
Coloring Fast Without Learning Your Neighbors’
Colors
Magnús M. Halldórsson
Reykjavik University, Iceland
mmh@ru.is

Fabian Kuhn
University of Freiburg, Germany
kuhn@cs.uni-freiburg.de

Yannic Maus
Technion – Israel Institute of Technology, Haifa, Israel
yannic.maus@cs.technion.ac.il

Alexandre Nolin
Reykjavik University, Iceland
alexandren@ru.is

Abstract
We give an improved randomized CONGEST algorithm for distance-2 coloring that uses ∆2 +1 colors
and runs in O(log n) rounds, improving the recent O(log ∆ · log n)-round algorithm in [Halldórsson,
Kuhn, Maus; PODC ’20]. We then improve the time complexity to O(log ∆) + 2O(

√
log log n).

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases distributed graph coloring, distance 2 coloring, congestion

Digital Object Identifier 10.4230/LIPIcs.DISC.2020.39

Related Version Full version available under https://arxiv.org/abs/2008.04303.

Funding This project was supported by the European Union’s Horizon 2020 Research and Innovation
Programme under grant agreement no. 755839 and by the Icelandic Research Fund grant 174484.

1 Introduction

The distributed coloring problem is arguably the most intensively studied problem in the area
of distributed graph algorithms and certainly also one of the most intensively studied problems
in distributed computing more generally. The standard assumption is that the coloring graph
– the graph on which we want to compute a coloring – is also the communication network –
the graph forming the network topology. We explore in this paper the case when the latter is
weaker than the former: the communication is constrained, and direct links are not available
to all the “neighbors” that are to be colored differently.

The primary setting for this is the distance-2 coloring problem in the standard distributed
CONGEST model. Given a graph G = (V,E), in the d2-coloring problem on G, the objective
is to assign a color xv to each node v ∈ V such that any two nodes u and v at distance
at most 2 in G are assigned different colors xu 6= xv. Equivalently, d2-coloring asks for a
coloring of the nodes of G such that for every u ∈ V , all the nodes in the set {u} ∪N(u)
(where N(u) denotes the set of neighbors of u) are assigned distinct colors. Further note that
d2-coloring on G is also equivalent to the usual vertex coloring problem on the graph G2,
where V (G2) = V and there is an edge {u, v} ∈ E(G2) whenever dG(u, v) ≤ 2.

© Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Alexandre Nolin;
licensed under Creative Commons License CC-BY

34th International Symposium on Distributed Computing (DISC 2020).
Editor: Hagit Attiya; Article No. 39; pp. 39:1–39:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5774-8437
mailto:mmh@ru.is
https://orcid.org/0000-0002-1025-5037
mailto:kuhn@cs.uni-freiburg.de
https://orcid.org/0000-0003-4062-6991
mailto:yannic.maus@cs.technion.ac.il
https://orcid.org/0000-0002-3952-0586
mailto:alexandren@ru.is
https://doi.org/10.4230/LIPIcs.DISC.2020.39
https://arxiv.org/abs/2008.04303
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Coloring Fast Without Learning Your Neighbors’ Colors

The CONGEST model is a standard synchronous message passing model [32]. The graph
on which we want to compute a coloring is also assumed to form the network topology. Each
node u ∈ V of the graph has a unique O(logn)-bit identifier ID(u), where n = |V | is the
number of nodes of G. Time is divided into synchronous rounds and in each round, each
node u ∈ V of G can do some arbitrary internal computation, send a (potentially different)
message to each of its neighbors v ∈ N(u), and receive the messages sent by its neighbors in
the current round. If the size of the messages is not restricted, the model is known as the
LOCAL model [29, 32]. In the CONGEST model, it is further assumed that each message
consists of at most O(logn) bits.

As our main result, we give an efficient O(logn)-time randomized algorithm for d2-coloring
G with at most ∆2 + 1 colors, where ∆ is the maximum degree of G. This improves on a
recent O(log ∆ · logn)-time algorithm [23] and it matches the best known bound for ordinary
distance-1 (∆ + 1)-coloring in CONGEST as a function of n alone. We further explore more
efficient algorithms when ∆ � n. Combining our main method with a range of powerful
recent techniques, we obtain an algorithm that runs in time O(log ∆) + 2O(

√
log logn).

Before discussing our results in more detail, we first discuss why we believe d2-coloring
is interesting, what is known for the corresponding coloring problems on G and why it is
challenging to transform CONGEST algorithms to color G into CONGEST algorithms for
d2-coloring.

Wireless networking is a major motivation for distance-2 coloring, where nodes with a
common neighbor should not simultaneously communicate to avoid a collision at the common
neighbor [15, 31]. While the coloring is to be used for scheduling, the wireless channel
need not be the medium for computing the coloring. With the advent of software-defined
radio and hierarchical / heterogeneous networks, it is well motivated to consider coloring
computation in a communication model more powerful than radio networks. Yet, asking
for the different-message-to/from-all-neighbors feature of CONGEST may be hoping for
too much. More generally, we view it as a major question in distributed graph algorithms
whether one can relax the communication requirements for graph coloring. We ask:

How constrained can the communication structure be to allow for fast (logarithmic,
sublogarithmic) distributed graph coloring computation?

Distributed d2-coloring is an interesting and important problem for several other reasons.
The d2-coloring problem for example also occurs naturally when single-round randomized
algorithms are derandomized using the method of conditional expectation [21]. d2-coloring in
CONGEST is further of special interest as it appears to lie at the edge of what is computable
efficiently, i.e., in polylogarithmic time, while distance-3 coloring is even hard to verify [18].

Distance-k problems have not been addressed widely in a distributed setting, partly
because distance-k communication can be simulated in k steps of the LOCAL model. In
CONGEST, the situation changes drastically as simulating a single round of a distance-1
coloring algorithm can incur a factor Θ(∆k−1) overhead, i.e., even for k = 2, the overhead
can be linear in ∆. Even the very simple algorithm where each node picks a random available
color cannot be efficiently used for d2-coloring as it is in general not possible to keep track
of the set of colors chosen by 2-hop neighbors in time o(∆). Recently, Halldórsson, Kuhn
and Maus [23] treated d2-coloring in CONGEST and gave a randomized algorithm using
∆2 + 1-colors in O(log ∆ · logn) rounds, as well as a deterministic algorithm using (1 + ε)∆2

colors in poly(logn) rounds. Our main approach builds heavily on their framework, while
simplifying certain features and strengthening structural properties. Distributed graph
optimization problems on G2 (with CONGEST-communication in G) such as vertex cover
and minimum dominating set have recently been studied in [5].

M.M. Halldórsson, F. Kuhn, Y. Maus, and A. Nolin 39:3

Distributed graph coloring. The standard variant of the distributed coloring problem on G
asks for computing a vertex coloring with at most ∆+1 colors, which is computed by a simple
sequential greedy algorithm. The main focus in the literature on distributed coloring has
been on the LOCAL model, where by now the problem is understood relatively well. The best
randomized (∆ + 1)-coloring algorithm known in the LOCAL model, due to Chang, Li, and
Pettie [14], runs in poly log logn rounds. The complexity given in [14] is 2O(

√
log logn), while

the improvement to poly log logn immediately follows from the recent breakthrough work
on deterministic network decomposition of Rozhoň and Ghaffari [33]. For a more detailed
discussion of related work on distributed coloring, we refer to [8, 14, 27].

