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Abstract

In general, a graph modification problem is defined by a graph modification operation � and a target
graph property P. Typically, the modification operation � may be vertex removal, edge removal,
edge contraction, or edge addition and the question is, given a graph G and an integer k, whether it is
possible to transform G to a graph in P after applying k times the operation � on G. This problem
has been extensively studied for particilar instantiations of � and P. In this paper we consider
the general property Pφ of being planar and, moreover, being a model of some First-Order Logic
sentence φ (an FOL-sentence). We call the corresponding meta-problem Graph �-Modification
to Planarity and φ and prove the following algorithmic meta-theorem: there exists a function
f : N2 → N such that, for every � and every FOL sentence φ, the Graph �-Modification
to Planarity and φ is solvable in f(k, |φ|) · n2 time. The proof constitutes a hybrid of two
different classic techniques in graph algorithms. The first is the irrelevant vertex technique that
is typically used in the context of Graph Minors and deals with properties such as planarity or
surface-embeddability (that are not FOL-expressible) and the second is the use of Gaifman’s Locality
Theorem that is the theoretical base for the meta-algorithmic study of FOL-expressible problems.
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1 Introduction

The term algorithmic meta-theorems was coined by Grohe in his seminal exposition in [20] in
order to describe results providing general conditions, typically of logical and/or combinatorial
nature, that automatically guarantee the existence of certain types of algorithms for wide
families of problems. Algorithmic meta-theorems reveal deep relations between logic and
combinatorial structures, which is a fundamental issue of computational complexity. Such
theorems not only yield a better understanding of the scope of general algorithmic techniques
and the limits of tractability but often provide (or induce) a variety of new algorithmic
results. The archetype of algorithmic meta-theorems is Courcelle’s theorem [5,6] stating that
all graph properties expressible in Monadic Second-Order Logic (in short, MSOL-expressible
properties) are fixed-parameter tractable when parameterized by the size of the sentence and
the treewidth of the graph.

Our meta-theorem belongs to the intersection of two algorithmic research directions:
Deciding First-Order Logic properties of sparse graphs and graph planarization algorithms.

FOL-expressible properties on sparse graphs. For graph properties expressible in first-
order logic (in short FOL-expressible properties), a rich family of algorithmic meta-theorems,
were developed within the last decades. Each of these meta-theorems can be stated in the
following form: for a graph class C, deciding FOL-expressible properties is fixed-parameter
tractable on C, i.e. there is an algorithm running in f(|φ|) · nO(1) time where |φ| is the size
of the the input FOL-sentence φ and n is the number of vertices of the input graph. The
starting point in the chain of such meta-theorems is the work of Seese [33] for C being the
class of graphs of bounded degree [33]. The first significant extension of Seese’s theorem was
obtained by Frick and Grohe [16] for the class C of graphs of bounded local treewidth [16].
The class of graphs of bounded local treewidth contains graphs of bounded degree, planar
graphs, graphs of bounded genus, and apex-minor-free graphs. The next step was done
by Flum and Grohe [12], who extended these results up to graph classes excluding some
minor. Dawar, Grohe, and Kreutzer [9] pushed the tractability border up to graphs locally
excluding a minor. Further extension was due to Dvořák, Král, and Thomas, who proved
tractability for the class C of being locally bounded expansion [11]. Finally, Grohe, Kreutzer,
and Siebertz [22] established fixed-parameter tractability for classes that are effectively
nowhere dense. In some sense, the result of Grohe et al. is the culmination of this long line
of meta-theorems, because for somewhere dense graph classes closed under taking subgraphs
deciding first-order properties is unlikely to be fixed-parameter tractable [11,26].

Notice that the above line of results also sheds some light on graph modification problems.
In particular, since many modification operations are FOL-expressible, in some situations
when the target property P is FOL-expressible, the above meta-algorithmic results can be
extended to graph modification problems. As a concrete example, consider the problem
of removing at most k vertices to obtain a graph of degree at most 3. All vertices of the
input graph of degree at least 4 + k should be deleted, so we delete them and adapt the
parameter k accordingly. In the remaining graph all vertices are of degree at most 3 + k and
the property of removing at most k vertices from such a graph to obtain a graph of degree
at most 3 is FOL-expressible. Hence the Seese’s theorem implies that there is an algorithm
of running time f(k) · nO(1) solving this problem. However these theories are not applicable
with instantiations of P, like planarity, that are not FOL-expressible.



F. V. Fomin, P. A. Golovach, G. Stamoulis, and D.M. Thilikos 51:3

Another island of tractability for graph modification problems is provided by Courcelle’s
theorem and similar theorems on graphs of bounded widths. For example, graph modification
problems are fixed-parameter tractable in cases where the target property P is MSOL-
expressible under the additional assumption that the graphs in P have fixed treewidth (or
bounded rankwidth, for MSOL1-properties, see e.g., [7]).

To conclude, according to the current state of the art, all known algorithmic meta-theorems
concerning fixed-parameter tractability of graph modification problems are attainable either
when the target property P is FOL-expressible and the structure is sparse or when P is
MSOL/MSO1-expressible and the structure has bounded tree/rank-width. Interestingly,
planarity is the typical property that escapes the above pattern: it is not FOL-expressible
and it has unbounded treewidth.

Graph planarization. The Planar Vertex Deletion problem is a generalization of
planarity testing. For a given graph G the goal is to find a vertex set of size at most k whose
removal makes the resulting graph planar. Planarity is a nontrivial and hereditary graph
property, hence by the result of Lewis and Yannakakis [27], the decision version of Planar
Vertex Deletion is NP-complete. The parameterized complexity of this problem has been
extensively studied.

