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Abstract
We study connections among polynomials, differential equations and streams over a field K, in terms
of algebra and coalgebra. We first introduce the class of (F, G)-products on streams, those where
the stream derivative of a product can be expressed as a polynomial of the streams themselves
and their derivatives. Our first result is that, for every (F, G)-product, there is a canonical way
to construct a transition function on polynomials such that the induced unique final coalgebra
morphism from polynomials into streams is the (unique) K-algebra homomorphism – and vice-versa.
This implies one can reason algebraically on streams, via their polynomial representation. We apply
this result to obtain an algebraic-geometric decision algorithm for polynomial stream equivalence,
for an underlying generic (F, G)-product. As an example of reasoning on streams, we focus on
specific products (convolution, shuffle, Hadamard) and show how to obtain closed forms of algebraic
generating functions of combinatorial sequences, as well as solutions of nonlinear ordinary differential
equations.

2012 ACM Subject Classification Theory of computation → Operational semantics

Keywords and phrases Streams, coalgebras, polynomials, differential equations

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2021.19

Related Version Full Version: https://arxiv.org/abs/2107.04455

Supplementary Material Software (Source Code): https://local.disia.unifi.it/boreale/
papers/streams.py

1 Introduction

We investigate a connection among polynomials, differential equations and streams, i.e.,
infinite sequences of elements from a set [20]. At a very informal level, this connection can be
expressed by the following correspondences: polynomials = syntax; differential equations =
operational semantics; streams = abstract (denotational) semantics. There are two important
motivations behind this standpoint. (1) Diverse notions of product (convolution, shuffle,...)
arise in streams, in relation to different models – discrete computations, combinatorial
sequences, analytic functions, and more [4, 20]. There is also a close analogy between
several forms of products and forms of parallelism arising in concurrency. Our aim is to
uniformly accommodate such diverse notions, by automatically deriving an operational
semantics for polynomials that is adequate for a given generic stream product. (2) Once
adequate polynomial syntax and operational semantics have been obtained, one can apply
powerful techniques both from algebraic geometry (Gröbner bases [12]) and from coalgebra
(coinduction [20]) for reasoning on streams. This includes devising algorithms for deciding
stream equivalence. Again, one would like to do so in a uniform fashion w.r.t. an underlying
notion of stream product.

Technically, achieving these goals amounts to defining a fully abstract semantics from
polynomials to streams, which is essential for algebraic-geometric reasoning on streams.
Moreover, one wants the resulting construction to be as much as possible parametric with
respect to the underlying notion of stream product.
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19:2 (Co)algebra and Streams Products

As hinted above, we will pursue these goals relying on tools from algebra and coalgebra
(Section 2). Indeed, it is well-known that, when polynomial coefficients and stream elements
are drawn from a field K, both polynomials and streams form K-algebras, i.e., rings with an
additional vector space structure over K. Note that, while this algebra structure is fixed for
polynomials, it varies with the underlying product for streams. On the other hand, streams
also possess a coalgebraic structure, arising from the operation of stream derivative. On
the side of polynomials, it is also natural to interpret a differential equation ẋi = pi as a
transition xi → pi: thus one expects a transition structure, hence a coalgebra, over over
polynomials as well. How to extend appropriately transitions from individual variables xi to
monomials and polynomials, though, depends nontrivially on the notion of stream product
one wants to model.

Our first result (Section 3) is that the above outlined goals can be achieved for the class
of (F, G)-products on streams, where, basically, the derivative of a product of two streams
can be expressed as a polynomial of the streams themselves and their derivatives. One can
then define a coalgebra structure on polynomials, depending on the given (F, G)-product and
differential equations, such that the unique morphism from this coalgebra to the coalgebra
of streams is also a K-algebra homomorphism (and vice-versa: every homomorphism that
satisfies the given differential equations is the unique morphism). Thus, full abstraction is
achieved.

A major application of this result, which we view as our main contribution, is an algorithm
based on an algebraic-geometric construction for deciding equivalence, i.e. if two polynomials
denote the same stream (Section 4). Next, focusing on specific (F, G)-products (convolution,
shuffle and Hadamard; Section 5), we show how establishing polynomial (algebraic) equalities
on streams may lead to closed forms for generating functions of combinatorial sequences [13],
and to solutions of nonlinear ordinary differential equations (ODEs). In the case of convolution
product, we also show that the image of the coalgebra morphism is included in the set of
algebraic sequences in the sense of [13].

To sum up, we make the following contributions. (1) A unifying treatment of stream
products, implying that, under reasonable assumptions, coalgebra morphisms from polyno-
mials to streams are also K-algebra homomorphisms (full abstraction) – and viceversa. (2)
An algorithm for deciding polynomial stream equivalence, that relies on the full abstraction
result. (3) Based on that, methods for reasoning on generating functions and ordinary
differential equations.

