.1 branches with
provisional operations can be synchronously committed without risking provisional conflicts,
giving programmers access to the strong and expressive semantics of traditional transactions.
We must strive to make this transactional commit operation usable. In particular it must be
typically fast, for otherwise programmers will be tempted to fall back to asynchronous pulls,
inviting more provisional behavior than they may truly require. This can be solved with an
appropriate choice of an efficient commit protocol such as two-phase commit (2PC) [11] or a
consensus protocol such as Paxos [37] or Raft [44]. A key challenge introduced by Gallifrey
is its tendency toward disconnection; it will be necessary to carry out these commits with
high probability even in the presence of intermittent disconnection.

Efficient restriction matching and transitions. To ensure that matching does not require
blocking and coordinating on every use, the system can provide mechanisms for nodes to
acquire and reuse guarantees that an object will be operating under a specific restriction.
Thus, after coordinating and identifying the current restriction once, the restriction can be
reliably matched later in the application without coordinating again. Transitions, meanwhile,
need to perform a consistent commit to update the allowed restrictions for references to an
object. We believe this will be solved using a commit protocol, similar to merging branches.

Exposing flexibility to the user. There are many difficult tradeoffs and design decisions to
be made in Gallifrey’s runtime. These tradeoffs are necessarily influenced by the particular
Gallifrey deployment in question: is the application running across data centers, or across
phones? Whatever mechanisms we ultimately create, we must always provide the Gallifrey
user with choices to better match Gallifrey’s runtime characteristics to the user’s deployment
domain.

8 Conclusion

Our ideas for Gallifrey represent a new vision for handling concurrent, distributed program-
ming. With restrictions, Gallifrey separates what can be replicated from how it is shared,
and provides a statically enforced mechanism for ensuring consistent access to replicated
objects. With branches, Gallifrey unifies threads, transactions, and replicas into a single
intuitive construct. With contingencies, Gallifrey provides some sanity to working with
weakly consistent state, allowing explicitly scoped violations of isolation and consistency.

Taken together, these features represent a compelling answer to the question of how to
write distributed, concurrent, programs with replicated data. While we do not yet have an
implementation of or formal results for this language, we hope that its ideas prove stimulating
to readers.



M. Milano, R. Recto, T. Magrino, and A. C. Myers 11:17

References
1 Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of Computer Programs

- 2nd Edition (MIT Electrical Engineering and Computer Science). The MIT Press, July 1996.
2 Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,

Cambridge, MA, USA, 1986.
3 Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias annotations for program

understanding. In 17th ACM SIGPLAN Conf. on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pages 311–330, 2002.

4 Peter Alvaro, Peter Bailis, Neil Conway, and Joseph M. Hellerstein. Consistency without
borders. In ACM Symp. on Cloud Computing (SoCC), pages 23:1–23:10, 2013.

5 Peter Alvaro, Neil Conway, Joseph M Hellerstein, and William R Marczak. Consistency
Analysis in Bloom: a CALM and Collected Approach. In CIDR (Conference on Innovative
Data Systems Research), pages 249–260, 2011.

6 Malcolm Atkinson and Ronald Morrison. Orthogonally Persistent Object Systems. The VLDB
Journal, 4(3):319–402, July 1995.

7 Peter Bailis, Alan Fekete, Michael J Franklin, Ali Ghodsi, Joseph M Hellerstein, and Ion
Stoica. Coordination avoidance in database systems. Proceedings of the VLDB Endowment,
8(3):185–196, 2014.

8 Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobbler, Michael Wei, and
John D. Davis. CORFU: A shared log design for flash clusters. In 9th USENIX Symp. on
Networked Systems Design and Implementation (NSDI), pages 1–14, San Jose, CA, 2012.

9 Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prabhakaran, Michael
Wei, John D. Davis, Sriram Rao, Tao Zou, and Aviad Zuck. Tango: Distributed Data
Structures over a Shared Log. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, 24th ACM Symp. on Operating System Principles (SOSP), 2013.

10 Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça, Mahsa
Najafzadeh, and Marc Shapiro. Putting consistency back into eventual consistency. In ACM
SIGOPS/EuroSys European Conference on Computer Systems, page 6, 2015.

11 Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1987.

12 Adrian Birka and Michael D. Ernst. A Practical Type System and Language for Reference
Immutability. In Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications, OOPSLA ’04, pages 35–49, New
York, NY, USA, 2004.

13 Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership Types for Safe Pro-
gramming: Preventing Data Races and Deadlocks. In Proceedings of the 17th ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA
’02, pages 211–230, New York, NY, USA, 2002.

14 Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership Types for Object
Encapsulation. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’03, pages 213–223, New York, NY, USA, 2003.

15 Chandrasekhar Boyapati and Martin Rinard. A parameterized type system for race-free
Java programs. In 16th ACM SIGPLAN Conf. on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), Tampa Bay, FL, October 2001.