While most known distributed coloring algorithms were developed for the LOCAL model,
many of them work directly in the CONGEST model, including those in [1, 30, 29, 26, 28, 7,
10, 6, 9, 27, 4]. Still, the best complexity known for coloring in CONGEST, as a function
of n alone, is O(logn), which is achieved by the following very simple OneShotColoring
algorithm: Initially all nodes are uncolored. The algorithm runs in synchronous phases,
where in each phase, each still uncolored node v chooses a uniform random color among its
available colors (i.e., among the colors that have not already been picked by a neighbor) and v
keeps the color if no of its uncolored neighbors tries the same color at the same time [26, 11].

The only known published algorithm in CONGEST with a better bound is due to
Ghaffari [19], who obtains a (∆ + 1)-coloring in time O(log ∆) + 2O(

√
log logn). The second

term is due to a network decomposition algorithm also introduced in [19]. Unlike for results
in the LOCAL model, it is not directly possible to replace this decomposition with the recent
construction in [33] to improve the dependence on n. The reason is that the complexity of the
network decomposition construction of [33] grows at least linearly in the length of the node
identifier bit strings. In the LOCAL model, it is possible to use a standard coloring algorithm
of [29] to first map the IDs to O(log logn)-bit values that are unique up to a sufficient distance
so that one can afterwards apply the algorithm of [33]. Subsequent to the publication of our
results [20] improved upon the network decomposition algorithm from [33] (to deal with large
IDs in the CONGEST model) and as a result obtains a O(log ∆) + poly log logn CONGEST
algorithm for (∆ + 1)-coloring. Note that if we have graphs of size N and if IDs and colors
can be represented with poly logN bits, there is a recent deterministic (deg + 1)-list coloring
algorithm running in poly logN time in CONGEST [4].

1.1 Contributions
We provide two efficient randomized CONGEST model algorithms to compute a d2-coloring
of a given n-node graph G = (V,E). If ∆ is the maximum degree of G, the maximum
degree of any node in G2 is at most ∆ + ∆ · (∆− 1) = ∆2. As a natural analog to studying
(∆ + 1)-coloring on G, we study the problem of computing a d2-coloring with ∆2 + 1 colors.

I Theorem 1.1. There is a randomized CONGEST algorithm that d2-colors a graph with
∆2 + 1 colors in O(logn) rounds, with high probability.

The algorithm is given in Sec. 2, with the key ideas and challenges outlined at the start
of the section. Our second algorithm is more efficient if ∆� n.

I Theorem 1.2. There is a randomized CONGEST algorithm that d2-colors a graph with
∆2 + 1 colors in O(log ∆) + 2O(

√
log logn) rounds, with high probability.

Theorem 1.2 relies on the network decomposition algorithm of [22] that can compute a
suitable network decomposition of G2 despite a large ID space in 2O(

√
log logn) rounds. The

unpublished result in [20] computes similar network decompositions despite a large ID space

DISC 2020

39:4 Coloring Fast Without Learning Your Neighbors’ Colors

in poly log logn rounds, but only for G and not for G2. If the results of [20] can be extended
to G2, which in fact is likely, the runtime of Theorem 1.2 improves to O(log ∆)+poly log logn,
and it then again – as at the time of submission of this manuscript – matches the complexity
of ordinary distance-1 coloring in CONGEST. The key ideas of Theorem 1.2 appears in
Sec. 3. Formal proofs of all statements as well as efficient implementations are discussed in
detail in the full version [24].

2 Logarithmic Time Randomized Algorithm

We give randomized CONGEST algorithms that form a d2-coloring using ∆2 + 1 colors. We
first introduce notation that we use frequently throughout the proofs in this section.

Notation. The palette of available colors is {0, 1, 2, . . . ,∆2}. The neighbors in G of a node
are called immediate neighbors, while the neighbors in G2 are d2-neighbors. For a (sub)graph
K, let NK(v) denote the set of neighbors of v in K, and let K[v] = K[NK(v)] denote the
subgraph induced by these neighbors. A node is live or uncolored until it becomes colored.
An edge in G2 corresponds to a 2-path (path of length 2) in G; thus, G2 can have parallel
edges.

A node has slack q if the number of colors of d2-neighbors plus the number of live
d2-neighbors is ∆2 + 1− q. In other words, a node has slack q if its palette size is an additive
q larger than the number of its uncolored d2-neighbors.

An event holds w.h.p. (with high probability), if for any c > 0, we can choose the constants
involved so that the event holds with probability 1−O(n−c).

2.1 Overview
Our algorithm builds on the approach of [23], which we first summarize. The simple informed
color guessing approach – each node tries a random color not used by its d2-neighbors – fails
because the nodes do not have the bandwidth to learn those colors. A simple uninformed
approach – trying any random color – works fine if there is sufficient slack, either because
the palette is strictly larger than the degree, or in the beginning when few neighbors have
been colored. In this case, even trying a uniformly random color is successful with constant
probability. If the node has a sparse neighborhood then in the very first round, many pairs of
d2-neighbors will conveniently adopt the same color, as proved by Elkin, Pettie and Su [17],
creating the needed slack. We are then left to deal with denser neighborhoods, of varying
average non-degree.

The key idea of [23] is to have the colored nodes “help” the live nodes by checking random
colors on their neighborhoods. This provides a probabilistic filter that helps reduce the
load of the live nodes. It turns out that this alone is not sufficient due to false negatives:
the helper may reject good colors because it has neighbors with those colors. The solution
is for the helper to also query one of its neighbor w, and forward its color if w is not a
d2-neighbor of the live node. It is shown that one of these forms of advice is good with
constant probability, but could only argue that for those live nodes with a sparsity in a
given range considered. This meant that the round complexity of the method had an extra
O(log ∆) factor for ranging through the different sparsity levels, on top of the logn factor
for finishing off all nodes of that sparsity.

The main technical ingredient behind our O(logn)-round algorithm is the adaptation
and extension of the almost-clique decomposition (ACD) method initially proposed by Harris,
Schneider and Su [25] for the LOCAL model and expanded by Assadi, Lee and Khanna

M.M. Halldórsson, F. Kuhn, Y. Maus, and A. Nolin 39:5

[2] for streaming and massively parallel settings. The nodes are partitioned into a set of
sparse nodes – which can be handled by uninformed guesses – and low-diameter clusters of
dense nodes. The ACD achieves the same aims as the similarity graphs of [23] that guide the
querying and ensure effective filtering, but attain some additional crucial properties such as
near-regular high degree. Our extension to ACD is to ensure that all nodes outside clusters
have a low degree into the cores of the clusters, strengthening the divide between inside and
outside. The decomposition additionally simplifies the technical arguments, including load
balancing and probabilistic independence. The key property that we then obtain is that
in each iteration, every live node (with at least logarithmic size palette) becomes colored
with constant probability. That makes even faster algorithms possible, as we show in the
next section. To finish off the nodes with a palette of at most logarithmic size, we apply a
second method of [23] black-box, which learns the palette of the live nodes and then performs
informed color guessing.