Due to space limitations, most proofs, as well as additional technical material, have been
omitted and can be found in the full version of this paper [11].

Related work. Rutten’s stream calculus [20, 21], a coinductive approach to the analysis
of infinite sequences (streams), is a major source of inspiration for our work. [20] studies
streams, automata, languages and formal power series in terms of coalgebra morphisms and
bisimulation. In close analogy with classical analysis, [21] presents coinductive definitions
and proofs for a calculus of behavioural differential equations, also called stream differential
equations (SDEs) in later works. A number of applications to difference equations, analytical
differential equations, continued fractions and problems from combinatorics, are presented.
Convolution and shuffle product play a central role in the stream calculus; a duality between
them, mediated by a variation of Laplace transform, exists. This duality also plays a role in
our work in relation to generating functions and solutions of ODEs (Section 5). A coinductive
treatment of analytic functions and Laplace transform is also presented by Escardo and
Pavlovic [19]. Basold et al. [4] enrich the stream calculus with two types of products,
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Hadamard and infiltration, and exhibit a duality between the two, mediated by a so-called
Newton transform. Although these works form a conceptual prerequisite of our study, they
do not offer a unifying treatment of the existing disparate notions of stream product, nor
any algorithmic treatment of the induced stream equivalences. Bonchi et al. [5] consider
an operational approach to streams and convolution product based on weighted automata,
which correspond to linear expressions. They offer an equivalence checking algorithm for such
automata, and the recognized streams, based on a linear-algebraic construction; however,
the polynomial case is not addressed. A related work is Bonchi et al. [3], where it is shown
how linear algebra and fractions can be used to decide the equality of streams specified by
linear SDEs. Here, differently from them, we can also work with polynomial SDEs.

Most closely related to the present work is Hansen, Kupke and Rutten’s [14]. There
the authors prove that, when the SDEs defining given operations on streams obey a GSOS
syntactic format, then the final coalgebra morphism is also a homomorphism from the
free term algebra to the algebra (w.r.t. the given operations) of streams [14, Sect.8]. In
contrast, we work with the algebra of polynomials, which besides being a ring and vector
space over K, possesses additional structure arising from monomials. All this structure is
essential for algebraic-geometric reasoning, and sets our approach apart from those based
on term algebras: for one thing, in term algebras there is no obvious analog of Hilbert’s
basis theorem, a result deeply related to the well-ordering of monomials (cf. Dickson’s
lemma, [12, Ch.2]), and a crucial ingredient in our decision algorithm. One might consider
more complicated GSOS frameworks enriched with equational theories, but even so we doubt
one could naturally capture the relevant polynomial structure, in particular as arising from
monomials. Nevertheless, a thorough exploration of these issues is an interesting direction
for future research.

The GSOS format has also been discussed in the framework of bialgebras [14, Sect.9].
Bialgebras are a unified categorical framework that encompass both algebras, viewed as a
way of modeling syntax, and coalgebras, viewed as way of describing behaviours; see [16]
for a general introduction. The theory of bialgebras is very abstract in spirit, and it is not
immediate to pinpoint concrete relations to our results. Furthermore, it requires a substantial
background in category theory, which we have preferred to avoid here so as to keep our
approach as elementary and accessible as possible. In any case, we anticipate for bialgebras
similar difficulties to those discussed above for term algebras. For these reasons, we have
preferred to leave the exploration of connections with bialgebras for future work.

Somewhat related to ours is the work of Winters on coalgebra and polynomial systems: see
e.g. [23, Ch.3]. Importantly, Winter considers polynomials in noncommuting variables: under
suitable assumptions, this makes his systems of equations isomorphic to certain context-free
grammars; see also [17]. The use of noncommuting variables sets Winter’s treatment in a
totally different mathematical realm, where the algebraic geometric concepts we rely on here,
like ideals and Gröbner bases, are not applicable.

We also mention [7, 10], that adopt a coinductive approach to reason on polynomial ODEs.
The ring of multivariate polynomials is employed as a syntax, with Lie derivatives inducing
a transition structure. An algebraic-geometric algorithm to decide polynomial equivalence is
presented. This algorithm as well has inspired our decision method: in particular, as Lie
derivatives are precisely the transition structure induced in our framework by the shuffle
product, the decision algorithms of [7, 10] are in essence a special case of our algorithm
in Section 4. Furthermore, [8, 9] extend the framework of [7, 10] to polynomial partial
differential equations, which pose significative additional challenges.