16 Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. Concurrent Programming with
Revisions and Isolation Types. In 25th ACM SIGPLAN Conf. on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA), OOPSLA ’10, pages 691–707, New York,
NY, USA, 2010.

17 Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Benjamin P Wood. Cloud types
for eventual consistency. In European Conference on Object-Oriented Programming, pages
283–307. Springer, 2012.

SNAPL 2019

https://www.xarg.org/ref/a/0262011530/
https://www.xarg.org/ref/a/0262011530/
http://dx.doi.org/10.1145/2523616.2523632
http://dx.doi.org/10.1145/2523616.2523632
http://dl.acm.org/citation.cfm?id=615224.615226
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/balakrishnan
http://dx.doi.org/10.1145/2517349.2522732
http://dx.doi.org/10.1145/2517349.2522732
http://dx.doi.org/10.1145/1028976.1028980
http://dx.doi.org/10.1145/1028976.1028980
http://dx.doi.org/10.1145/582419.582440
http://dx.doi.org/10.1145/582419.582440
http://dx.doi.org/10.1145/604131.604156
http://dx.doi.org/10.1145/604131.604156
http://dx.doi.org/10.1145/1869459.1869515
http://dx.doi.org/10.1145/1869459.1869515


11:18 A Tour of Gallifrey, a Language for Geodistributed Programming

18 Working Draft, Standard for Programming Language C++. http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf, 2011.

19 Kevin Clancy and Heather Miller. Monotonicity Types for Distributed Dataflow. In Proceedings
of the 2nd Workshop on Programming Models and Languages for Distributed Computing,
PMLDC ’17, 2017.

20 Dave Clarke, Tobias Wrigstad, Johan Östlund, and Einar Broch Johnsen. Minimal ownership
for active objects. In Asian Symposium on Programming Languages and Systems, pages
139–154. Springer, 2008.

21 David G Clarke, John M Potter, and James Noble. Ownership types for flexible alias protection.
In ACM SIGPLAN Notices, volume 33(10), pages 48–64, 1998.

22 Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil. Deny capabilities
for safe, fast actors. In 5th Int’l Workshop on Programming Based on Actors, Agents, and
Decentralized Control (AGERE!), pages 1–12, 2015.

23 Natacha Crooks, Youer Pu, Nancy Estrada, Trinabh Gupta, Lorenzo Alvisi, and Allen Clement.
Tardis: A branch-and-merge approach to weak consistency. In ACM SIGMOD Int’l Conf. on
Management of Data, pages 1615–1628, 2016.

24 David Cunningham, Sophia Drossopoulou, and Susan Eisenbach. Universes for race safety.
Verification and Analysis of Multi-threaded Java-like Programs (VAMP), pages 20–51, 2007.

25 Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels.
Dynamo: Amazon’s Highly Available Key–Value Store. In 21st ACM Symp. on Operating
System Principles (SOSP), 2007.

26 Manuel Fähndrich and Robert DeLine. Adoption and Focus: Practical Linear Types for
Imperative Programming. In ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI), June 2002.

27 Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi. How to
Design Programs: An Introduction to Programming and Computing. The MIT Press, February
2001.

28 Cormac Flanagan and Martin Abadi. Types for safe locking. In European Symposium on
Programming, pages 91–108. Springer, 1999.

29 Matthew Fluet, Greg Morrisett, and Amal Ahmed. Linear regions are all you need. In
European Symposium on Programming, pages 7–21. Springer, 2006.

30 Colin S Gordon, Matthew J Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy.
Uniqueness and reference immutability for safe parallelism. In ACM SIGPLAN Notices,
volume 47(10), pages 21–40, 2012.

31 Dan Grossman. Type-Safe Multithreading in Cyclone. In ACM SIGPLAN Int’l Workshop on
Types in Languages Design and Implementation (TLDI), pages 13–25, 2003.

32 Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi. Incremental consistency
guarantees for replicated objects. In 12th USENIX Symp. on Operating Systems Design and
Implementation (OSDI), pages 169–184, 2016.

33 Philipp Haller and Martin Odersky. Capabilities for uniqueness and borrowing. In European
Conference on Object-Oriented Programming, pages 354–378. Springer, 2010.

34 Pat Helland and Dave Campbell. Building on Quicksand. CIDR (Conference on Innovative
Data Systems Research), 2009.

35 Farzin Houshmand and Mohsen Lesani. Hamsaz: replication coordination analysis and
synthesis. ACM on Programming Languages (PACM), 3(POPL):74, 2019.

36 Lindsey Kuper and Ryan R Newton. LVars: Lattice-based data structures for deterministic par-
allelism. In Proceedings of the 2nd ACM SIGPLAN workshop on Functional high-performance
computing, pages 71–84, 2013.