2.2 Algorithm Description
We now outline our algorithm, followed by details on the implementation.

Each live node v repeatedly tries a suggested color, which means to first validate it and
then contest it. Validating a color means sending it to all immediate neighbors, who then
report back if they or any of their neighbors had already adopted that color. Contesting a
validated color means proposing it to intermediate neighbors, who report back if any other
node also proposes it. If all answers are negative, then v adopts the color.

In what follows, let ε = 1/60, c0 = 48e4/ε2, and c3 be a constant to be determined. Also,
c2 is a sufficiently large constant needed for concentration.

Algorithm d2-Color

If ∆2 ≥ c2 logn then
1. Compute an almost-clique decomposition.
2. repeat c0 logn times:

Each live node picks a random color and tries it.
3. repeat c3 logn times

Reduce-Phase()
4. LearnPalette()

FinishColoring()

We will discuss and analyze Steps 1–3 of the above algorithm in detail in the following.
The remaining steps, LearnPalette() and FinishColoring(), are from [23]. In Learn-
Palette(), each live node learns the palette of still available colors by cooperatively tallying
the colors of d2-neighbors. In FinishColoring(), the maximum degree is sufficiently small
so that we can efficiently simulate the classic algorithm of informed color guessing to color
the remaining live nodes.

The first step of the algorithm is to compute a decomposition of the nodes into: a) a set
of nodes inducing a subgraph (in G2) that is sufficiently sparse and b) a disjoint collection of
almost-cliques (also in G2). In the following, each of the almost-cliques is called a component
C and we use two graphs H and Ĥ (closely related to the ones in [23]) that both essentially
consist of all the components (i.e., all the almost-cliques) and all the G2-edges connecting
two nodes in the same component. Also computed within each component is a spanning tree
for a fast aggregation. The exact definitions of the decomposition and of the graphs H and
Ĥ appear in Subsection 2.3.

DISC 2020

39:6 Coloring Fast Without Learning Your Neighbors’ Colors

We next detail the steps of Reduce-Phase(), which is the core piece of our algorithm.

Algorithm Reduce-Phase()

1. Each live node randomly decides to be active with probability 1/8. All other nodes are
inactive.

2. Compute φ, the number of active live nodes in the component C, and distribute it to the
nodes of C.

3. Each inactive node u ∈ C computes φu, the number of 2-paths to active nodes (by asking
its immediate neighbors of their active immediate neighbors). u flips a biased coin: with
probability min(1, φu/(4φ)) it picks one of the φu paths uniformly at random, while with
probability max(0, 1− φu/(4φ)), u stops the execution of this iteration. Let v denote the
active node at the other end of the path chosen. u verifies that it has only one 2-path to u
(by inquiring to its immediate neighbors), and otherwise stops execution of this iteration.

4. u picks a random color ĉ different from its own. If that color is not used by any of its
Ĥ-neighbors, then u sends the color to v as a proposal, assigning it a uniformly random
priority. v tries the proposed color of highest priority (if any).

5. u sends query (v, u) along a random 2-path to an inactive Ĥ-neighbor w, and assigns it a
random priority.

6. Upon receipt of a query, node w selects the highest priority query (v, u), checks if v is a
d2-neighbor, and if v and w are not d2-neighbors, it sends its color c(w) to v (through u).

7. The active node v tries a color chosen uniformly random among the received proposed
colors from Step 6 (if any).

A colored node assists an active node v in two ways: a) guesses and validates a random
color for v to try, and b) sees if a random d2-neighbor is also a d2-neighbor of v. This is a
probabilistic filter that reduces the workload of the active nodes. The key idea is that one of
these forms of assistance is likely to be successful.

Complexity. We discuss the almost-clique decomposition in the next subsection and show
how to implement it in O(logn) rounds, w.h.p. The second step clearly takes Θ(logn) rounds.
The procedure Reduce-Phase takes 24 rounds, or 8 (Step 2), 2 (Step 3), 2 (Step 4), 2 (Step
5), 6 (Step 6), and 4 (Step 7, including the notification of a new color).

Outline of this section: In Sec. 2.3 we describe the almost-clique decomposition and derive
key structural properties of dense subgraphs, and in Sec. 2.4 we prove the correctness of the
algorithms, i.e., we show that any node is colored w.h.p. after O(logn) rounds.

2.3 Almost-Clique Decomposition
We next define the notion of local sparsity and the almost-clique decomposition that we use
in our paper. The first definition is a slight adaptation of a similar definition in [17].

I Definition 2.1. A node v is ζ-sparse (or has sparsity ζ) if G2[v] contains
(∆2

2
)
−∆2 · ζ

(distinct) edges.

Sparsity is a rational number that indicates how many edges are missing from G2[v],
compared with the densest case (when v’s d2-neighborhood is a ∆2-clique). If no pairs of
d2-neighbors of v are adjacent, then ζ = (∆2 − 1)/2, while if G2[v] forms a ∆2-clique, then
ζ = 0. Elkin, Pettie and Su [17] formalized the connection between sparsity and slack that
appears after trying one uniformly random color.

M.M. Halldórsson, F. Kuhn, Y. Maus, and A. Nolin 39:7

I Proposition 2.2 ([17], Lemma 3.1). Let v be a vertex of sparsity ζ and let Z be the slack
of v after trying a single random color. Then, Pr[Z ≤ ζ/(4e3)] ≤ e−Ω(ζ).

We require the constant c2 to be such that if ζ ≥ c2 logn, then the contrapositive of
Prop. 2.2 yields that Z ≥ ζ/(4e3), w.h.p.

Decomposition. We adapt the almost-clique decomposition of [2] (building on [25]) for the
distance-2 setting in CONGEST and endow it with an additional property.

I Definition 2.3. Assume ε ≤ 1/60. Nodes u and v are ε-similar if they share at least
(1− ε)∆2 common d2-neighbors. An almost-clique decomposition (ACD) with parameter ε
is a collection of sets V∗, Ĉ1, Ĉ2, . . . , Ĉk that cover V and where the Ĉi are disjoint. Denote
Ci = Ĉi \ V∗, for i = 1, . . . , k. The decomposition satisfies the following properties:
1. The nodes in V∗ have sparsity at least ε2∆2/4.
2. For any i ∈ [k], Ci and Ĉi satisfy:

a. |Ci| ≥ (1− 2ε)∆2.
b. The nodes in Ĉi are mutually 10ε-similar.
c. Each v ∈ Ĉi has at most 28ε∆2 d2-non-neighbors in Ĉi (i.e., |Ĉi \NĈi

(v)| ≤ 28ε∆2).
d. Each v ∈ Ĉi has at least (1− 10ε)∆2 d2-neighbors in Ci.
e. Each v ∈ Ci is ε-dissimilar to every node outside Ĉi.

We refer to each Ci as a component and Ĉi as an extended component. The properties
imply additional ones: Each extended component is of size at most (1 + 28ε)∆2; and any
two nodes in an extended component are within two hops (in G2). The additional property
we need that is not in the formulations of [2] or [25] is Property 2(e).

Let H denote the subgraph of G2 induced by the components C1, . . . , Ck, i.e., H =
∪iG2[Ci] = (V \ V∗, EH) where EH consists of the pairs of d2-neighbors within the same
component. Similarly, let Ĥ = ∪iG2[Ĉi]. We consider H, Ĥ and G2 to be simple graphs,
ignoring multiple 2-paths between the same pair of nodes.