The non-uniform fixed-parameter tractability of Planar Vertex Deletion (para-
meterized by k) follows from the deep result of Robertson and Seymour in Graph Minors
theory [32], that every minor-closed graph class can be recognized in polynomial time. Since
the class of graphs that can be made planar by removing at most k vertices is minor-closed,
the result of Robertson and Seymour implies that for Planar Vertex Deletion, for
each k, there exists a (non-uniform) algorithm that in time O(n3) solves Planar Vertex
Deletion. Significant amount of work was involved to improve the enormous constants
hidden in the big-Oh and the polynomial dependence in n. Marx and Schlotter [29] gave
an algorithm that solves the problem in time f(k) · n2, where f is some function of k only.
Kawarabayashi [24] obtained the first linear time algorithm of running time f(k) · n and
Jansen, Lokshtanov, and Saurabh [23] obtained an algorithm of running time O(2O(k log k) ·n).
For the related problem of contracting at most k edges to obtain a planar graph, Planar
Edge Contraction, an f(k) · nO(1) time algorithm was obtained by Golovach, van ’t Hof
and Paulusma [19]. Approximation algorithms for Planar Vertex Deletion and for
Planar Edge Deletion were studied in [2–4].

Our results. Let � be one of the following operations on graphs: Vertex removal, edge
removal, edge contraction, or edge addition. We are interested whether, for a given graph G
and an FOL-sentence φ, it is possible to transform G by applying at most k �-operations,
into a planar graph with the property defined by φ. We refer to this problem as the Graph
�-Modification to Planarity and φ problem. For example, when � is the vertex
removal operation and φ is a tautology, then the problem is Planar Vertex Deletion.
Similarly, Graph �-Modification to Planarity and φ generalizes Planar Edge
Deletion and Planar Edge Contraction. On the other hand, for the special case of
k = 0 this is the problem of deciding FOL-expressible properties on planar graphs.

Examples of first-order expressible properties are deciding whether the input graph G
contains a fixed graph H as a subgraph (H-Subgraph Isomorphism), deciding whether
there is a homomorphism from a fixed graph H to G to (H-Homomorphism), satisfying
degree constraints (the degree of every vertex of the graph should be between a and b for
some constants a and b), excluding a subgraph of constant size or having a dominating
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set of constant size. Thus Graph �-Modification to Planarity and φ encompasses
the variety of graph modification problems to planar graphs with specific properties. For
example, can we delete k vertices (or edges) such that the obtained graph is planar and each
vertex belongs to a triangle? Reversely, can we delete at most k vertices (or edges) from a
graph such that the resulting graph is a triangle-free planar graph? Can we add (or contract)
at most k edges to such that the resulting graph is 4-regular and planar? Or can we delete
at most k edges resulting in a square-free or claw-free planar graph?

Informally, our main result can be stated as follows.

I Theorem (Informal). Graph �-Modification to Planarity and φ is solvable in
time f(k, φ) · n2, for some function f depending on k and φ only. Thus the problem is
fixed-parameter tractable, when parameterized by k + |φ|.

Our theorem not only implies that Planar Vertex Deletion is fixed-parameter
tractable parameterized by k (proved in [23,29]) and that deciding whether a planar graph
has a first-order logic property φ is fixed-parameter tractable parameterized by |φ| (that
follows from [9, 11, 16, 22]). It also implies a variety of new algorithmic results about
graph modification problems to planar graphs with some specific properties that cannot be
obtained by applying the known results directly. Of course, for some formulas φ, Graph
�-Modification to Planarity and φ can be solved by more simple techniques. For
example, if φ defines a hereditary property characterized by a finite family of forbidden
induced subgraphs F , then deciding, whether it is possible to delete at most k vertices
to obtain a planar F-free graph, can be done by combining the straightforward branching
algorithm and, say, the algorithm of Jansen, Lokshtanov, and Saurabh [23] for Planar
Vertex Deletion. For this, we iteratively find a copy of each F ∈ F and if such a copy
exists we branch on all the possibilities to destroy this copy of F by deleting a vertex. By this
procedure, we obtain a search tree of depth at most k, whose leaves are all F-free induced
subgraphs of the input graph that could be obtained by at most k vertex deletions. Then for
each leaf, we use the planarization algorithm limited by the remaining budget. However, this
does not work for edge modifications, because deleting an edge in order to ensure planarity
may result in creating a copy of a forbidden subgraph. For such type of problems, even
for very “simple” ones, like deleting k edges to obtain a claw-free planar graph, or planar
graph without induced cycles of length 4, our theorem establishes the first fixed-parameter
algorithms. Also our theorem is applicable to the situation when φ defines a hereditary
property that requires an infinite family of forbidden subgraphs for its characterization and
for non-hereditary properties expressible in FOL.

In our paper, we show the result for Graph �-Modification to Planarity and φ,
but further we argue that it can be extended for modification problems to graphs embeddable
to a surface of a given Euler genus.

The price we pay for such generality is the running time. While the polynomial factor in
the running time of our algorithm is comparable with the running time of the algorithm of
Marx and Schlotter [29] for Planar Vertex Deletion, it is worse than the more advanced
algorithms of Kawarabayashi [24] and Jansen et al. [23]. Similarly, the algorithms for deciding
first-order logic properties on graph classes [11,16,22] are faster than our algorithm.

The proof of the main theorem is based on a non-trivial combination of the irrelevant
vertex technique of Robertson and Seymour [30,31] with the Gaifman’s Locality Theorem [17].
While both techniques were widely used, see [1,8,19,21,23,28] and [9,12,16], the combination
of the two techniques requires novel ideas. Following the popular trend in Theoretical
Computer Science, an alternative title for our paper could be “Robertson and Seymour meet
Gaifman”.
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Organization of the paper. In Section 2 we give the formal definition of the general Graph
�-Modification to Planarity and φ problem, present the theoretical background around
Gaifman’s Locality Theorem, and give some preliminary definitions and results. In Section 3
we highlight the main ideas behind the proof explain how our arguments can be extended
in cases where the target property is having bounded Euler genus and being a model of an
FOL-sentence φ. Finally, in Section 4 we provide some directions for further research.