37 Leslie Lamport. The Part-Time Parliament. ACM Trans. on Computer Systems, 16(2):133–169,
May 1998.

http://dx.doi.org/10.1145/2824815.2824816
http://dx.doi.org/10.1145/2824815.2824816
https://www.xarg.org/ref/a/0262062186/
https://www.xarg.org/ref/a/0262062186/
http://dx.doi.org/10.1145/279227.279229


M. Milano, R. Recto, T. Magrino, and A. C. Myers 11:19

38 Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and Andrew C. Myers. Fabric: A
Platform For Secure Distributed Computation and Storage. In 22nd ACM Symp. on Operating
System Principles (SOSP), pages 321–334, October 2009.

39 Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t settle
for eventual: scalable causal consistency for wide-area storage with COPS. In 23rd ACM
Symp. on Operating System Principles (SOSP), 2011.

40 Tom Magrino, Jed Liu, Nate Foster, Johannes Gehrke, and Andrew C. Myers. Efficient,
Consistent Distributed Computation with Predictive Treaties. In ACM SIGOPS/EuroSys
European Conference on Computer Systems, March 2019.

41 Christopher Meiklejohn and Peter Van Roy. Lasp, a language for distributed, coordination-free
programming. In Int’l Symp. on Principles and Practice of Declarative Programming, pages
184–195, 2015.

42 Mae Milano and Andrew C Myers. MixT: a language for mixing consistency in geodistributed
transactions. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 226–241, 2018.

43 Ligia Nistor, Darya Kurilova, Stephanie Balzer, Benjamin Chung, Alex Potanin, and Jonathan
Aldrich. Wyvern: A simple, typed, and pure object-oriented language. In 5th Workshop on
Mechanisms for Specialization, Generalization and Inheritance., July 2013.

44 Diego Ongaro and John Ousterhout. In Search of an Understandable Consensus Algorithm. In
2014 USENIX Annual Technical Conference (USENIX ATC 14), pages 305–319, Philadelphia,
PA, 2014.

45 Gene Pang, Tim Kraska, Michael J. Franklin, and Alan Fekete. PLANET: making progress
with commit processing in unpredictable environments. In International Conference on
Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages 3–14,
2014.

46 Benjamin C. Pierce. Types and Programming Languages (The MIT Press). The MIT Press,
February 2002.

47 Nuno Preguiça, J. Legatheaux Martins, Miguel Cunha, and Henrique Domingos. Reservations
for Conflict Avoidance in a Mobile Database System. In Proceedings of the 1st International
Conference on Mobile Systems, Applications and Services, MobiSys ’03, pages 43–56, New
York, NY, USA, 2003.

48 Sudip Roy, Lucja Kot, Gabriel Bender, Bailu Ding, Hossein Hojjat, Christoph Koch, Nate
Foster, and Johannes Gehrke. The homeostasis protocol: Avoiding transaction coordination
through program analysis. In ACM SIGMOD Int’l Conf. on Management of Data, pages
1311–1326, 2015.

49 Rust programming language. http://doc.rust-lang.org/0.11.0/rust.html, 2014.
50 Andrei Sabelfeld and Andrew C. Myers. Language-Based Information-Flow Security. IEEE

Journal on Selected Areas in Communications, 21(1):5–19, January 2003.
51 Hans-Jürgen Schönig. PostgreSQL Replication. Packt Publishing Ltd, 2015.
52 Marc Shapiro. A Comprehensive Study of Convergent and Commutative Replicated Data

Types. In Ling Liu and M. Tamer Özsu, editors, Encyclopedia of Database Systems, pages 1–5.
Springer New York, New York, NY, 2017.

53 Krishnamoorthy C Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. Declarative
programming over eventually consistent data stores. In ACM SIGPLAN Notices, volume 50(6),
pages 413–424, 2015.

54 Sriram Srinivasan and Alan Mycroft. Kilim: Isolation-typed actors for Java. In European
Conference on Object-Oriented Programming, pages 104–128. Springer, 2008.

55 Doug Terry. Replicated Data Consistency Explained Through Baseball. Commun. ACM,
56(12):82–89, December 2013.

56 Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, and Mike J. Spreitzer.
Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System. In
15th ACM Symp. on Operating System Principles (SOSP), pages 172–183, December 1995.

57 Michael Whittaker and Joseph M Hellerstein. Interactive checks for coordination avoidance.
Proceedings of the VLDB Endowment, 12(1):14–27, 2018.