I Lemma 2.4. There is an O(logn)-round CONGEST algorithm to form an almost-clique
decomposition, for any fixed ε > 0. Afterwards, each node knows its component ID.

It is somewhat surprising that such a decomposition can be established efficiently in
CONGEST. The key implementation ideas are in [2] for other models, which are essentially
based on randomly sampling nodes. In the distance-2 setting we have the additional challenge
of communication with one’s d2-neighbors, but the key is to have both parties communicate
only with the intermediate node that makes the deciding.

We strengthen the ACD-properties for dense nodes and show that they scale with the
node sparsity. Note that dense nodes can have non-trivial sparsity and it is crucial in our
argument to leverage the corresponding slack.

I Lemma 2.5. Let ε ≤ 1/30. Let v be a node of sparsity ζ in an almost-clique C and
extended component Ĉ. Then,
1. v has at least ∆2 − (2ζ + 1)/ε Ĥ-neighbors (in Ĉ),
2. v has at most |Ĉ \NG2(v)| ≤ 3ζ Ĥ-non-neighbors, and
3. The number of edges in Ĥ[v] is at least |E(Ĥ[v])| ≥

(∆2

2
)
− (2/ε+ 1)ζ∆2.

DISC 2020

39:8 Coloring Fast Without Learning Your Neighbors’ Colors

Proof. Recall that by the definition of sparsity, G2[v] has exactly ∆2((∆2 − 1)/2− ζ) edges.
1. A d2-neighbor of v that is not ε-similar to v can share at most (1 − ε)∆2 common

d2-neighbors with v by ACD property 2(e). In other words, the d2-neighbors of v that
are not Ĥ-neighbors can have degree at most (1− ε)∆2 in G2[v]. The number of edges in
G2[v] is then at most

1
2
(
|NĤ(v)|∆2 + (|NG2(v)| − |NĤ(v)|)(1− ε)∆2) ≤ ∆2

2
(
(1− ε)∆2 + ε|NĤ(v)|

)
.

Combining the two bounds on the number of edges in G2[v],

ε|NĤ(v)| ≥ ∆2 − 1− 2ζ − (1− ε)∆2 = ε∆2 − 1− 2ζ .

Namely, the number of Ĥ-neighbors of v is at least ∆2 − (2ζ + 1)/ε.
2. By sparsity, there are at most (2ζ+ 1)∆2 edges of Ĥ with exactly one endpoint in NG2(v).

Nodes in Ĉ \NG2(v) share at least (1− 10ε)∆2 d2-neighbors with v, by ACD property
2(b). Thus, there are at most 2ζ∆2/((1− 10)ε∆2) = 2ζ/(1− 10ε) ≤ 3ζ nodes in Ĉ that
are not d2-neighbors of v, using that ε ≤ 1/30.

3. By 1 of this lemma, v has degree at least ∆2 − q in Ĥ, where q = (2ζ + 1)/ε. The at
most q nodes in NG2(v) \NĤ(v) have degree sum at most q(∆2 − q). Thus, the number
of edges in Ĥ[v] is at least

(∆2

2
)
− ζ∆2 − q∆2. J

2.4 Correctness
We prove that d2-Color correctly d2-colors G with ∆2 + 1 colors in O(logn) rounds. We
assume that the almost-clique decomposition and the graphs H and Ĥ have been correctly
constructed, in the sense of Def. 2.3. Also, that nodes of sparsity ζ ≥ c2 logn have slack at
least ζ/(4e3) as promised by Prop. 2.2. All statements in this section are conditioned on
these events.

We first give a high-level proof which encapsulates the core of the technical argument in
the following lemma, which is then proven in the upcoming subsubsection.

I Lemma 2.6. There is an absolute constant c′ such that the following holds. For a live
node v in given iteration of Reduce-Phase, there is a subset S ⊆ ψv of size at least |ψv|/2
such that each color in S has probability at least 1/(c′|ψv|) of being validated by v.

We then easily dispose of the sparse nodes. Since they have slack linear in their degree,
they get colored with constant probability in each round, simply by contesting a uniformly
random color.

I Lemma 2.7. Every node in V∗ is colored after Step 2 of d2-Color, w.h.p.

Proof. Let v ∈ V∗. By Def. 2.3(1), v has sparsity at least ζ ≥ ε2∆2/4, and by Prop. 2.2, it
has slack at least c13

.= ε2/(16e3), w.h.p. Furthermore, the probability that no d2-neighbor
of v tries the same color in the same round is at least (1− 1/(∆2 + 1))∆2 ≥ 1/e, using that
(1− 1/x)x−1 ≥ 1/e for any x > 1. Thus, with probability at least c13/e, v becomes colored
in that round. Hence, the probability that it is not colored in all c0 logn rounds is at most
(1− c13/e)c0 logn ≤ e−c0c13/e logn ≤ n−c0c13/e = n−3, since c0 = 48e4/ε2 = 3e/c13. J

I Theorem 1.1. There is a randomized CONGEST algorithm that d2-colors a graph with
∆2 + 1 colors in O(logn) rounds, with high probability.

M.M. Halldórsson, F. Kuhn, Y. Maus, and A. Nolin 39:9

Proof. By Lemma 2.7, it suffices to focus on the dense nodes. We first claim that in each
iteration, each live node v with palette size Ω(logn) becomes colored with a constant non-zero
probability.

Consider a given iteration and a live node v. With probability 1/8, v is active. It has at
most |ψv| live neighbors and expected at most |ψv|/8 are active. By Markov’s inequality,
at most |ψv|/4 are active, with probability at least 1/2. By Lemma 2.6, there is a subset
S ⊆ ψv of size at least |ψv|/2 such that each color in S has probability at least 1/(c′|ψv|) of
being validated. Independent of what these active neighbors choose, there is then a subset
of at least |ψv|/2− |ψv|/4 = |ψv|/4 colors that are available to v, i.e., are not contested by
d2-neighbors of v in that iteration. The probability that one of them is validated, and leading
to a valid coloring of v, is then at least c∗ = 1

8 ·
1
2 ·
|ψv|/4
c′|ψv| = 1

64c′ , establishing the claim.
Applying a Chernoff bound to the above claim, after 5/c∗ · logn iterations of Reduce-

Phase, it holds with probability at least 1− 1/n3 that all nodes are either colored or have
palette size O(logn) (in which case they have O(logn) uncolored d2-neighbors). The coloring
is then completed by the two algorithms of [23], both running in O(logn) rounds. J

2.4.1 Proof of Lemma 2.6
We prove our main result in two parts, given in Lemmas 2.11 and 2.12, distinguishing between
the two forms of making progress: based on Step 4 or Steps 5-7 of Reduce-Phase.

I Definition 2.8. An inactive node is v-decent (or just decent) if it has at most 4φ 2-paths
in its almost-clique C to active nodes (in C) and has exactly one 2-path to v.

The distinction between 2-paths and d2-neighbor relations is the rationale for the decent
definition. Those nodes with lots of paths to active nodes can cause much congestion with
poor proposals, while being of limited use to those H-neighbors to which they have few
paths.

I Lemma 2.9. Let v be a live node and w be a node, both in Ĉ. Then, v and w have at
least ∆2/4 common d2-neighbors in C that are v-decent.