2 Problem definition and preliminaries

Before we explain our techniques, we give some necessary definitions. We denote by N the set
of all non-negative integers. Given an n ∈ N, we denote by N≥n the set containing all integers
equal or greater than n. Given two integers x and y we define by [x, y] = {x, x+1, . . . , y−1, y}.
Given an n ∈ N≥1, we also define [n] = [1, n].

All graphs in this paper are undirected, finite, and they do not have loops or multiple
edges. Given a graph G, we denote by V (G) and E(G) the set of its vertices and edges,
respectively. If S ⊆ V (G), then we denote by G \ S the graph obtained by G after removing
from it all vertices in S, together with their incident edges. Also, we denote by G \ v the
graph G \ {v}, for some v ∈ V (G). We also denote by G[S] the graph G \ (V (G) \ S).

2.1 Modifications on graphs

We define OP := {vr, er, ec, ea}, that is the set of graph operations of removing a vertex,
removing an edge, contracting an edge, and adding an edge, respectively. Given an operation
� ∈ OP, a graph G, and a vertex set R ⊆ V (G), we define the application domain of the
operation � as

�〈G,R〉 =


R, if � = vr,
E(G) ∩

(
R
2
)
, if � = er, ec, and(

R
2
)
\ E(G), if � = ea.

Notice that �〈G,R〉 is either a vertex set or a set of subsets of vertices each of size two.
Given a set S ⊆ �〈G,R〉, we define G � S as the graph obtained after applying the

operation � on the elements of S. The vertices of G that are affected by the modification of
G to G� S, denoted by A(S), are the vertices in S, in case � = vr or the endpoints of the
edges of S, in case � ∈ {er, ec, ea}.

Given an FOL-sentence φ and some � ∈ OP , we define the following meta-problem:

Graph �-Modification to Planarity and φ (In short: G�MPφ)
Input: A graph G and a non-negative integer k.
Question: Is there a set S ⊆ �〈G,V (G)〉 of size k such that G� S is a
planar graph and G� S |= φ?

Let (x1, . . . , x`) ∈ N` and f, g : N→ N. We use notation f(n) = Ox1,...,x`
(g(n)) to denote

that there exists a computable function h : N` → N such that f(n) = h(x1, . . . , x`) · g(n).
We are ready to give the formal statement of the main theorem of this paper.

I Theorem 1. There exists a function f : N2 → N such that, for every FOL-sentence φ and
for every � ∈ OP, G�MPφ is solvable in Ok,|φ|(n2) time.
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2.2 Gaifman’s theorem

For vertices u, v of graph G, we use dG(u, v) to denote the distance between u and v in G.
We also use N (≤r)

G (v) to denote the set of vertices of G at distance at most r from v.

Formulas. In this paper we deal with logic formulas on graphs. In particular we deal with
formulas of first-order logic (FOL) and monadic second-order logic (MSO2). The syntax
of FOL-formulas includes the logical connectives ∨,∧,¬, a set of variables for vertices, the
quantifiers ∀,∃ that are applied to these variables, the predicate u ∼ v, where u and v are
vertex variables and whose interpretation is that u and v are adjacent, and the equality of
variables representing vertices. An MSO2-formula, in addition to the variables for vertices of
FOL-formulas, may also contain variables for subsets of vertices or subsets of edges. The
syntax of MSO2-formulas is obtained after enhancing the syntax of FOL-formulas so to
further allow quantification on subsets of vertices or subsets of edges and introduce the
predicates v ∈ S (resp. e ∈ F ) whose interpretation is that the vertex v belongs in the vertex
set S (resp. the edge e belongs in the edge set F ).

An FOL-formula φ is in prenex normal form if it is written as φ = Q1x1 . . . Qnxnψ

such that for every i ∈ [n], Qi ∈ {∀,∃} and ψ is a quantifier-free formula on the variables
x1, . . . , xn. Then Q1x1 . . . Qnxn is referred as the prefix of φ. For the rest of the paper, when
we mention the term “FOL-formula”, we mean an FOL-formula on graphs that is in prenex
normal form. Given an FOL-formula φ, we say that a variable x is a free variable in φ if
it does not occur in the prefix of φ. We write φ(x1, . . . , xr) to denote that φ is a formula
with free variables x1, . . . , xr. We call a formula without free variables a sentence. For a
sentence φ and a graph G, we write G |= φ to denote that φ evaluates to true on G. Also,
for a sentence φ we denote its length by |φ|.

Gaifman sentences. Given an FOL-formula ψ(x) with one free variable x, we say that ψ(x)
is r-local if the validity of ψ(x) depends only on the r-neighborhood of x, that is for every
graph G and v ∈ V (G) we have

G |= ψ(v) ⇐⇒ N
(≤r)
G (v) |= ψ(v).

Observe that there exists an FOL-formula δr(x, y) such that for every graph G and v, u ∈
V (G), we have dG(u, v) ≤ r ⇐⇒ G |= δr(v, u) (see [13, Lemma 12.26]).

We say that an FOL-sentence φ is a Gaifman sentence when it is a Boolean combination
of sentences φ1, . . . , φm such that, for every h ∈ [m],

φh = ∃x1 . . . ∃x`h

( ∧
1≤i<j≤`h

d(xi, xj) > 2rh ∧
∧
i∈[`h]

ψh(xi)
)
, (1)

where `h, rh ≥ 1 and ψh is an rh-local formula with one free variable. We refer to the
variables x1, . . . , x`h

for each h ∈ [m] as the basic variables of φ. Moreover, for every h ∈ [m]
we call φh a basic local sentence of φ and the formula ψh a local formula of φ.