SNAPL 2019

http://www.cs.cornell.edu/andru/papers/fabric-sosp09.html
http://www.cs.cornell.edu/andru/papers/fabric-sosp09.html
http://dx.doi.org/10.1145/2790449.2790525
http://dx.doi.org/10.1145/2790449.2790525
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
http://dx.doi.org/10.1145/2588555.2588558
http://dx.doi.org/10.1145/2588555.2588558
https://www.xarg.org/ref/a/0262162091/
http://dx.doi.org/10.1145/1066116.1189038
http://dx.doi.org/10.1145/1066116.1189038
http://doc.rust-lang.org/0.11.0/rust.html
http://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf
http://dx.doi.org/10.1007/978-1-4899-7993-3_80813-1
http://dx.doi.org/10.1007/978-1-4899-7993-3_80813-1
http://dx.doi.org/10.1145/2500500




Formal Verification vs. Quantum Uncertainty
Robert Rand
University of Maryland, College Park, USA
http://www.cs.umd.edu/~rrand/
rrand@cs.umd.edu

Kesha Hietala
University of Maryland, College Park, USA
https://www.cs.umd.edu/people/khietala
kesha@cs.umd.edu

Michael Hicks
University of Maryland, College Park, USA
http://www.cs.umd.edu/~mwh/
mwh@cs.umd.edu

Abstract
Quantum programming is hard: Quantum programs are necessarily probabilistic and impossible to
examine without disrupting the execution of a program. In response to this challenge, we and a
number of other researchers have written tools to verify quantum programs against their intended
semantics. This is not enough. Verifying an idealized semantics against a real world quantum
program doesn’t allow you to confidently predict the program’s output. In order to have verification
that works, you need both an error semantics related to the hardware at hand (this is necessarily
low level) and certified compilation to the that same hardware. Once we have these two things,
we can talk about an approach to quantum programming where we start by writing and verifying
programs at a high level, attempt to verify properties of the compiled code, and repeat as necessary.
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1 Introduction

Writing quantum programs is hard. Fundamentally, a quantum program corresponds to
applying a limited set of operations to vectors of complex numbers, with the goal of producing
a vector with the majority of its weight in a few meaningful indices. Measuring this vector
then returns an index with a probability corresponding to the weight at that index (we go
into more detail in Section 2). For instance, if you are trying to factor 77, you might want the
7th or 11th entry to contain a number close to 1 while the other indices contain numbers close
to 0, maximizing the probability that 7 or 11 is obtained. As a result, designing a quantum
program requires a fair amount of effort and mathematical sophistication. This difficulty is
compounded by the fact that quantum programs are very difficult to test or debug.

Consider two standard techniques for debugging programs: breakpoints and print state-
ments. In a quantum program, printing the value of a quantum bit entails measuring it (an
effectful operation) and printing the returned value. This is akin to randomly and irreversibly
coercing a floating point number to a nearby integer – it will give a weakly informative
answer and corrupt the rest of the program. Unit tests are similarly of limited value when
your program is probabilistic; repeatedly running unit tests on a quantum computer is likely
to be prohibitively expensive. Simulating quantum programs on a classical computer holds
some promise (and simulators are bundled with most quantum software packages) but it
requires resources exponential in the number of qubits being simulated, so simulation can’t
help in the general case.

Where standard software assurance techniques fail us, formal verification thrives. When
we reason about a quantum program, we are reasoning exclusively about vectors, and vectors
don’t collapse when we analyze them. Formal verification is parametric in its inputs: Instead
of reasoning about a 128-qubit implementation of an algorithm, we can prove properties
of that algorithm for arbitrary arities given as arguments. Using techniques like induction,
algebraic reasoning and equational rewriting we can verify the correctness of a broad range
of quantum programs, as we previously showed [29] using the Qwire programming language
and verification tool.

Unfortunately, the challenges of measurement and simulation complexity are only the tip
of the iceberg when it comes to near-term quantum computing.

For the foreseeable future, useful quantum computing will face a broad range of obstacles.
The two major competing architectures for quantum computers are the superconducting
qubit model used by IBM, Google, and Rigetti, and the trapped-ion model of IonQ and
a number of academic labs. To varying extents (and the variance matters), each of these
models suffers from the following issues:
1. Coherence times: Qubits can only maintain their state for a certain amount of time before

they decay, effectively resetting themselves.
2. Gate errors: Quantum gates introduce errors and these errors vary with the gates being

applied.
3. Connectivity: In general, you can’t apply an operation to two or more qubits unless those

qubits are physically adjacent to one another. We can use quantum gates to swap the
values of qubits, and thereby bring two or more qubits together, but these operations
take time and introduce additional errors.

These limitations aren’t uniform within a given machine, let alone across machines. On
IBM’s largest publicly available quantum computer, Melbourne, phase coherence times range
from 22.1 to 106.5 microseconds depending on the qubit in question, and gate errors similarly
vary by qubit [20].
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Given the substantial challenges facing quantum computing, is formal verification even
useful? We argue that it can be.

To tackle the limitations of near-term quantum computers, we will need to tailor our
verification efforts to the lowest level of the quantum software stack. We will need to
incorporate information about the connectivity and error rates of a given machine in order
to verify that a program can be run on that machine, and to bound the error of such an
execution. Such verification will be messy: It will have to take a lot of variables into account,
including the ideal semantics of a given program, qubit by qubit decoherence and error rates,
and specifications that may differ substantially by platform. However, we argue that this
verification is necessary, and that we can provide the tools necessary to perform it.