Relations with work in enumerative combinatorics [13, 22] are discussed in Section 5.
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19:4 (Co)algebra and Streams Products

2 Background

2.1 Polynomials and differential equations
Let us fix a finite, non empty set of symbols or variables X = {x1, . . . , xn} and a distinct
variable x /∈ X. Informally, x will act as the independent variable, while x1, ..., xn will
act as dependent variables, or functions, defined by differential equations (see below). We
fix a generic field K of characteristic 0; K = R and K = C are typical choices. We let
P := K[x, x1, ..., xn], ranged over by p, q, ..., be the set of polynomials with coefficients
in K and indeterminates in {x} ∪ X. We let M, ranged over by m, m′, ..., be the set of
monomials, that is the free commutative monoid generated by {x} ∪ X. As usual, we shall
denote polynomials as formal finite sums of distinct monomials with nonzero coefficients
in K: p =

∑
i∈I rimi, for ri ∈ K. By slight abuse of notation, we shall write the zero

polynomial and the empty monomial as 0 and 1, respectively. Over P, one can define the
usual operations of sum p + q and product p · q, with 0 and 1 as identities, and enjoying
commutativity, associativity and distributivity, which make P a ring; multiplication of p ∈ P
by a scalar r ∈ K, denoted rp, is also defined and makes (P, +, 0) a vector space over K.
Therefore, (P, +, ×, 0, 1) forms a K-algebra.

We shall also fix a set D = {ẋ1 = p1, ..., ẋn = pn} of differential equations, one for each
xi ∈ X, with pi ∈ P. An initial condition for D is a vector ρ = (r1, ..., rn) ∈ Kn. The
pair (D, ρ) forms an initial value problem. The vectors pi on the right-hand side of the
equations are called drifts, and F = (p1, ..., pn) is a vector field. Informally, each xi ∈ X

represents a placeholder for a function whose derivative is given by pi, and whose value at the
origin is xi(0) = ri. This terminology is borrowed from the theory of differential equations.
Note, however, that depending on the semantics of polynomial product one adopts (see next
section), D can be given diverse interpretations, including stream differential equations (SDE,
for convolution, see next subsection) in the sense of Rutten [20], and of course ordinary
differential equations (ODEs, for shuffle).

Notationally, it will be sometimes convenient to regard D and ρ as functions D : X → P
and ρ : X → K, respectively, such that D(xi) = pi and ρ(xi) = ri. It is also convenient to
extend D and ρ to x by letting D(x) = 1 and ρ(x) = 0; note that, seen as an initial value
problem, the last two equations define the identity function. Finally, we let x0 denote x and,
when using D and ρ as functions, use xi as a metavariable on {x} ∪ X: this makes D(xi)
and ρ(xi) well defined for 0 ≤ i ≤ n.

2.2 Streams
We let Σ⟨K⟩ := Kω, ranged over by σ, τ, ..., denote the set of streams, that is infinite sequences
of elements from K: σ = (r0, r1, r2, ...) with ri ∈ K. Often K is understood from the context
and we shall simply write Σ rather than Σ⟨K⟩. When convenient, we shall explicitly consider
a stream σ as a function from N to K and, e.g., write σ(i) to denote the i-th element of σ.
By slightly overloading the notation, and when the context is sufficient to disambiguate, the
stream (r, 0, 0, ...) (r ∈ K) will be simply denoted by r, while the stream (0, 1, 0, 0, ...) will be
denoted by x; see [20] for motivations behind these notations1. Furthermore, a stream made
up of all the same element r ∈ K will be denoted as r = (r, r, ...). One defines the sum of two
streams σ and τ as the stream σ +τ defined by: (σ +τ)(i) := σ(i)+τ(i) for each i ≥ 0, where
the + on the right-hand side denotes the sum in K. Sum enjoys the usual commutativity

1 In particular, overloading of the symbol x is motivated by the fact that our semantics of polynomials
maps the variable x to the stream (0, 1, 0, 0, ...).
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and associativity properties, and has the stream 0 = (0, 0, ...) as an identity. Various forms
of stream products can also be considered – this is indeed a central theme of our paper.
In particular, the convolution product σ × τ and the shuffle product σ ⊗ τ are defined as
follows: (σ × τ)(i) :=