Proof. The two nodes v and w are 10ε-similar, by Def. 2.3(2b). Since v has at least (1−10ε)∆2

distinct d2-neighbors in C (by Def. 2.3(2d)), they share at least (1− 20ε)∆2 ≥ 2∆2/3 d2-
neighbors in C (using that ε ≤ 1/60). This also means that there are at most 10ε∆2 ≤ ∆2/6
nodes in C with multiple 2-paths to v. Also, since there are at most φ∆2 total number of
2-paths to the φ live nodes in C, there are at most ∆2/4 nodes with 4φ or more 2-paths to
live nodes. Hence, there are at least 2∆2/3−∆2/6−∆2/4 = ∆2/4 common d2-neighbors of
v and w in C that are decent, i.e., have at most 4φ 2-paths to active nodes and exactly one
2-path to v. J

A color proposed to an active node v is bad if it is already assigned to a d2-neighbor of v.
Namely, it is bad if it is a “false positive”.

I Lemma 2.10. The expected number of bad proposals generated in Step 4 for v is at most
(1/ε+ 1)ζ/φ.

Proof. Let u be an inactive H-neighbor of v. Let Yu be the event that u picks v in Step 2,
and note that Pr[YP] ≤ 1/(4φ). Let Xu be the event that u generates a bad proposal for v
in Step 4. That event occurs when u’s randomly chosen color is used by a node in Su, where
Su = NG2(v)\NĤ [u] is the set of d2-neighbors of v that are not Ĥ-neighbors of u (nor u itself).

DISC 2020

39:10 Coloring Fast Without Learning Your Neighbors’ Colors

The number of such colors is at most |Su| = |NG2(v) \NĤ [u]| ≤ (∆2− 1)− |NĤ(u)∩NĤ(v)|.
There are at most ∆2 colors to choose from – all except the one on u – so

Pr[Xu|Yu] ≤ |Su|∆2 ≤
(∆2 − 1)− |NĤ(u) ∩NĤ(v)|

∆2 .

By applying Lemma 2.5(3), we have that∑
u∈NĤ(v)

|NĤ(u) ∩NĤ(v)| = 2|E(Ĥ[v])| ≥ ∆2(∆2 − 1)− (4/ε+ 2)ζ∆2 .

Combining the two bounds, letting I denote the set of inactive H-neighbors of v, we get that∑
u∈I

Pr[Xu|Yu] ≤
∑

u∈NĤ(v)

Pr[Xu|Yu] ≤ (4/ε+ 2)ζ .

Hence, the expected number of bad proposals generated for v is∑
u∈I

Pr[Xu ∩ Yu] =
∑
u∈I

Pr[Yu] · Pr[Xu|Yu] ≤ 1
4φ
∑
u∈I

Pr[Xu] ≤ (4/ε+ 4)ζ
4φ . J

Let ψv denote the set of colors in v’s palette before a given round, i.e., the set of colors
that have not already been taken by its d2-neighbors. Let ψv be the set of colors in v’s
palette that appear on nodes in Ĉ. These colors must then appear only on non-Ĥ-neighbors
of v.

I Lemma 2.11. Suppose |ψv| ≥ 2|ψv| and |ψv| = Ω(logn). Then, there is an absolute
constant c such that each color in ψv \ ψv has probability at least 1/(c|ψv|) of being validated
and contested by v in Step 4.

Proof. Let ψ̂ = ψv \ ψv. Any color from ψ̂ that is guessed in Step 4 (by some H-neighbor u
of v) becomes a good proposal to v (i.e., one that would pass validation). Let A (B) denote
the expected number of good (bad) proposals to v, respectively. Let q be a color in ψ̂ and let
Aq be the expected number of proposals of q to v. We shall show that Aq is large, for colors
in ψ̂, and thus A is large in comparison to B. We then show that Aq is also large relative to
the total number of proposals, A+B.

The probability that a decentH-neighbor u chooses to help v is 1/(4φ), and the probability
that it guesses q is 1/∆2. By Lemma 2.9, v has at least ∆2/4 decent H-neighbors. Summing
up, Aq ≥

∑
u 1/(4φ) · 1/∆2 ≥ 1/(16φ), and A ≥

∑
q∈ψ̂ Aq ≥ |ψ̂v|/(16φ) ≥ |ψv|/(32φ). By

Lemma 2.10, B ≤ (1/ε+1)ζ/φ and by Prop. 2.2, |ψv| ≥ ζ/(4e3). Thus, B ≤ (128e3(1/ε+1))A.
We can also bound A from above, summing over the at most ∆2 H-neighbors and all the
colors in v’s palette:

A ≤
∑
q′∈ψv

∑
u∈NH(v)

1
4φ∆2 = |ψv|4φ ≤ 4|ψv|Aq .

By Markov’s inequality, the probability that at most 2(A+B) proposals are generated for
v is at least 1/2. The probability that a proposal of q is chosen for validation is then at least

Aq
4(A+B) ≥

A/(4|ψv|)
4(1 + 128e3(1/ε+ 1))A = 1

16(1 + 128e3(1/ε+ 1))|ψv|
. J

I Lemma 2.12. Suppose |ψv| < 2|ψv|. Then, there is an absolute constant c such that each
color in ψv has probability at least 1/(c|ψv|) of being validated and contested by v in Step 7.

M.M. Halldórsson, F. Kuhn, Y. Maus, and A. Nolin 39:11

Proof sketch. For success in Step 7, only colors of nodes in Ĉ that are not d2-neighbors
of v count (and by Lemma 2.5(2), there are at most 3ζ such nodes). The proof (in the
full version) requires on one hand to lower bound the probability of a given such node is
contacted on behalf of v. The technically more involved task is to show that such a query to
w will survive the competition, both at w and at v. J

Lemma 2.6 follows from Lemmas 2.11 and 2.12.

3 Sub-Logarithmic Distance-2 Coloring

In this section, we extend the algorithm of Sec. 2 and combine it with the graph shattering
technique [11, 12], which has been used extensively in recent years to get sub-logarithmic-time
distributed algorithms for a large number of graph problems (mostly in the LOCAL model).
By using this technique in our setting, we prove the following theorem.

Theorem 1.2 (restated). There is a randomized CONGEST algorithm that d2-colors a
graph with ∆2 +1 colors in O(log ∆)+ND2(logn) ·poly log logn rounds, with high probability.

Here ND2(logn) is the sum of d · c · x and the time to that one needs to compute a
distance-2 CONGEST-routable network decomposition (with weak cluster diameter d, c color
classes and routing parameter x) on subgraphs of size poly logn with node identifiers from a
space of size polyn (see Definition 3.3 for the formal definition of such a decomposition).

I Remark 3.1. The current state of the art for ND2(logn) is 2O(
√

log logn) [22]. However, the
complexity for distance-1 network decompositions that can deal with a large identifier space
was improved subsequent to the submission of this manuscript to poly log logn rounds [20].
Before the publication of [20] the complexity in Theorem 1.2 for distance-2 coloring matched
the state of the art for distance-1 (∆+1)-coloring [19]. As the achievements of [20] improve the
complexity for distance-1 coloring from O(log ∆) + 2O(

√
log logn) to O(log ∆) + poly log logn

there currently is a gap between the complexities of distance-1 and distance-2 coloring. If [20]
(or an alternative approach) extends to distance-2 decompositions, and such an extension is
very likely, it will match again. In the remaining part of the writeup we use the best known
upper bound of ND2(logn) = 2O(

√
log logn).