To make this case, we begin by introducing quantum computing and the semantics of
error-free quantum programs (Section 2). In Section 3, we survey the literature on formally
verified quantum computing and in Section 3.2 we address certified optimizing compilers,
both in an idealized, error-free setting. In Section 4 we consider the additional challenges
faced by quantum programming in the near term, and how we can address them. We devote
most of this discussion to the issues of errors (Section 4.1) and architectural limitations
(Section 4.2). Finally, in Section 5 we reflect on how this discussion can inform the nascent
field of quantum programming languages.

2 Logical Qubits

The approach to quantum computation taken by most textbooks, as well as quantum
complexity theorists and (most) quantum algorithms designers assumes the existence of
logical qubits, quantum bits which are not error-prone and behave according to a strict
mathematical model. To be precise, a qubit corresponds to a two element vector of the form
〈α, β〉 for complex numbers α and β, subject to the constraint that |α|2 + |β|2 = 1.

Logical qubits obey strict rules but they are not deterministic. If we measure the qubit
above, we will obtain one of the two basis qubits 〈1, 0〉 and 〈0, 1〉 with probability |α|2 and
|β|2, respectively.

We can combine two qubits by taking their tensor product, where

〈α, β〉 ⊗ 〈γ, δ〉 = 〈αγ, αδ, βγ, βδ〉.

Measuring the quantum system above will yield one of four basis vectors, with probabilities
corresponding to the given entries. With probability |αγ|2 we will obtain 〈1, 0, 0, 0〉; with
probability |αδ|2 we will obtain 〈0, 1, 0, 0〉; and so forth.

Besides measuring (systems of) qubits, we can modify them by applying unitary gates
which correspond to multiplication on the left by a restricted set of matrices called unitaries,
which preserve the property that the sum-of-squares adds up to one. It’s worth noting that
if we apply certain gates (such as the controlled-not gate) to two or more qubits, it may no
longer be possible to represent the outcome as the tensor product of multiple vectors. This
state of affairs is called entanglement and is analogous to probabilistic dependence.

Let’s give a simple example of entanglement in action. Imagine we start we with the
simple two qubit state 〈1, 0〉 ⊗ 〈1, 0〉. We then apply the Hadamard unitary 1√

2

( 1 1
1 −1

)
to the first qubit, obtaining 〈 1√

2 ,
1√
2 〉 ⊗ 〈1, 0〉, which we can also write as 〈 1√

2 , 0,
1√
2 , 0〉.

The controlled-not unitary exchanges the third and fourth elements of the vector, yielding
〈 1√

2 , 0, 0,
1√
2 〉. This entangled vector cannot be decomposed into the tensor product of two

smaller vectors, and is known as a Bell pair.

SNAPL 2019



12:4 Formal Verification vs. Quantum Uncertainty

0

0

H

(a) A circuit to produce a Bell pair.


1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2


(b) The density matrix for our Bell pair.

Figure 1 An example Bell pair.

What happens if we measure our Bell pair? As we’ve seen, we will obtain either
〈1, 0, 0, 0〉 = 〈1, 0〉 ⊗ 〈1, 0〉 or 〈0, 0, 0, 1〉 = 〈0, 1〉 ⊗ 〈0, 1〉, each with probability

∣∣∣ 1√
2

∣∣∣2 = 1
2 .

After measurement, our two qubits are no longer entangled but their outcomes are correlated:
Either both are 〈1, 0〉 or both are 〈0, 1〉. This correlation is an effect of entanglement, and
one of the features that gives quantum computing its power.

Generally speaking, we will represent quantum programs as circuits. For instance, the
circuit for constructing a Bell pair is shown in Figure 1, where 0 represents the vector 〈1, 0〉,
H is the Hadamard matrix and the structure bridging the two wires is the controlled-not.
The circuit model is standard for quantum computing: Quantum programming languages like
Quipper [14], Scaffold [21] and Qwire are all circuit description languages; Microsoft’s recent
Q# tries to move away from this model by adding some abstractions, but Q# programs can
easily be read as describing circuits as well.

Conveniently, quantum circuits have a straightforward denotational semantics: They
correspond precisely to functions over complex vectors. We can also represent them as
functions over density matrices which in turn correspond to distributions over complex
vectors. A density matrix for our Bell pair, obtained by multiplying 〈 1√

2 , 0, 0,
1√
2 〉 by its

transpose, is given in Figure 1. The 1
2 s in the first and fourth positions along the diagonal

represent the probability of measuring both qubits as 〈1, 0〉 and 〈0, 1〉, respectively. Embedding
probabilities inside density matrices saves us from having to include probabilistic transitions
in our denotational semantics. Once we have a denotational semantics for quantum circuits,
we can begin to prove things about them.