∑
0≤j≤i σ(j) · τ(i − j) and (σ ⊗ τ)(i) :=

∑
0≤j≤i

(
i
j

)
σ(j) · τ(i − j), where

operations on the right-hand side are carried out in K and i ≥ 0. The above operations enjoy
alternative, easier to handle formulations based on stream differential equations – see next
subsection; there, a crucial notion will be the derivative of a stream σ, that is the stream σ′

obtained from σ by removing its first element.
Both products are commutative, associative, have 1 = (1, 0, 0, ...) as an identity, and dis-

tribute over +; multiplication of σ = (r0, r1, ...) by a scalar r ∈ K, denoted rσ = (r r0, r r1, ...),
is also defined and makes (Σ, +, 0) a vector space over K. Therefore, (Σ, +, π, 0, 1) forms
a K-algebra for each of the considered product operations π. Let us record the following
useful properties for future use: x × σ = (0, r0, r1, ...) and r π σ = (r r0, r r1, ...), where r ∈ K
and π ∈ {×, ⊗}. In view of the second equation above, r π σ coincides with rσ. The first
equation above leads to the so called fundamental theorem of the stream calculus, whereby
for each σ ∈ Σ

σ = σ(0) + x × σ′ . (1)

Less commonly found forms of products, like Hadamard and Infiltration products, will be
introduced in the next subsection; equations similar to (1) exist also for such products [4, 14].

2.3 Coalgebras and bisimulation
We quickly review some basic definitions and results about coalgebras and bisimulation;
see e.g. [20] for a comprehensive treatment. A (stream) coalgebra with outputs in K is an
automaton C = (S, δ, o), where S is a nonempty set of states, δ : S → S is the transition
function, and o : S → K is the output function. A bisimulation on C is a binary relation
R ⊆ S × S such that, whenever (s, t) ∈ R, then o(s) = o(t) and (δ(s), δ(t)) ∈ R. As usual,
there always exists a largest bisimulation on C, denoted ∼; it is the union of all bisimulations
and it is an equivalence relation on S. Given two coalgebras C1 and C2, a coalgebra morphism
between them is a function µ : S1 → S2 from the states of C1 to the states of C2 that
preserves transitions and outputs, that is (with obvious notation): µ(δ1(s)) = δ2(µ(s)) and
o1(s) = o2(µ(s)), for each s ∈ S1. Coalgebra morphisms preserve bisimilarity, in the sense
that s ∼1 t in C1 if and only if µ(s) ∼2 µ(t) in C2. A coalgebra C0 is final in the class of
coalgebras with outputs in K if, from every coalgebra C in this class, there exists a unique
morphism µ from C0 to C. In this case, ∼0 in C0 coincides with equality, and the following
coinduction principle holds: for every C and s ∼ t in C, it holds that µ(s) = µ(t) in C0.

The set of streams Σ can be naturally given a stream coalgebra structure (Σ, (·)′, o(·)),
as follows. The output of a stream σ = (r0, r1, . . .) is o(σ) := r0 and its derivative is
σ′ := (r1, r2, ...), that is σ′ is obtained from σ by removing its first element, that constitutes
the output of σ. In fact, this makes Σ final in the class of all coalgebras with outputs in K [20].
This also implies that one can prove equality of two streams by exhibiting an appropriate
bisimulation relation relating them (coinduction).

It is sometimes convenient to consider an enhanced form of bisimulation on Σ that relies
on the notion of linear closure.2 Given a relation R ⊆ Σ × Σ, its linear closure R̂ is the set
of pairs of the form (

∑n
i=1 riσi ,

∑n
i=1 riτi), where n ∈ N, (σi, τi) ∈ R and ri ∈ K, for every

2 More general notions that we could have used here are contextual closure (see [4, Thm. 2.4] and works
on distributive laws for bialgebras [6]. However, the simpler notion of linear closure suffices for our
purposes here.
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19:6 (Co)algebra and Streams Products

i ∈ {1, . . . , n}. We say that R is a bisimulation up to linearity if, for every (σ, τ) ∈ R, it
holds that o(σ) = o(τ) and (σ′, τ ′) ∈ R̂. If R is a bisimulation up to linearity, then R̂ is a
bisimulation [20]; since by definition R ⊆ R̂, this implies that R ⊆ ∼, the bisimilarity on
streams, which coincides with equality.

A stream differential equation (SDE) in the unknown σ is a pair of equations of the form
σ(0) = r and σ′ = ϕ, for r ∈ K and a stream expression ϕ (that can depend on σ or its
components, or even on σ′ itself). Under certain conditions on ϕ [14, 20], it can be proven
that there is a unique stream σ satisfying the above SDE. In this paper, we shall focus on
the case where ϕ is represented by a polynomial expression – this will be formalized in the
next section. For the time being, we observe that the product operations defined in the
preceding subsection enjoy a formulation in terms of SDEs. In particular (see [4, 14, 20]),
for given σ and τ , their convolution and shuffle products are the unique streams satisfying
the following SDEs (recall that, as a stream, x denotes (0, 1, 0, 0, ...)):

(σ × τ)(0) = σ(0) · τ(0) (σ × τ)′ = σ′ × τ + σ × τ ′ − x × σ′ × τ ′ (2)
(σ ⊗ τ)(0) = σ(0) · τ(0) (σ ⊗ τ)′ = σ′ ⊗ τ + σ ⊗ τ ′ . (3)

From the last equation, note the analogy between shuffle and interleaving of languages.
Moreover, the derivative of convolution product is usually defined as (σ×τ)′ = σ′×τ+σ(0)×τ ′;
however, we prefer the formulation in (2) because it is symmetric. Two additional examples of
stream products are introduced below; see [4] for the underlying motivations. The Hadamard
product ⊙ and the infiltration product ↑ can be defined by the following two SDEs.