From a very high-level point of view, the rough idea of graph shattering applied to our
problem is as follows. The algorithm of Sec. 2 consists of O(logn) individual O(1)-round
steps, where in each step, each live node gets colored with constant probability. Thus, very
roughly, if we just run the algorithm for O(log ∆) steps, each node remains uncolored with
probability at most 1/ poly(∆). Further, if nodes succeeded sufficiently independently, after
O(log ∆) rounds, each node would only have O(logn) uncolored neighbors. By combining
these two properties, one can hope that after O(log logn) more rounds, all the remaining
live nodes induce components (in G2) of size at most polylogn. By adapting techniques
developed in [11] to our G2-coloring algorithm, we will show that this indeed (almost) is the
case. We call this part of the algorithm, where we reduce the original problem to a problem
on components of polylogn size, the preshattering phase of our algorithm.

The remaining problem that we need to solve on the components of size polylogn is a list
coloring problem. Because these problems for each component are on much smaller graphs,
they can be solved efficiently by using the best known deterministic algorithm. For the specific
setting, where we have small components, but each node still has an ID from the original
large ID space, the best known deterministic CONGEST algorithm (that can tolerate such a
large ID space and works for G2) can be obtained by combining a network decomposition

DISC 2020

39:12 Coloring Fast Without Learning Your Neighbors’ Colors

algorithm of Ghaffari and Portmann [22] with a recent deterministic CONGEST coloring
algorithm of Bamberger, Kuhn, and Maus [4]. It requires 2O(

√
logN) = 2O(

√
log logn) time,

where N = polylogn is the maximum component size. We call this second phase of solving
the remaining list coloring instances on the components the postshattering phase.

While the general outline of the algorithm is relatively standard and largely follows the
ideas of the distance-1 coloring algorithm for the LOCAL model in [11], there are various
challenges that we have to cope with in order to apply the idea in the CONGEST model
and to the d2-coloring problem. In [11, 19], the algorithm for the preshattering phase
has every live node try a uniformly random color from its current list of available colors
repeatedly, which we cannot do in the d2-coloring setting as it is not possible for a live node
to learn its list of available colors. We would therefore like to show that the much more
involved randomized algorithm of Sec. 2 also has the same shattering properties as the basic
“choose-a-random-available-color” algorithm. Unfortunately, this is not obvious and we use
a multi-stage algorithm to prove what we need. Greatly simplified, we do the following.
We first show that O(log ∆) rounds of an adaptation of the algorithm of Sec. 2 suffice to
(essentially) reduce the maximum degree of the subgraph of G2 induced by the live nodes
to O(logn). At this point, it is possible for each live node to learn a sufficiently large list
of available colors in O(log ∆) rounds and we can now indeed run the basic preshattering
algorithm of [11] to reduce the problem to a problem on polylogn-size components.

For the post-shattering phase, while we only have components of poly logn size, the
input to the problem is still large because each node still has an ID of size O(logn) bits
and because each node has a color list consisting of up to O(logn) colors from a range of
size O(∆2). In order to have an efficient CONGEST algorithm for the problem, we have to
reduce both the ID space and the color space of the remaining components. It is sufficient
to obtain new node IDs that are unique up to distance poly log logn. We can obtain such
IDs with O(log logn) bits by first applying the network decomposition algorithm of [22] and
then assigning unique labels in each cluster. For reducing the color space, we show that in
each cluster of the network decomposition, we can efficiently (and deterministically) find
a renaming of the colors such that for every node v, all colors in v’s list are mapped to
distinct new colors and such that the colors are from a space of size poly logn. For each of
the steps, the implementation in G2 rather than in G adds some additional complications.
In the following, we give a detailed overview over all the steps of our algorithm.

3.1 Preshattering: Algorithm Overview and Key Ideas
If logn = O(log ∆), we use the O(logn)-time algorithm of Sec. 2. If ∆ ≤ logn · poly log logn
we essentially simulate the preshattering algorithm of [11] for G on G2 and combine it with our
postshattering algorithm from Section 3.2. In all other cases, that is, if ∆ = 2o(logn)∩Ω̃(logn),
we perform the following steps. They can be implemented in O(log ∆) + poly log logn rounds
(except for the postshattering phase which takes 2O(

√
log logn) rounds).

Almost Clique Decomposition
1. Compute the ACD exactly in O(log ∆) rounds by hashing IDs to O(log ∆) bits.

Guarantee: Nodes know whether they are sparse/dense. Further each dense node knows
an identifier of its almost clique.

Color Sparse Nodes
2. Every node (dense or sparse) tries a uniformly random color for O(log ∆) rounds.

Guarantee: All nodes have slack proportional to their sparsity and at most O(logn)
live sparse neighbors.

M.M. Halldórsson, F. Kuhn, Y. Maus, and A. Nolin 39:13

3. Sparse nodes try O(logn) random colors simultaneously. In total, trying O(logn) colors
requires sending/receiving O(log ∆ · logn) bits to immediate neighbors, which can be sent
in O(log ∆) rounds (by packing O(logn) bits in each message).
Core idea: Each color you try has a constant probability to not be tried by anyone else
nor adopted by a neighbor.
Guarantee: All sparse nodes are colored, w.h.p.

Only dense (intermediate degree) nodes execute the remaining steps.

Degree Reduction of Uncolored Graph
4. Perform O(log ∆) iterations of Reduce-Phase.

Guarantee: Uncolored nodes either have low uncolored degree (at most ∆̃), or are
connected to at most ∆̃ other high uncolored degree nodes, where ∆̃ = O(logn).

5. Estimate uncolored degree with Θ(logn) precision.
Guarantee: Uncolored nodes know whether they have low uncolored degree or not.

Let U lo and Uhi be the sets of low and high uncolored degree vertices. All the steps afterwards
first take place on U lo, then on Uhi.

6. Try Θ(logn) color proposals that arrive through parallel Reduce-Phases.
Core idea: Compressing the messages communicated in a Reduce-Phase into O(log ∆)
bits. Argue a bound of O(log ∆) on the congestion of each edge.
Guarantee: Nodes with slack Ω(log2 n) become colored, w.h.p. All remaining live nodes
then have sparsity O(log2 n) (needed for Step 7 and 9).

Shattering Into Small Connected Uncolored Components
7. Learn your list: Expand on the method LearnPalette of [23] to have each live node

learn a list of at least d(v) + 1 available colors from its palette. If the node has sparsity
O(logn), we learn the exact list using LearnPalette as is. Otherwise, we randomly
try colors not used in the almost-clique to learn enough available colors.
Core idea: The bottleneck of the method is sending O(logn) colors over a single link,
i.e., O(logn log ∆) bits. By compressing messages this can be done in O(log ∆) rounds.

8. Shattering: Perform O(log ∆̃) = O(log logn) informed color tries (OneShotColoring).
Guarantee: Uncolored vertices induce poly(∆̃) logn = poly logn sized components in
G2, and uncolored vertices know a palette that exceeds their degree.

9. Add Steiner Nodes: Add all vertices that link live nodes in different almost cliques.
Inside each almost clique, learn all live neighbors IDs through ID-renaming, pick one
intermediate node as Steiner node per pair of uncolored nodes in the almost clique.
Guarantee: G2[U] connected components are G-connected and of size N = poly logn.