3 Verification Under Ideal Conditions

One of the simplest things to verify about a quantum program is that it doesn’t attempt
to duplicate qubits, which would violate the no cloning theorem of quantum mechanics.
Non-duplication can be enforced by a linear type system, like that employed by the quantum
lambda calculus [35], Proto-Quipper [33] or our Qwire [27] language. A linear type system
treats a function type A( B as something that consumes an A (precisely once) and produces
a B (that may itself be used precisely once). Hence, it ensures that once we’ve done an
operation on a qubit, the original qubit can no longer be used.

It’s rather more complicated to ensure that a quantum program uses ancillae safely.
Ancillae are spare qubits that are used in the computation of some result and then returned
to their original state and discarded. They can be thought of as scratch space for intermediate
quantum computations, but they have to be regularly garbage collected. Since qubits can
be entangled with one another, operating on improperly discarded ancillae can corrupt the
rest of our computation. Ancillae are a common feature of quantum algorithms, and hence
appear in quantum programming languages like Quipper [14] and Q# [36]. Unfortunately,
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Figure 2 A circuit implementing Deutsch’s algorithm.

it’s quite difficult to guarantee that ancilla qubits are properly garbage collected. Inspired by
the ReVerC [3] compiler for reversible programs, Qwire allows the programmer to prove
that ancillae are discarded correctly, while providing syntactic conditions for cases where this
is trivially true [30]. In the general case, though, proving that we’ve appropriately disposed
of ancillae requires us to reason about the behavior of complete quantum programs.

Doing whole-program analysis substantially increases the scope for formal verification,
which inspired us to use Qwire as a general-purpose verification tool [31]. One thing we may
want to do is verify the correctness of a complete program, like Deutsch’s algorithm [8, 11].
Deutsch’s algorithm, shown in Figure 2, takes in an unknown function f , represented as a
quantum gate Uf , and returns the 0 qubit if and only if the function is constant. Using
Qwire, we can express the correctness of this algorithm as follows:

Lemma deutsch_constant : ∀ f, constant f →
Jdeutsch (fun_to_gate f)K I1 = |0〉〈0|.

Lemma deutsch_balanced : ∀ f, balanced f →
Jdeutsch (fun_to_gate f)K I1 = |1〉〈1|.

Here |0〉 〈0| represents a 0 qubit in density matrix form, and similarly for |1〉 〈1|. I1 is a
1× 1 identity matrix, representing that the circuit has no input qubits (akin to unit or void).
Deutsch’s algorithm is one of the easier algorithms to prove correct since we can simply
compute the output matrix. In practice we can verify a broad range of algorithms where
this isn’t possible, from families of quantum coin tossing circuits to quantum programs over
arbitrary input unitaries [29].
Qwire isn’t the only tool that attempts to guarantee the correctness quantum programs.

Amy [1] uses Feynman path integrals to check the correctness of a variety of concrete quantum
circuits, including a quantum Fourier transform [10] using up to 31 qubits. A number of
authors have also introduced Hoare-style logics for quantum programs and used them to
verify Grover’s algorithm [15, 40] and a quantum one-time pad [5, 38]. More specialized tools
allow us to verify the security of quantum protocols [39] and rewrite quantum programs
expressed in the ZX calculus [9, 22].

3.1 The Verification-Programming Loop
So far, we’ve treated verification as a task that is subsequent to programming, which
guarantees that the program behaves as expected. However, in our experience, verification
also plays a major role in quantum programming itself. Even reproducing well-known
quantum algorithms proves to be difficult, given the low level at which they are written. (For
examples, see Huang and Martonosi’s [18] recent exploration of bugs in the implementations
of common quantum algorithms.)

Following Dijkstra’s vision for formal verification in A Discipline of Programming [12],
we expect quantum verification to assist in writing quantum programs. In practice, we often
find ourselves writing quantum programs, attempting to prove their correctness, failing, and
revising the original program. Often the failures can be quite informative: If the Coq proof
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assistant asks us to prove that 1√
2 = 1, it’s a sure sign that we’ve either left out a Hadamard

gate or put in one too many (since 1√
2 appears throughout the Hadamard matrix). We can

then go back to the original program, insert the missing Hadamard gate, and return to our
verification attempt, repeating as necessary.

3.2 Compilation and Optimization
Not all errors are caused by mistakes in the high-level program. Following the success of the
CompCert C compiler [23], another promising target for formal verification is the compiler
that translates a high-level quantum program to a circuit capable of being run on a given
architecture. This compiler should preserve the semantics of the source program and should
also perform optimizations to reduce resource usage and running time. Given the difficulty
of testing quantum programs and the expense involved in running them, it is especially
important to verify these compilers.

A number of optimizing compilers have been designed for quantum programs to reduce
resource usage [2, 16, 26]. These optimizations are often mathematically sophisticated, and
thus vulnerable to programmer error. For example, in discussions with Nam et al. we learned
that, while developing their optimizer, they found several bugs in their own implementation
and also in the implementations that they compared against [26].