I Proposition 2 (Gaifman’s Theorem [17]). Every FOL-sentence φ is equivalent to a Gaifman
sentence φ′. Furthermore, φ′ can be computed effectively.
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2.3 Equivalent formulations
Given a Gaifman sentence φ combined from sentences φ1, . . . , φm and a unary relation
symbol R, we define φ‖R as the sentence that is the same Boolean combination of sentences
φ1‖R, . . . , φm‖R such that, for every h ∈ [m],

φh‖R = ∃x1 . . . ∃x`h

( ∧
i∈[`h]

xi ∈ R ∧
∧

1≤i<j≤`h

d(xi, xj) > 2rh ∧
∧
i∈[`h]

ψh(xi)
)
, (2)

where `h, rh ≥ 1 and ψh is an rh-local formula with one free variable.
Let (G, k) be an instance of the G�MPφ problem. We may assume, because of Propos-

ition 2, that φ is a Gaifman sentence. We consider an enhanced version of the G�MPφ
problem as follows. Let (G,R, k) be a triple, where G is a graph, R ⊆ V (G), and k ∈ N.
We say that (G,R, k) is a (φ,�)-triple if there exists a set S ⊆ �〈G,R〉 such that |S| ≤ k,
G � S is a planar graph, and G � S |= φ‖R. Also, we say that a set S ⊆ �〈G,V (G)〉 is a
�-planarizer of G if G� S is planar. It is easy to observe that the property that (G,R, k) is
a (φ,�)-triple can be expressed in MSO2. This is easy in case � ∈ {vr, er, ec}. In the case
where � = ea, we observe the following:

I Observation 3. Let � = ea, G be a graph, and S ⊆ 〈G,V (G)〉 where S = {{v1, u1}, . . . ,
{vr, ur}}. Then there exists an MSO2-formula φP,S on structures of the type (G, v1, u1, . . . ,

vr, ur) such that

G� S is a planar graph ⇐⇒ (G, v1, u1, . . . , vr, ur) |= φP,S .

Treewidth. A tree decomposition of a graph G is a pair (T, χ) where T is a tree and
χ : V (T )→ 2V (G) such that
1.
⋃
t∈V (T ) χ(t) = V (G);

2. for every edge e of G there is a t ∈ V (T ) such that χ(t) contains both endpoints of e and
3. for every v ∈ V (G), the subgraph of T induced by {t ∈ V (T ) | v ∈ χ(t)} is connected.
The width of (T, χ) is defined as w(T, χ) := max

{
|χ(t)| − 1

∣∣ t ∈ V (T )
}
. The treewidth of

G is defined as

tw(G) := min
{

w(T, χ)
∣∣ (T, χ) is a tree decomposition of G

}
.

Theorem 1 is a consequence of the following lemma.

I Lemma 4. Given a Gaifman sentence φ and a � ∈ OP, there exists a function f1 : N2 → N,
and an algorithm with the following specifications:

Reduce_Instance(k,G, S,R)
Input: an integer k ∈ N, a graph G, a set R ⊆ V (G), and a set S ⊆ R that is a vr-planarizer
of G of size at most k.
Output: One of the following:
1. if � ∈ {er, ec, ea}: a report that (G, k) is a no-instance of G�MPφ.

if � = vr: a vertex u ∈ S such that S \ {u} is a vr-planarizer of G \ u of size at most
k − 1 and (G, k) and (G \ u, k − 1) are equivalent instances of G�MPφ.

2. a vertex set X ⊆ V (G) and a vertex v ∈ X such that S ⊆ R \ X and (G,R, k) is a
(φ,�)-triple iff (G \ v,R \X, k) is a (φ,�)-triple.

3. a tree decomposition of G of width at most f1(k, |φ|).
Moreover, this algorithm runs in Ok,|φ|(n) steps.
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Given Lemma 4, Theorem 1 can be proved as follows.

Proof of Theorem 1. Let φ be an FOL-formula. By Proposition 2, φ is equivalent to a
Gaifman sentence φ′. Using the planarization algorithm from [23], we compute, in Ok(n)
steps, a vr-planarizer S of G of size at most k. If � = ea, then S := ∅, while if � ∈ {vr, er, ec},
then if such a set does not exist the we safely return a negative answer (for the case of
� = er, ec, this is due to the fact that if there exists a ec- or an er-planarizer of G of size
at most k then also a vr-planarizer of G of size at most k exists (see [19, Lemma 1])). We
are now in position to apply recursively the algorithm Reduce_Instance(k,G, S,R) of
Lemma 4 until either an answer or the third case appears. In the first case, we either return
a negative answer, if � ∈ {er, ec, ea}, or set (k,G, S,R) := (k − 1, G \ v, S \ v,R) if � = vr,
while in the second case we set (k,G, S,R) := (k,G \ v, S,R \X). In the third case we have
that tw(G) ≤ f1(k, |φ′|). Recall that the property that (G,R, k) is a (φ,�)-triple can be
expressed in MSO2, thus the status of the final equivalent instance (G,R, k) can be evaluated
in Ok,|φ|(n) steps by applying Courcelle’s theorem. As the recursion takes at most n steps,
we obtain the claimed running time. J

3 The algorithm

3.1 Two main lemmata
We now give two lemmata, whose combination gives the proof of Lemma 4. Before we state
them, we give a series of definitions.

Let � ∈ OP, G be a graph, k ∈ N, and let S be a �-planarizer of G. We say that S is
an inclusion-minimal �-planarizer of G if none of its proper subsets is a �-planarizer of G.
Notice that, in the special case where � = ea, the unique inclusion-minimal �-planarizer
of G is the empty set of edges. We say that a set Q ⊆ V (G) is �-planarization irrelevant
if for every inclusion-minimal �-planarizer S of G that has size at most k, it holds that
A(S) ∩Q = ∅.