Postshattering: Before the process, uncolored dense nodes U form small connected compo-
nents and each node has a palette of size that exceeds its degree. Further, with the Steiner
nodes connected components of G2[U] are G-connected and have N = poly logn size. This
is enough to apply Lemma 3.2 in Section 3.2 and list color the remaining components in
2O(
√

logN) = 2O(
√

log logn) rounds.

Intuition for Correctness and Implementation of the Preshattering Phase: The shattering
framework with informed color trials is well established, but we apply it here in an unusual
setting where the nodes do not know their palette. Instead, we argue that each live node
becomes colored in each iteration with constant probability (bounded away from 0). More
strongly, we show that half of the colors of its palette have good probability of becoming the
node’s color in each round, and this holds independent of what its neighbors do (as long as

DISC 2020

39:14 Coloring Fast Without Learning Your Neighbors’ Colors

the unlikely event of too many of them are activated does not happen). Then we show that
these conditions are sufficient to leave us with two disjoint subgraphs of live nodes, both
of logarithmic degree, which we handle sequentially (we first execute all steps after Step 5
including the postshattering phase for the one subgraph and then for the other subgraph).
After conducting additional O(log ∆) informed color trials, the uncolored vertices induce
polylogarithmic size components. The rest of the coloring can then be completed in the
post-shattering phase. The idea of producing two subgraphs of small degree already appeared
in [11], but it is significantly easier to show that they cover all uncolored vertices if one can
perform informed color trials.

Several further technical complications arise that do not occur for ordinary graph coloring:
determining which of the two subgraphs the live node should join; adding Steiner nodes to
make the components connected in G (not just in G2); and learning enough of the palette
before the post-shattering phase, even when the palette might be large. All of these steps,
however, are implementable within the O(log ∆) time bound, with techniques of modest
novelty. The key idea for their efficient implementation is to compress the communication so
that multiple messages fit in a single CONGEST message. Color values use log ∆ bits, but
we also compress node identifiers into O(log ∆) bits, either through hashing or renumbering
within a component. This allows us to speed up communication-heavy parts: O(logn · log ∆)
bits per edge can be sent in O(log ∆) rounds.

All of the above is for dense nodes, for which we have the structure of the almost-clique
decomposition to guide us. For sparse nodes, we can use simple uniformed color guessing,
first with individual colors and then with parallel color guesses, to finish them off early.

3.2 Postshattering: Algorithm Overview and Key Ideas
The high level idea is to compute a network decomposition D on each connected component
of uncolored vertices to split the components into small diameter clusters. Afterwards, we
use the deterministic (deg + 1)-list coloring algorithm from [4] on each cluster (iterating
through the clusters in an order that is given by D). To obtain an efficient algorithm, we
need a network decomposition with two features: a) it handles distance-2 relations, and b)
it handles large node identifiers (in comparison with the component sizes). The latter is
not handled by the new poly logn result of Rozhoň and Ghaffari [33]. Hence, we cannot
currently reduce the dependence on n in the time complexity to poly log logn. Instead, the
construction of Portmann and Ghaffari [22] handles both of these features. The downside
is the resulting time complexity of 2O(

√
log logn). Further, the runtime of the list-coloring

algorithm in [4] depends on the size of the colorspace, and we equip our algorithm with
methods to reduce the colorspace before we apply [4].

Preconditions: We are given an n-vertex graph G with maximum degree ∆ and a partial
d2-coloring φ : V → [∆2] ∪ {⊥}. Let U = {φ−1(⊥)} ⊆ V be the uncolored vertices. Further,
we are given a subset S ⊆ V and ∆̂ = O(logn) such that:

Each node u ∈ U has at most ∆̂ d2-neighbors in U .
This immediately implies that each node in V has at most ∆̂ U -neighbors in G.
d2-connected components of G2[U] have size poly(∆̂) logn = poly logn.
For any u ∈ U and any of its d2-neighbor u′ ∈ U there exists some s ∈ S such that s is
neighbor of u and u′.
Let K = G[U ∪ S] \E(G[S]) the subgraph of G induced by U ∪ S without edges between
vertices in S. The connected components of K have size at most N = poly logn. And,
Each vertex u ∈ U is equipped with a list Lu of colors that are not used in its d2-
neighborhood. The size of |Lu| ≤ L ≤ O(logn) ≤ N .

M.M. Halldórsson, F. Kuhn, Y. Maus, and A. Nolin 39:15

I Lemma 3.2 (Postshattering). There is a deterministic CONGEST algorithm on commu-
nication network G that, under the above assumptions, list colors the nodes in U such that
d2-neighbors pick distinct colors. The runtime of the algorithm is 2O(

√
log logn) rounds.

Lemma 3.2 uses two subroutines from previous work. First, a network decomposition
algorithm that works for Gk and does not rely on a small IDspace.

I Definition 3.3 (Network Decomposition, x-CONGEST-routable [3]). A weak
(
d(n), c(n)

)
-

network-decomposition of an n-node graph G = (V,E) is a partition of V into clusters such
that each cluster has weak diameter at most d(n) and the cluster graph is properly colored with
colors 1, . . . , c(n). If the decomposition is equipped with a routing backbone such that one can
simulate one round of communication within clusters of Gk in k · x rounds of communication
on G (if only clusters of one color class communicate at the same time) the decomposition is
called x-CONGEST-routable.

As we only use network decomposition in a blackbox manner we do not detail on the additional
backbone structure for routing and refer to [22] which proves the next theorem.

I Theorem 3.4 (Network Decomposition of Gk, [22]). There is a deterministic distributed
algorithm that in any N -node network G, which has S-bit identifiers and supports O(S)-bit
messages for some arbitrary S, computes an x-CONGEST-routable (g(N); g(N))-network
decomposition of Gk in k · g(N) · log∗ S rounds, for any k and g(N) = x = 2O(

√
logN).

Second, a CONGEST algorithm that can list-color graphs efficiently if their diameter, the
maximum degree and the color space size are small.

I Theorem 3.5 (Diameter List Coloring, [4]). There is a deterministic CONGEST algorithm
that given a list-coloring instance G = (V,E) with color space [C], lists L(v) ⊆ [C] for which
|L(v)| ≥ deg(v) + 1 holds for all v ∈ V and an initial m-coloring of G, list-colors all nodes
in O

(
D · logN · logC · (log ∆ + logm+ log logC)

)
rounds.

The message size of the algorithm is O(logC + logm+ log ∆).

We will need additional reasoning to execute the algorithm of Theorem 3.5 on parts of
G2[U] while the communication network is G; for that it is essential that we reduce the color
space. The core steps of the postshattering phase are as follows.

1. Network decomposition: Compute a distance-2 network decomposition D of connected
components in graph K using the algorithm of Theorem 3.4 (or an alternative algorithm).

2. ID space reduction: Assign new IDs to vertices in U that are unique within each
cluster of D. The size of the IDspace is bounded by the cluster size and by N .

3. Colorspace reduction: Within each cluster C deterministically compute a colorspace
reduction fC : [∆2]→ polyN . f is a colorspace reduction for the cluster C if it injectively
maps each color list Lu for u ∈ C.
Core Idea: A random hash function (from a suitable space of hash functions), in
expectation, fails for few vertices of the cluster. We derandomize the process of picking
such a random hash function with the method of conditional expectation, similar to
[13, 16, 4].