The Quantomatic tool [22] can apply verified transformations to quantum computation
expressed in terms of the ZX-calculus [9, 4], a diagrammatic approach to quantum computa-
tion. Unfortunately, not every ZX diagram corresponds to a valid quantum circuit, and an
optimization in ZX may not optimize a corresponding circuit. Recent work [13] optimizes a
restricted subset of ZX diagrams that do represent circuits, but these are limited to a subset
of quantum circuits known as Clifford circuits.

We are currently developing a new intermediate representation for quantum circuits,
called sqire [17], to help us go further. sqire allows us to perform verified optimizations
on circuits, with the goal of reducing the total circuit size. So far we have verified simple
optimizations, like skip elimination and canceling repeated X (negation) gates.

4 Verification in the Real Quantum World

So far we have an interesting story and perhaps even a compelling one: Quantum programs
are hard to write and debug and hence provide an excellent target for the techniques of
formal verification, from program logics to proof assistants. However, these logics will be
of limited use for the near future. The quantum computers that exist today and are likely
to exist over the next ten to twenty years will be incapable of running arbitrary quantum
circuits and will be very failure prone. Hence, for formal verification to be useful in the near
term, it will need to be tied to the machines we expect, not those we hope for.

In a recent keynote address [28], John Preskill coined the term Noisy Intermediate-Scale
Quantum Computing (NISQ) to refer to quantum computing over the coming five or ten
years. Preskill, like many in the field, suspects that quantum computing will soon have its
first practical applications on computers with under 1000 physical qubits. On the other hand,
it will take hundreds or thousands of physical qubits to construct one error-corrected logical
qubit, and many thousands of logical qubits to beat classical computers at factoring numbers
or performing a range of other tasks. In the near term, quantum programs will have to be
aimed at problems for which they are uniquely well-suited (like modeling quantum systems
in physics [7] and chemistry [32]) and tailored to the limitations of the available computers.
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Figure 3 Two-qubit gate connections on IBM’s Tenerife machine. Taken from https://github.
com/Qiskit/ibmq-device-information/blob/master/backends/tenerife/V1/version_log.md.

What do these limitations look like? One hard limitation is the number of qubits on the
machine. Another limitation is error rates. There are multiple sources of errors in quantum
circuits, stemming from decoherence (qubits tend to revert to their basis states with time) and
errors in gate application.1 Today’s machines also have a number of architectural limitations,
related to the connectivity of qubits: Instead of being complete undirected graphs, they tend
to resemble sparse directed graphs. For example, consider the diagram of IBM’s 5-qubit
Tenerife machine shown in Figure 3. In this architecture, if you want to apply a controlled-not
gate from program qubit q1 to program qubit q2, then you need to map those program qubits
to adjacent physical qubits in the machine (e.g. Q4 and Q2). This mapping may need to
be updated over the course of the program by adjusting the physical locations of program
qubits. This adjustment is both computationally expensive and error prone.

If formal verification is to guarantee the correctness of quantum programs in practice, it
will need to account for these crucial limitations of NISQ devices.

4.1 Verification in the Presence of Errors

Let us sketch out some possible approaches to dealing with the errors that are sure to arise
when we run our quantum computers.

One straightforward approach to verification in the presence of errors is to simply aggregate
errors along a quantum circuit’s wire. Instead of the Hadamard gate having the type Qubit
( Qubit, it can have the type ∀n, (Qubit,n) ( (Qubit,n+1), meaning that the gate adds a
single error to its wires. We could equally well include error probabilities along the wires,
though those would assume we knew the error rate for each gate and they were consistent
across qubits. Multiple-qubit gates are a bit trickier, as they take in and produce multiple
wires: We can either output the sum of all error terms along each output wire plus the
additional error introduced by the gate, take the max of the two wires, or (particularly in the
case of probabilities) use a more complex function over multiple inputs. A circuit then, would
likewise have an error term corresponding to the aggregated output of its wires. For a simple
example, depending on whether Uf takes the max or sum of its inputs’ errors, Deutsch’s
algorithm (Figure 2) would produce 2 or 3 errors, plus the errors introduced by Uf , assuming
measurement doesn’t introduce errors itself.

1 The presence of these gate errors actually allows us to comfortably ignore a more fundamental issue
in quantum computing. The so-called “universal gate sets” implemented by general purpose quantum
computers are not actually universal in the sense that NAND gates are universal for classical computation:
They only allow us to approximate arbitrary quantum operations. Unfortunately, in the near term, all
gates will only loosely approximate their specified behaviors.
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An advantage of this approach is that it’s very easy to implement and sufficiently general
that we can interpret the output in a number of different ways, depending on the setting.
We can also automate it, allowing a built-in type inference algorithm to calculate the errors
that occur in a given circuit.2 It is limited, though, in that errors only increase as the
circuit size grows. This makes it difficult to analyze programs that include mechanisms for
error mitigation, which will be important in near-term applications [24]. (In principle, we
could have error-correcting gates that shrink the error, but error correction tends not to
be so simple.)