Partially disk-embedded graphs. We define a closed disk ∆ to be a subset of the plane
homeomorphic to the set {(x, y) | x2 + y2 ≤ 1} and we use bor(∆) to denote its boundary.
We say that a graph G is partially disk-embedded in some closed disk ∆, if there is some
subgraph K of G that is embedded in ∆ such that bor(∆) is a cycle of K and no vertex in
∆ \ bor(∆) is adjacent to a vertex not in ∆. We use the term partially ∆-embedded graph G
to denote that a graph G is partially disk-embedded in some closed disk ∆. We also call
the graph K compass of the partially ∆-embedded graph G and we always assume that we
accompany a partially ∆-embedded graph G together with an embedding of its compass in
∆ that is the set G ∩∆.

Grids and walls. Let k, r ∈ N. The (k × r)-grid is the Cartesian product of two paths on k
and r vertices respectively. An elementary r-wall, for some odd r ≥ 3, is the graph obtained
from a (2r×r)-grid with vertices (x, y), x ∈ [2r]× [r], after the removal of the “vertical” edges
{(x, y), (x, y + 1)} for odd x+ y, and then the removal of all vertices of degree one. Notice
that, as r ≥ 3, an elementary r-wall is a planar graph that has a unique (up to topological
isomorphism) embedding in the plane such that all its finite faces are incident to exactly six
edges. The perimeter of an elementary r-wall is the cycle bounding its infinite face, while
the cycles bounding its finite faces are called bricks. Given an elementary wall W, a vertical
path of W is one whose vertices, in ordering of appearance, are (i, 1), (i, 2), (i + 1, 2), (i +
1, 3), (i, 3), (i, 4), (i+ 1, 4), (i+ 1, 5), (i, 5), . . . , (i, r − 2), (i, r − 1), (i+ 1, r − 1), (i+ 1, r), for
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some i ∈ {1, 3, . . . , 2r−1}. Also an horizontal path ofW is the one whose vertices, in ordering
of appearance, are (1, j), (2, j), . . . , (2r, j), for some j ∈ [2, r−1], or (1, 1), (2, 1), . . . , (2r−1, 1)
or (2, r), (2, r), . . . , (2r, r).

Figure 1 An 15-wall and its 7 layers.

An r-wall is any graph W obtained from an elementary r-wall W after subdividing
edges (see Figure 1). We call the vertices that where added after the subdivision operations
subdivision vertices, while we call the rest of the vertices (i.e., those of W ) branch vertices.
The perimeter of W , denoted by perim(W ), is the cycle of W whose non-subdivision vertices
are the vertices of the perimeter of W . Also, a vertical (resp. horizontal) path of W is a
subdivided vertical (resp. horizontal) path of W .

A subgraph W of a graph G is called a wall of G if W is an r-wall for some odd r ≥ 3
and we refer to r as the height of the wall W .

Let W be a wall of a graph G and K ′ be the connected component of G \ perim(W )
that contains W \ perim(W ). The compass of W , denoted by comp(W ), is the graph
G[V (K ′) ∪ V (perim(W ))]. Observe that W is a subgraph of comp(W ) and comp(W ) is
connected.

The layers of an r-wall W are recursively defined as follows. The first layer of W is its
perimeter. For i = 2, . . . , (r − 1)/2, the i-th layer of W is the (i− 1)-th layer of the subwall
W ′ obtained from W after removing from W its perimeter and all occurring vertices of
degree one. Notice that each (2r+ 1)-wall has r layers (see Figure 1). The central vertices of
W , denoted by center(W ), are the two branch vertices of W that do not belong to any of its
layers.

We are now in position to state the following two lemmata.

I Lemma 5. Given a � ∈ OP, there exist two functions f1, f2 : N2 → N, and an algorithm
with the following specifications:

Find_Area(k, q,G, S)
Input: a k ∈ N, an odd q ∈ N≥1, a graph G, and a set S ⊆ V (G) that is a vr-planarizer of G
of size at most k.
Output: One of the following:

1. if � ∈ {er, ec, ea}: a report that (G, k) is a no-instance of G�MPφ.
if � = vr: a vertex u ∈ S such that S \ u is a vr-planarizer of G \ u of size at most
k − 1 and (G, k) and (G \ u, k − 1) are equivalent instances of G�MPφ.

2. a q-wall W of G and a closed disk ∆ such that
the compass of W has treewidth at most f2(k, q),
G is partially ∆-embedded, where G ∩∆ = comp(W ), bor(∆) = perim(W ),
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V (comp(W )) is �-planarization irrelevant, and
NG(S) ∩ V (comp(W )) = ∅, or

3. a tree decomposition of G of width at most f1(k, q).
Moreover, this algorithm runs in Ok,q(n) steps.

By NG(S) we denote the vertices not in S adjacent in G with vertices in S. In the
first possible output of the algorithm of Lemma 5 we have either a negative answer to the
G�MPφ problem or an equivalent instance of G�MPφ with reduced value of k.

The main steps of the proof of Lemma 5 are the following. In case, � = ea we first
check whether G is planar. If not, we report a negative answer, otherwise we find a wall
W in G whose size is a “big-enough” function of k and whose compass has “small-enough”
treewidth using [18, Lemma 4.2]. This wall contains an (also “big-enough”) subwall of W
whose compass is not affected by S. In case � ∈ {vr, er, ec}, we consider the neighbors of S
in the planar graph G′, that is the set N := NG(S). Moreover, we consider a big enough
triangulated grid Γ as a contraction of G′ (using [14, Theorem 3]) and the set NΓ of the
“contraction-heirs” of the vertices of N in Γ. If |NΓ| is “big-enough”, then we prove, using
the main technical result of [10], that some of the vertices of S should be affected by every
possible solution, in case � = vr, or that we have a no-instance, in case � ∈ {er, ec}. If
|NΓ| is “small-enough”, then we can find a “big-enough” wall W in G whose compass is not
affected by S (again using the previously mentioned result of [18]). The proof is completed
by proving that this wall contains some “big-enough” subwall that is not affected by any
inclusion-minimal �-planarizer.