4. Final (deg + 1)-list coloring: Iterate through the color classes of the network de-
composition D and run the (deg + 1)-list coloring algorithm of Theorem 3.5 on each
cluster. Care is needed when refining the lists, i.e., when deleting colors of d2-neighbors
of previously colored clusters.

Formal proofs about the correctness and an efficient implementation of Steps 1–4 are discussed
in detail in the full version [24].

DISC 2020

39:16 Coloring Fast Without Learning Your Neighbors’ Colors

References
1 Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm for

the maximal independent set problem. J. of Algorithms, 7(4):567–583, 1986.
2 Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (∆+1) vertex coloring.

In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 767–786,
2019.

3 Baruch Awerbuch, Andrew V. Goldberg, Michael Luby, and Serge A. Plotkin. Network
decomposition and locality in distributed computation. In Proceedings of the Symposium on
Foundations of Computer Science (FOCS), pages 364–369, 1989.

4 Philipp Bamberger, Fabian Kuhn, and Yannic Maus. Efficient deterministic distributed coloring
with small bandwidth. In Proc. 39th ACM Symp. on Principles of Distributed Computing
(PODC), page 243–252, 2020.

5 Reuven Bar-Yehuda, Keren Censor-Hillel, Yannic Maus, Shreyas Pai, and Sriram V. Pemmaraju.
Distributed approximation on power graphs. In Proc. 39th ACM Symp. on Principles of
Distributed Computing (PODC), page 501–510, 2020.

6 Leonid Barenboim. Deterministic (∆ + 1)-coloring in sublinear (in ∆) time in static, dynamic
and faulty networks. In Proc. 34th Symp. on Principles of Distributed Computing (PODC),
pages 345–354, 2015.

7 Leonid Barenboim and Michael Elkin. Deterministic distributed vertex coloring in poly-
logarithmic time. In Proc. 29th Symp. on Principles of Distributed Computing (PODC),
2010.

8 Leonid Barenboim and Michael Elkin. Distributed Graph Coloring: Fundamentals and Recent
Developments. Morgan & Claypool Publishers, 2013.

9 Leonid Barenboim, Michael Elkin, and Uri Goldenberg. Locally-iterative distributed (∆ + 1)-
coloring below Szegedy-Vishwanathan barrier, and applications to self-stabilization and to
restricted-bandwidth models. In Proc. 37th ACM Symp. on Principles of Distributed Computing
(PODC), pages 437–446, 2018.

10 Leonid Barenboim, Michael Elkin, and Fabian Kuhn. Distributed (∆ + 1)-coloring in linear
(in ∆) time. SIAM J. on Computing, 43(1):72–95, 2015.

11 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of
distributed symmetry breaking. In Proc. 53th Symp. on Foundations of Computer Science
(FOCS), 2012.

12 József Beck. An algorithmic approach to the Lovaśz local lemma. Random Structures &
Algorithms, 2:343–365, 1991.

13 Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. Derandomizing local distributed
algorithms under bandwidth restrictions. In Proc. 31st Symp. on Distributed Computing (DISC),
pages 11:1–11:16, 2017.

14 Yi Jun Chang, Wenzheng Li, and Seth Pettie. An optimal distributed (∆ + 1)-coloring
algorithm? In Proceedings of the ACM Symposium on Theory of Computing (STOC), pages
445–456, 2018.

15 Imrich Chlamtac and Shay Kutten. A spatial-reuse TDMA/FDMA for mobile multi-hop radio
networks. In Proc. 4th IEEE Int. Conf. on Computer Communications (INFOCOM), pages
389–394, 1985.

16 Janosch Deurer, Fabian Kuhn, and Yannic Maus. Deterministic distributed dominating set
approximation in the CONGEST model. In Proc. 38th ACM Symp. on Principles of Distributed
Computing (PODC), pages 94–103, 2019.

17 Michael Elkin, Seth Pettie, and Hsin-Hao Su. (2∆ − 1)-edge-coloring is much easier than
maximal matching in the distributed setting. In Proc. of 26th ACM-SIAM Symp. on Discrete
Algorithms (SODA), pages 355–370, 2015.

18 Pierre Fraigniaud, Magnús M. Halldórsson, and Alexandre Nolin. Distributed testing of
distance-k colorings. In Proc. 27th Coll. on Structural Information and Communication
Complexity (SIROCCO), pages 275–290, 2020.

M.M. Halldórsson, F. Kuhn, Y. Maus, and A. Nolin 39:17

19 Mohsen Ghaffari. Distributed maximal independent set using small messages. In Proc. 30th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 805–820, 2019.

20 Mohsen Ghaffari, Christoph Grunau, and Václav Rozhoň. Improved deterministic network
decomposition, 2020. arXiv:2007.08253.

21 Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. On derandomizing local distributed
algorithms. In Proc. 59th Symp. on Foundations of Computer Science (FOCS), pages 662–673,
2018.

22 Mohsen Ghaffari and Julian Portmann. Improved network decompositions using small messages
with applications on MIS, neighborhood covers, and beyond. In Proc. 33rd Int. Symp. on
Distributed Computing (DISC), pages 18:1–18:16, 2019.

23 Magnús M. Halldórsson, Fabian Kuhn, and Yannic Maus. Distance-2 coloring in the CONGEST
model. In Proc. 39th ACM Symp. on Principles of Distributed Computing (PODC), pages
233–242, 2020.

24 Magnus M. Halldorsson, Fabian Kuhn, Yannic Maus, and Alexandre Nolin. Coloring fast
without learning your neighbors’ colors, 2020. arXiv:2008.04303.

25 David G Harris, Johannes Schneider, and Hsin-Hao Su. Distributed (∆ + 1)-coloring in
sublogarithmic rounds. In Proceedings of the ACM Symposium on Theory of Computing
(STOC), pages 465–478, 2016.

26 Ö. Johansson. Simple distributed ∆ + 1-coloring of graphs. Inf. Process. Lett., 70(5):229–232,
1999.

27 Fabian Kuhn. Faster deterministic distributed coloring through recursive list coloring. In Proc.
31st ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 1244–1259, 2020.

28 Fabian Kuhn and Roger Wattenhofer. On the complexity of distributed graph coloring. In
Proc. 25th ACM Symp. on Principles of Distributed Computing (PODC), pages 7–15, 2006.

29 Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992.

30 Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J.
on Computing, 15:1036–1053, 1986.

31 Steffen Mecke. MAC layer and coloring. In D. Wagner and R. Wattenhofer, editors, Algorithms
for Sensor and Ad Hoc Networks, pages 63–80, 2007.

32 David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.
33 Václav Rozhon and Mohsen Ghaffari. Polylogarithmic-time deterministic network decomposi-

tion and distributed derandomization. In Proceedings of the ACM Symposium on Theory of
Computing (STOC), pages 350–363, 2020.

DISC 2020

http://arxiv.org/abs/2007.08253
http://arxiv.org/abs/2008.04303

	Introduction
	Contributions

	Logarithmic Time Randomized Algorithm
	Overview
	Algorithm Description
	Almost-Clique Decomposition
	Correctness
	Proof of Lemma 2.6

	Sub-Logarithmic Distance-2 Coloring
	Preshattering: Algorithm Overview and Key Ideas
	Postshattering: Algorithm Overview and Key Ideas