We can also take ideas from our recent robustness logic [19], which draws on Carbin
et al.’s Rely language for approximate classical computing [6] and provides bounds for the
errors in a quantum program. While powerful, this logic suffers from the same limitations as
our error wire semantics – errors only increase throughout a program. It is also high level: It
uses the same quantum while language as QHL [40], which doesn’t directly describe circuits
that can run on near-term machines.

Ideally, the semantics for a quantum program would contain error terms, corresponding
to possible failures. This would bring the advantage of allowing us to reason about and
reduce error terms, through majority voting or the like. Unfortunately, it’s still hard to
know what the denotational model should be, without reference to the specific hardware.
Hence, while doing high-level reasoning we want to leave the error term abstract (as in our
robustness logic), and instantiate it for specific hardware models.

4.2 Verified Compilation to Restricted Architectures
As we’ve seen, in order to make effective use of near-term quantum devices, we cannot
entirely abstract away low-level architectural details. However, this is not to say that the
programmer needs to consider every low-level detail when writing programs. In some cases,
as in classical computing, the complexity of running on a particular architecture can be
handled by the compiler.

For example, we have already discussed the challenge of limited connectivity on near-term
machines. There has been significant work on developing automated transformations that
map arbitrary quantum circuits into circuits that satisfy a particular machine’s connectivity
constraints [41]. Some of this work has even looked at how to perform this mapping in a way
that reduces the error of the resulting circuit [25, 37].

Another way that near-term compilers for quantum programs can help is by performing
optimizations that reduce resource usage, as discussed in Section 3.2. Reducing resource
usage is critical because near-term devices have access to a limited number of qubits and can
support few operations before decoherence undoes the effect of any useful computation.

We would like to go further. A verified compiler for quantum circuits should take the
following three things into account:
1. The connectivity of the target machine;
2. the error rates for each qubit; and
3. the fidelity of individual gates applications.
It should use this information to compile an arbitrary quantum circuit to an equivalent
circuit that can run on the target machine in a way that minimizes errors. This is difficult:
Each of our desirata imposes substantial constraint on the compiler and a burden on the
verifier. However, each is necessary for our compiler to be both useful and reliable.

2 It’s worth noting that checking linearity, though harder, is an orthogonal problem, so we can infer the
error terms and check linearity separately. This is somewhat surprising, since without linearity we
would have to be concerned about adding errors to terms without using them up.
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Our new sqire language [17] can be used to verify transformations that guarantee
structural properties of circuit. For instance, the map_to_lnn function compiles to a linear
nearest neighbor architectures, guaranteeing that every controlled-not gate is applied to
adjacent qubits. However, at present, this transformation is applied manually, rather than
being part of a compilation toolchain. Also, the linear nearest neighbor architecture is a
toy example: The connectivity of a quantum computer can be represented by any graph,
directed or undirected. Verified compilation to such machines remains a significant challenge.

5 Looking Forward

As we’ve seen, verification has an important role to play in quantum programming, both in
the short and long term. Quantum programs are buggy and difficult to test, so if we want
to have any confidence in our programs’ correctness, we had better verify them. There is
already substantial progress on this front, through tools like Qwire [27, 29] and QHL [40].

However, in the short term these tools aren’t sufficient. We need an approach to verification
that deals with errors, like our recent quantum robustness logic [19]. Moreover, we need to
verify error-prone programs with respect to the hardware we intend to run them on. The
coherence times and error rates of quantum computers vary widely and a good error model
will need to be machine specific.

Machines aren’t only constrained by their error rates, but also by the number and
connectivity of their qubits. This results in additional constraints that a compiler must
satisfy, and satisfaction of these constraints must also be verified. The sqire intermediate
representation for quantum circuits is a step towards verified compilation, but much work
remains to be done.

In an ideal world, we would not think about circuit, let alone machine architectures, when
writing quantum programs. Indeed, another ambitious project for quantum computing is
developing useful abstractions for programmers. Some steps in this direction include quantum
control flow [34] and amplitude amplification as a subroutine [36]. These efforts look towards
a future where we have scalable quantum computers with many error-free qubits.

By contrast, we are focused on the quantum devices available today and likely to be
available over the next decade. Our goal is to develop tools that will assist in developing
efficient algorithms with correctness guarantees and precisely bounded errors. We aim to
execute those algorithms on fundamentally limited machines, with low qubit counts and
high error rates. To that end, we have to provide information about everything down to
the individual qubit decoherence to the programmer, so they can handle that decoherence.
Providing these tools will allow us to do more with near-term quantum devices than we could
possibly do today.
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