The next lemma deals with the second possible output of the algorithm of Lemma 5 and
contains the “core arguments” of this paper.

I Lemma 6. Given a Gaifman sentence φ and a � ∈ OP, there exists a function f3 : N2 → N
and an algorithm with the following specifications:
Find_Vertex(k,∆, G,R, W̃ )
Input: a k ∈ N, a partially ∆-embedded graph G, a set of annotated vertices R ⊆ V (G), and
a q-wall W̃ of G such that

q = f3(k, |φ|).
the compass of W̃ has treewidth at most f2(k, q),
G ∩∆ = comp(W̃ ), bor(∆) = perim(W̃ ),
V (comp(W̃ )) is �-planarization irrelevant, and

Output: a vertex set X ( V (comp(W̃ )) and a vertex v ∈ X such that (G,R, k) is a (φ,�)-
triple iff (G \ v,R \X, k) is a (φ,�)-triple.
Moreover, this algorithm runs in Ok,|φ|(n) steps.

Notice that the above algorithm produces a (φ,�)-triple where both R and G are
reduced. To see why Lemma 4 follows from Lemma 5 and Lemma 6, observe that in the
second possible output of the algorithm Find_Area(k, q,G, S) we can call the algorithm
Find_Vertex(k,∆, G,R, W̃ ), where W̃ := W , which outputs a vertex set X ( V (comp(W̃ ))
and a vertex v ∈ X such that (G,R, k) is a (φ,�)-triple iff (G \ v,R \X, k) is a (φ,�)-triple.
Observe that since NG(S)∩ V (comp(W̃ )) = ∅, then S ⊆ R \X. We insist that the algorithm
Find_Vertex(k,∆, G,R, W̃ ) does not use the fact that NG(S) ∩ V (comp(W̃ )) = ∅ but we
use the latter to guarantee that S ⊆ R \X. For the running time of Lemma 4, recall that
the two algorithms of Lemma 5 and Lemma 6 run in Ok,|φ|(n) steps.
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3.2 Sketch of the proof of Lemma 6
In order to prove Lemma 6, we first find a collection W of “sufficiently many” subwalls of W̃
each with ρ layers (where ρ is “big-enough”), whose compasses are pairwise vertex-disjoint.

The key idea is to define a “characteristic” of each wall W ∈ W that encodes all possible
ways that a �-planarizer S of G affects comp(W ) along with the ways that the fact that
G� S |= φ is certified by a vertex assignment to the basic variables of the Gaifman formula
φ in comp(W ). Recall that φ‖R is a Boolean combination of sentences φ1‖R, . . . , φm‖R so
that for every h ∈ [m],

φh‖R = ∃x1 . . . ∃x`h

( ∧
i∈[`h]

xi ∈ R ∧
∧

1≤i<j≤`h

d(xi, xj) > 2rh ∧
∧
i∈[`h]

ψh(xi)
)
,

where `h, rh ≥ 1 and ψh is an rh-local formula with one free variable. Notice that φ‖R is
evaluated on annotated graphs of the form (G,R). Clearly, φ‖R is a sentence in Monadic
Second Order Logic, in short, a MSO2-sentence.

As a first step, for every h ∈ [m], W ∈ W, S ⊆ �〈G,R〉 of size at most k, Ih ⊆ [`h], and
t ∈ [ρ], we define:

sig(S,Ih,t)
φh,�

(W ) :=


1, if ∃X̃ = {xi | i ∈ Ih} ⊆ V (comp(W (t))� S) ∩R such that X̃

is (|Ih|, rh)-scattered in comp(W (t))� S and G� S |=
∧
x∈X̃ ψh(x),

0, otherwise.

In the above definition, W (t) is the subwall of W that has t layers (which are the last t layers
of W ) and the same center as W . Also, a set X of vertices is (α, β)-scattered, if |X| = α

and there are no two vertices in X within distance ≤ 2β. Intuitively, sig(S,Ih,t)
φh,�

(W ) = 1 if
the application of the operation � on G as defined by S gives rise to the existence of a
scattered set X̃ in the compass of W (t) so that when the vertices of X̃ are assigned to the
basic variables of φh corresponding to Ih, the local formula ψh is satisfied for each xi ∈ X̃ in
the modified graph.

Next, for every W ∈ W and every S ⊆ �〈G,R〉 of size at most k we define:

msig(S)
φ,�(W ) =

(
(sig(S,I1,t)

φ1,�
(W ), . . . , sig(S,Im,t)

φm,� (W )) | (I1, . . . , Im, t) ∈ 2[`1] × · · · × 2[`m] × [ρ]
)
.

Clearly, msig(S)
φ,�(W ) can be seen as a (2` · ρ)-tuple of binary m-tuples, given that ` :=∑

h∈[m] `h. Let SIG be the set of all such tuples and notice that |SIG| is bounded by some

function of k and |φ| and
{

msig(S)
φ,�(W )

∣∣W ∈ W, S ⊆ �〈G,R〉 of size at most k
}
⊆ SIG.

It is now time to define the characteristic of a wall W ∈ W. We set r := maxh∈[m]{rh}
and d := 2(r + (`+ 1)r + r). We define the (φ,�)-characteristic of W as follows:

(φ,�)-char(W ) = {(s, σ, t) ∈ [0, k]× SIG× [d+ 1, ρ] | ∃S ⊆ �〈G,R〉,
|S| = s,

A(S) ⊆ V (comp(W (t−d))) ∩R,
comp(W )� S is planar, and
msig(S)

φ,�(W ) = σ}.