(σ ⊙ τ)(0) = σ(0)τ(0) (σ ⊙ τ)′ = σ′ ⊙ τ ′ (4)
(σ ↑ τ)(0) = σ(0)τ(0) (σ ↑ τ)′ = (σ′ ↑ τ) + (σ ↑ τ ′) + (σ′ ↑ τ ′) . (5)

Hadamard product ⊙ is reminiscent of synchronization in concurrency theory and has
1 := (1, 1, 1, ...) as an identity; it is just the componentwise product of two streams, i.e.
(σ ⊙ τ)(i) = σ(i)τ(i), for every i ≥ 0. Infiltration product ↑ is again reminiscent of a notion
in concurrency theory, namely the fully synchronized interleaving; it has 1 = (1, 0, 0, ...) as
an identity.

3 (Co)algebraic semantics of polynomials and differential equations

The main result of this section is that, once fixed an initial value problem (D, ρ), for every
product π (with identity 1π) defined on streams and satisfying certain syntactic conditions,
one can build a coalgebra over polynomials such that the corresponding final morphism into
Σ is also a K-algebra homomorphism from (P, +, ×, 0, 1) to (Σ, +, π, 0, 1π). In essence, the
polynomial syntax and operational semantics reflects exactly the algebraic and coalgebraic
properties of the considered π on streams.

To make polynomials a coalgebra, we need to define the output o : P → K and transition
δ : P → P functions. The definition of o(·) is straightforward and only depends on the given
initial conditions ρ: we let o := oρ be the homomorphic extension of ρ, seen as a function
defined over {x} ∪ X, to P. Equivalently, seeing ρ as a point in Kn+1, we let oρ(p) := p(ρ),
that this the polynomial p evaluated at the point ρ. It can be easily checked that oρ(1) = 1.

The definition of δ, on the other hand, depends on π and is not straightforward. We
will confine to products π satisfying SDEs of the form: (σ π τ)′ = F (σ, τ, ...), for a given
polynomial function F . Then we will require that δ on polynomials mimics this equation.
For instance, in the case of shuffle product, we expect that δ(pq) = pδ(p) + qδ(p). Therefore,
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our first step is to precisely define the class of products on streams that satisfy a polynomial
SDE. To this purpose, in what follows we shall consider polynomials G(y1) ∈ K[y1] and
F (x, y1, ..., y4) ∈ K[x, y1, y2, y3, y4]. These can be identified with polynomial functions on
streams: we shall write G(σ1), F (x, σ1, ..., σ4) for the evaluation of G, F in (Σ, +, π, 0, 1π)
with specific streams x = (0, 1, 0, ...) and σ1, ..., σ4.

▶ Definition 3.1 ((F, G)-product on streams). Let (Σ, +, π, 0, 1π) be a K-algebra, F ∈
K[x, y1, y2, y3, y4] and G ∈ K[y1]. We say that π is a (F, G)-product if, for each σ, τ ∈ Σ,
the following equations are satisfied:
1. (σ π τ)(0) = σ(0)τ(0);
2. (σ π τ)′ = F (x, σ, σ′, τ, τ ′);
3. 1π(0) = 1 and 1′

π = G(1π) .

▶ Remark 3.2. Notice that 1π(0) = 1 in Definition 3.1(3) is a necessary condition, that follows
from Definition 3.1(1). Indeed, let 1π(0) = r ∈ K. Since 1π is the identity of π, for every σ

we must have σ π 1π = σ, hence (σ π 1π)(0) = σ(0). On the other hand, by Definition 3.1(1),
(σ π 1π)(0) = σ(0) 1π(0) = σ(0) r. As σ is arbitrary, we can take σ(0) ̸= 0 and multiply
σ(0) r = σ(0) by σ(0)−1; this gives r = 1. However, we prefer to keep 1π(0) = 1 explicit in
the definition, for the sake of clarity. Finally, let us note that the general theory of SDEs
[14] ensures that conditions (1), (2), (3) in Definition 3.1 univocally define a binary operation
π on streams, but in general not that π enjoys the ring axioms for product, a fact that we
must assume from the outset.

▶ Example 3.3. For the products introduced in Section 2, the pairs of polynomials (F, G)
are as defined as follows.

F× = y2y3 +y1y4 −xy2y4. Note that F× = y2y3 +(y1 −xy2)y4, where y1 −xy2 corresponds
to σ − x × σ′ = σ(0); this gives the asymmetric definition of convolution.
F⊗ = y2y3 + y1y4.
F⊙ = y2y4.
F↑ = y2y3 + y1y4 + y2y4.

The identity stream for convolution, shuffle and infiltration is defined by 1π(0) = 1 and
1′

π = 0, i.e., in these cases the polynomial G is 0. For the Hadamard product, the identity is
given by 1π(0) = 1 and 1′

π = 1π, i.e., the polynomial G in this case is y1.

Given a (F, G)-product π on streams, δπ is defined in a straightforward manner on
monomials, then extended to polynomials by linearity. Below, we assume a total order
on variables x0 < x1 < · · · < xn and, for m ̸= 1, let min(m) denote the smallest variable
occurring in m w.r.t. such a total order3.

▶ Definition 3.4 (transition function δπ). Let π be a (F, G)-product on streams. We define
δπ : P → P by induction on the size of p ∈ P as follows.

δπ(1) = G(1) (6)
δπ(xi) = D(xi) (7)

δπ(xi m) = F (x, xi, δπ(xi), m, δπ(m)) (m ̸= 1, xi = min(xim)) (8)

δπ

(∑
i∈I

ri mi

)
=
∑
i∈I

ri δπ(mi) . (9)

3 In Definition 3.4, we are in effect totally ordering monomials by graded lexicographic order (grlex, see
[12, Ch.1]), and then proceeding by induction on this order.
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Returning to the products defined in Section 2, we have:

δπ(1) =
{

0 for π ∈ {×, ⊗, ↑} (convolution, shuffle, infiltration)
1 for π = ⊙ (Hadamard)

δπ(xi m) =


D(xi) · m + xi · δπ(m) − x · D(xi) · δπ(m) for π = × (convolution)
D(xi) · m + xi · δπ(m) for π = ⊗ (shuffle)
D(xi) · δπ(m) for π = ⊙ (Hadamard)
D(xi) · m + D(xi) · δπ(m) + xi · δπ(m) for π = ↑ (infiltration) .

We must now impose certain additional sanity conditions on F , to ensure that the final coal-
gebra morphism induced by δπ, as just defined, is also an algebra homomorphism. In the rest
of the paper, we will make use of the following abbreviation Fπ[p; q] := F (x, p, δπ(p), q, δπ(q)).
The necessity of the following conditions is self-evident, if one thinks of Fπ[p; q] as δπ(p · q)
(see Lemma 3.6 below).

▶ Definition 3.5 (well-behaved F ). Let π be a (F, G)-product on streams. We say that
π is well-behaved if the following equalities hold, for every p, q ∈ P, m1, m2, mi ∈ M,
xi ∈ {x} ∪ X and ri ∈ K :

Fπ[1; q] = δπ(q) (10)
Fπ[xim1; m2] = Fπ[m1; xim2] (11)

Fπ

[∑
i∈I

ri mi ; q

]
=
∑
i∈I

ri Fπ[mi; q] (12)

Fπ[p; q] = Fπ[q; p] . (13)

All products defined in Section 2 are well-behaved. The following key technical result
connects morphism to homomorphism properties induced by π and is crucial in the proof of
Theorem 3.7, that is the main result of this section.

▶ Lemma 3.6. Let π be a well-behaved (F, G)-product. Then, for every p, q ∈ P, it holds
that δπ(p · q) = Fπ[p; q].

▶ Theorem 3.7. Let π be a well-behaved (F, G)-product. Then the (unique) coalgebra
morphism µπ from (P, δπ, oρ) to (Σ, (·)′, o) is a K-algebra homomorphism from (P, +, · , 0, 1)
to (Σ, +, π, 0, 1π).

Intuitively, the proof consists in showing that µπ preserves all the operations in P, by
exhibiting in each case an appropriate bisimulation relation in Σ × Σ and then applying
coinduction. The most crucial case is product, where one shows that the relation consisting
of all pairs (µπ(p1 · . . . · pk) , µπ(p1) π . . . π µπ(pk)) (k > 0) is a bisimulation up to linearity.
Lemma 3.6 is used to prove that µπ preserves transitions: e.g., by letting p = p2 · . . . · pk, it
allows one to conclude that the pair of derivatives µπ(p1 · p)′ = µπ(Fπ[p1; p]) and (slightly
abusing the Fπ[·; ·] notation) (µπ(p1) π µπ(p))′ = Fπ[µπ(p1); µπ(p)] are still in relation, up to
linearity.