Notice that all queries in the definition of (φ,�)-char(W ) can be expressed in MSO2. Indeed,
this is easy to see when � ∈ {vr, er, ec}, as in this case the query “comp(W )� S is planar” is
trivially true, since V (comp(W̃ )) is �-planarization irrelevant. In the case where � = ea,
the MSO2 expressibility follows from Theorem 3. As each W ∈ W has treewidth bounded
by a function of k and |φ|, it follows by the theorem of Courcelle that (φ,�)-char(W ) can be
computed in Ok,|φ|(n) time.
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We say that two walls are (φ,�)-equivalent if they have the same (φ,�)-characteristic.
Since the collection W contains “sufficiently many” walls, then we can find a collection
W ′ ⊆ W of also “sufficiently many” walls that are pairwise equivalent. We fix a wall
W1 ∈ W ′ and we set X := comp(W (r)

1 ), where r = maxh∈[m]{rh}, and v ∈ center(W1).
In what follows, we highlight the ideas of the proof of the fact that if (G,R, k) is a (φ,�)-

triple, then (G \ v,R \X, k) is a (φ,�)-triple. We first consider a set S ⊆ �〈G,R〉 of size at
most k that certifies that (G,R, k) is a (φ,�)-triple. Then, we pick a wall W2 ∈ W ′ \ {W1}
whose compass is not affected by S. We are allowed to pick this wall since there are
“sufficiently many” walls equivalent to W1 in W ′. Our strategy is to use the fact that W1
and W2 are (φ,�)-equivalent in order to state a “replacement argument”: we can find a
t ∈ [ρ], such that the subset Sin of S that affects comp(W (t)

1 ) and the set X of vertices of
comp(W (t)

1 ) that are assigned to the basic variables of φ in order to certify that G� S |= φ,
can be replaced by their “equivalent” sets S̃ and X̃ in comp(W (t)

2 ). As a consequence of this,
for every possible solution S and vertex assignment to the basic variables of φ, we can find
both a new solution and a new vertex assignment that “avoid” the “inner part” of W1. This
implies that the validity of any local formula of φ does not depend on the central vertices of
W1. Thus, we can declare one of them “irrelevant” and safely remove it from G, while storing
(by reducing R to R \X) the fact that every possible solution S and vertex assignment to
the basic variables of φ can “avoid” the “inner part” of W1.

To further inspect how this “replacement” is achieved, we need to dive deeper into the
technicalities of the proof (through an intuitive perspective). Given a wall W , we refer to a
wall-annulus of W as the subgraph of W that is obtained from W after removing from W

all its layers, except a fixed number of consecutive layers. We think of every wall W ∈ W as
divided in consecutive wall-annuli of fixed size. Since ρ is “big-enough”, then we can find also
“many enough” such wall-annuli. We denote each one of them by Ai(W ). Given a W ∈ W,
every wall-annulus Ai(W ) is divided in some regions as depicted in Figure 2.

Figure 2 An example of a wall-annulus Ai(W ) of a wall W ∈ W, together with its regions refered
in the proof of Lemma 6.

The regions depicted in purple and green are consisting of r layers of the wall W (recall
that r = maxh∈[m]{rh}). The regions depicted in yellow and orange are “big-enough” so as
to be able to find an also “big-enough” wall-annulus that “avoids” a given vertex assignment
to the basic variables of φ.

Since ρ is “big-enough”, then we can find a wall-annulus Ai(W1) that is not affected
by S. This allows us to partition S in two sets, Sin and Sout in the obvious way. The fact
that W1 and W2 are (φ,�)-equivalent implies the existence of a set S̃ in W2 certifying
that (φ,�)-char(W2) = (φ,�)-char(W1). Thus, by setting S′ := S̃ ∪ Sout, we have that
S′ ⊆ �〈G,R′〉, |S′| = |S|, and G � S′ is planar. The latter is guaranteed by the fact that
V (comp(W̃ )) is �-planarization irrelevant, in the case � ∈ {vr , er, ec}, while in the case that
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� = ea, the existence of the outer purple buffer of Ai(W1) (resp. Ai(W2)) allows us to treat
Sin (resp. S̃) and Sout separately, while not spoiling planarity. The last part of the proof
requires to prove that G� S |= φ‖R ⇐⇒ G� S′ |= φ‖R′ .

For simplicity, here we only argue why G � S |= φh‖R =⇒ G � S′ |= φh‖R′ holds, as
the arguments in the proof of the inverse direction are completely symmetrical. Therefore,
given an (`h, rh)-scattered set X such that φh is satisfied if the vertices of X are assigned
to the basic variables of φh, we aim to find a t ∈ [ρ] in order to “replace” the vertices in
X ∩ V (comp(W (t)

1 )) with a set X̃ of vertices in comp(W (t)
2 ) such that the resulting vertex

set X ′ is (`h, rh)-scattered and φh is satisfied if the vertices of X ′ are assigned to the basic
variables of φh. Notice that for every h ∈ [m] such that G� S |= φh‖R, these “replacement
arguments” are pairwise independent.

We first deal with the possibility that the given scattered set X intersects some “inner
part” of comp(W2). Thus, in order to “clean” the “inner part” of comp(W2), we find a wall
W3 ∈ W ′ \ {W1,W2} that “avoids” both S and X (for different h ∈ [m], the choice of W3
may coincide). Also, we consider a t̃ ∈ [ρ] corresponding to a layer in the yellow region of
the wall-annulus Ai(W2) such that the annulus of the wall-annulus of Ai(W2) bounded by
the (t − r + 1)-th and t-th layer of W2 is not intersected by X. Then, we “replace” the
vertices of X in comp(W (t̃)

2 ), call it Xin with an “equivalent” vertex set X̃ in comp(W (t̃)
3 )

(notice that this is achieved by arguing for S := ∅ in the notion of (φ,�)-characteristic).
This results to an (`h, rh)-scattered set Y such that Y does not intersect comp(W (t̃)

2 ) and
G� S |=

∧
x∈Y ψh(x) (see Figure 3).