To conclude the section, we also present a sort of converse of the previous theorem. That
is, µπ is the only K-algebra homomorphism that respects the initial value problem, i.e. that
satisfies µπ(xi)′ = µπ(D(xi)) and µπ(xi)(0) = ρ(xi). This is an immediate corollary of the
following result and of the uniqueness of the final coalgebra morphism.

▶ Proposition 3.8. Let π be a well-behaved (F, G)-product and ν be a K-algebra homomorph-
ism from (P, +, · , 0, 1) to (Σ, +, π, 0, 1π) that respects the initial value problem (D, ρ). Then,
ν is a coalgebra morphism from (P, δπ, oρ) to (Σ, (·)′, o).
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4 Deciding stream equality

One benefit of a polynomial syntax is the possibility of applying techniques from algebraic
geometry to reason about stream equality. We will devise an algorithm for checking whether
two given polynomials are semantically equivalent, that is, are mapped to the same stream
under µπ. Note that, by linearity of µπ(·), we have that µπ(p) = µπ(q) if and only if
µπ(p) − µπ(q) = µπ(p − q) = 0. Therefore, checking semantic equivalence of two polynomials
reduces to the problem of checking if a polynomial is equivalent (bisimilar) to 0. Before
introducing the actual algorithm for checking this, we quickly recall a few notions from
algebraic geometry; see [12, Ch.1–4] for a comprehensive treatment.

A set of polynomials I ⊆ P is an ideal if 0 ∈ I and, for all p1, p2 ∈ I and q ∈ P, it holds
that p1 + p2 ∈ I and q · p1 ∈ I. Given a set of polynomials S, the ideal generated by S is

⟨ S ⟩ :=


k∑

j=1
qj · pj : k ≥ 0 ∧ ∀j ≤ k.(qj ∈ P ∧ pj ∈ S)

 .

By the previous definition, we have that ⟨ ∅ ⟩ := {0}. Trivially, I = ⟨ S ⟩ is the smallest ideal
containing S, and S is called a set of generators for I. It is well-known that every ideal I

admits a finite set S of generators (Hilbert’s basis theorem). By virtue of this result, any
infinite ascending chain of ideals, I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ P, stabilizes in a finite number of
steps: that is, there is k ≥ 0 s.t. Ik+j = Ik for each j ≥ 0 (Ascending Chain Condition, ACC).
A key result due to Buchberger is that, given a finite S ⊆ P , it is possible to decide whether
p ∈ I = ⟨ S ⟩, for any polynomial p. As a consequence, also ideal inclusion I1 ⊆ I2 is decidable,
given finite sets of generators for I1, I2. These facts are consequences of the existence of a
set of generators B for I, called Gröbner basis, with a special property: p ∈ I if and only if
p mod B = 0, where “mod B” denotes the remainder of the multivariate polynomial division
of p by B. There exist algorithms to build Gröbner bases which, despite their exponential
worst-case complexity, turn out to be effective in many practical cases [12, Ch.4].

In what follows, we fix a well-behaved (F, G)-product π, and let δπ and µπ denote the
associated transition function and coalgebra morphism. Moreover, we denote by p(j) the
j-th derivative of p, i.e. p(0) := p and p(j+1) := δπ(p(j)). The actual decision procedure is
presented below as Algorithm 1. Intuitively, to prove that µπ(p) = 0, one might check if
oρ(p(j)) = 0 for every j, which is of course non effective. But due to ACC, at some point
p(j) ∈ ⟨ {p(0), . . . , p(j−1)} ⟩, which implies the condition oρ(p(j)) = 0 holds for all j’s. The
correctness of this algorithm can be proven easily, under an additional mild condition on F :
we require that F ∈ ⟨ {y3, y4} ⟩ seen as an ideal in K[x, y1, ..., y4]. Explicitly, F = h1y3 + h2y4
for some h1, h2 ∈ K[x, y1, ..., y4]. The polynomials F for the products in Section 2 all satisfy
this condition: for example, F× = y2y3 + (y1 − xy2)y4.

Algorithm 1 Checking equivalence to zero.

Input: p ∈ P, a well-behaved (F, G)-product π

Output: YES (µπ(p) = 0) or NO (µπ(p) ̸= 0)
1: for all k ≥ 0 do
2: if oρ(p(k)) ̸= 0 then return NO
3: if p(k) ∈ ⟨ {p(0), . . . , p(k−1)} ⟩ then return YES
4: end for

▶ Theorem 4.1. Let π be a well-behaved (F, G)-product, with F ∈ ⟨ {y3, y4} ⟩. Algorithm 1
terminates, and returns YES if and only if µπ(p) = 0.