W2 W3

→

W2 W3

Figure 3 The “cleaning” of the “inner part” of comp(W2). Left: The set A(S) is depicted in cross
vertices, the set X \Xin is depicted in blue, and the set Xin is depicted in red. Right: The set A(S)
is depicted in cross vertices, the set Y \Xin is depicted in blue, and the set X̃ is depicted in red.

Now, we are allowed to pick a t ∈ [ρ] corresponding to an “orange” layer of Ai(W1) such
that the annulus of the wall-annulus of Ai(W1) bounded by the (t′ − r)-th and t′-th layer
of W1 is not intersected by X. If we set Yin to be the set of vertices of Y in comp(W (t′)

1 ),
then since msig(Sin)

φ,� (W1) = msig(S̃)
φ,�(W2), then there exists a set Ỹ in comp(W (t′)

2 ) that is
“equivalent” to Yin (see Figure 4).

W2W1

→

W2W1

Figure 4 The last part of the proof. Left: The set A(Sout) is depicted in red cross vertices, the
set A(Sin) is depicted in green cross vertices, the set Y \ Yin is depicted in blue, and the set Yin is
depicted in red. Right: The set A(Sout) is depicted in red cross vertices, the set A(S̃) is depicted in
green cross vertices, the set Y \ Yin is depicted in blue, and the set Ỹ is depicted in red.
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Therefore, since Ỹ is in the orange region of comp(W2) and Y is “avoiding” comp(W (t̃)
2 ),

then we can derive that Y and Ỹ are “separated” by a green and a purple region of Ai(W2).
Thus, X ′ := (Y \ Yin) ∪ Ỹ is an (`h, rh)-scattered set of G � S′ that “avoids” comp(W (r)

1 ).
Moreover, φh is satisfied given that the vertices of X ′ of G � S′ are assigned to the basic
variables of φh. The proof is concluded.

3.3 Extension on graphs of bounded genus
The immediate question is whether our results can be extended to target properties that
are more general than planarity (and still not FOL-expressible). The first candidate is the
�-Modification to g-Euler Genus and φ, where we ask for a set S ⊆ �〈G,V (G)〉
of size k such that G � S has Euler genus at most g. Notice that the property of having
Euler genus at most g is not FOL-expressible. On the positive side, this property is MSO2-
expressible as there is a set Bg of graphs such that G has Euler genus at most g iff none of
the graphs in Bg is a minor of G and minor containment is MSO2-expressible. We next argue
about how to adapt the techniques of this paper in order to prove that this problem can be
solved in Ok,|φ|,g(n2) when � ∈ {vr, er, ec}. For this we first straightforwardly extend the
notions of �-planarization irrelevant vertex set and �-planarizer to the respective notions
of �-g-Euler Genus irrelevant vertex set �-g-euler genus enforcer. Our aim is to prove a
more general version of Lemma 4 where �-planarizer is replaced by �-g-euler genus enforcer.
The Ok,|φ|,g(n2) time algorithm for �-Modification to g-Euler Genus and φ follows
directly from this extended version of Lemma 4 with the same arguments as its planarization
counterpart. The extended version of Lemma 4 in turn is a consequence of the generalized
versions of Lemma 5 and Lemma 6 where �-planarizer is replaced by �-g-euler genus enforcer
and �-planarization irrelevant is replaced by �-g-Euler Genus irrelevant. The generalized
version of Lemma 5 follows as the same arguments also hold on bounded-genus graphs: the
result we use from [18] has a bounded-genus analogue, the results from [14] and [10] hold for
the more general graph class of apex-minor-free graphs. Also the fact that the “big-enough”
q-wall that we find is �-g-Euler Genus irrelevant can be proven using arguments from [25].
Having the extended version of Lemma 5, the proof of the extended version of Lemma 6
is almost identical as we still work inside a disk ∆ where G is partially embedded, so that
local modifications should locally respect planarity. To be precise, the main difference is
that in the definition of d, we now demand that d is also lower bounded by some big-enough
function of the genus which guarantees that local modifications in the disk ∆ do not alter
the genus of the whole graph.

4 Further research directions

In this paper we provide an algorithmic-meta theorem for the graph modifiction problem
where the modification operation is in {vr, er, ec, ea} and the target property is planarity
plus being a model of some FOL-sentence φ. We also argued how to extend this result for
modification operations in {vr, er, ec} for the case where instead of planarity we consider
the class of graphs embeddable in a surface of Euler genus g, for fixed g. The two general
challenges that we distinguish are the following.

Pick a (non-empty) subset O of {vr, er, ec, ea} and define Graph O-Modification
to Planarity and φ in the obvious way, by permitting any modification operation
from O. It is possible (however more technical) to adapt our results for this problem
in the case where ea 6∈ O. However, in the case where ea ∈ O (while |O| > 1) the
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problem becomes considerably more complicated as parts of the graph may be relocated
during the modification operation (in fact, from a more general perspective, the same
issue appears for the ea-Modification to g-Euler Genus and φ problem that we
avoided to consider in Subsection 3.3). We believe that this issue can be tackled using
the techniques of [15]. However, the technical details of such an enterprise seem to be
quite involved.
Consider other target properties, alternative to planarity, that are not FOL-expressible. A
natural challenge in this direction is to consider some finite set of graphs H and define the
�-Modification to Excluding H-minors and φ problem where the target property,
apart from being a model of φ, is to exclude every graph in H as a minor. Notice that if H
contains some planar graph, then the yes-instance of the problem has bounded treewidth,
therefore the problem is fixed-parameter tractable due to Courcelle’s Theorem. The result
of this paper can be seen as �-Modification to Excluding {K5,K3,3}-minors and
φ that is the simplest, however essential, version of the general problem. We conjecture
that the same results can be achieved for every H and we believe that the techniques
introduced in this paper can be the starting point of such a project.
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