CONCUR 2021
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Proof. Non termination for some input polynomial p would imply that, for all k ≥ 0,
p(k+1) ̸∈ Ik := ⟨ {p(0), . . . , p(k)} ⟩. This in turn would imply an ever ascending chain of ideals
I0 ⊊ I1 ⊊ · · · , contradicting ACC.

If the algorithm returns NO, then for some k we must have (recall that σ(k) stands for
the k-th stream derivative of σ): oρ(p(k)) = o(µπ(p)(k)) = (µπ(p)(k))(0) ̸= 0, thus µπ(p) ̸= 0.

Assume now the algorithm returns YES. Then there exists k ≥ 0 such that oρ(p(j)) = 0,
for every 0 ≤ j ≤ k, and p(k) ∈ ⟨ {p(0), . . . , p(k−1)} ⟩. Excluding the trivial case p = 0,
we can assume k ≥ 1. If we prove that p(k+j) ∈ ⟨ {p(0), . . . , p(k−1)} ⟩ for every j ≥ 0, the
thesis follows: indeed, by p(k+j) =

∑k−1
i=0 qi · p(i), for some qi ∈ P, and by oρ(p(i)) = 0

for every 0 ≤ i ≤ k − 1, it also follows (µπ(p))(j) = (µπ(p))(j)(0) = oρ(p(k+j)) = 0. Now
the proof that p(k+j) ∈ ⟨ {p(0), . . . , p(k−1)} ⟩ is by induction on j. The base case (j = 0)
holds by assumption. For the induction step, let us consider p(k+j+1). By definition,
p(k+j+1) = δπ(p(k+j)); by induction p(k+j) =

∑k−1
i=0 qi · p(i), for some qi ∈ P. By (9) and

Lemma 3.6, p(k+j+1) =
∑k−1

i=0 δπ(qi · p(i)) =
∑k−1

i=0 Fπ[qi; p(i)]. By hypothesis F ∈ ⟨ {y3, y4} ⟩,
hence Fπ[qi; p(i)] ∈ ⟨ {p(i), p(i+1)} ⟩, for every i, therefore Fπ[qi; p(i)] ∈ ⟨ {p(0), . . . , p(k−1)} ⟩,
as by hypothesis p(k) ∈ ⟨ {p(0), . . . , p(k−1)} ⟩. This suffices to conclude. ◀

We first illustrate the algorithm with a simple, linear example.

▶ Example 4.2 (Fibonacci numbers). Consider the initial value problem (D, ρ) given by the
following equations.{

ẋ1 = x2
ẋ2 = x1 + x2

{
ρ(x1) = 0
ρ(x2) = 1 .

(14)

Let us consider here the convolution product ×. It is easily checked that x1 defines the
Fibonacci numbers: µ×(x1) = (0, 1, 1, 2, 3, 5, 8, 13, . . .). We want to prove the following
equation:

µ×(x1 · (1 − x − x2)) = µ×(x) . (15)

Equivalently, using Algorithm 1, we check that µ×(x1 · (1 − x − x2) − x) = 0. Let p(x, x1) :=
x1 · (1 − x − x2) − x. Then, an execution of Algorithm 1 consists of the following steps.

(k = 0): ρ(p) = p(0, 1) = 0 and p(0) = p(x, x1) /∈ ⟨ ∅ ⟩ = {0}.
(k = 1): p(1) = x2 · (1 − x − x2) − x1 · (1 + x) − x · x2 · (1 + x) − 1 = x2 − x1 − x1x − 1.
Hence, ρ(p(1)) = 1 − 1 = 0 and p(1) ̸∈ ⟨ p ⟩.
(k = 2): p(2) = x1 + x2 − x2 − (x2x + x1 − xx2) = 0. Hence, ρ(p(2)) = 0 and trivially
p(2) ∈ ⟨ p, p(1) ⟩.

We conclude that µ×(p) = 0.

We now discuss a nonlinear example based on shuffle product.

▶ Example 4.3 (double factorial of odd numbers). Consider the initial value problem (D, ρ)
given by the following equation.

ẏ = y3 ρ(y) = 1 . (16)

Let us consider here the shuffle product ⊗. It is easily checked that µ⊗(y) =
(1, 1, 3, 15, 105, 945, 10395, 135135, . . .), the sequence of double factorials of odd numbers
(sequence A001147 in [1]). We want to check the following equation

µ⊗(y2(x − 1/2) + 1/2) = 0 . (17)

using Algorithm 1. Let q(x, y) := y2(x − 1/2) + 1/2. An execution of Algorithm 1 consists of
the following steps.
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(k = 0): ρ(q) = q(0, 1) = 0 and q(0) = q(x, y) /∈ ⟨ ∅ ⟩ = {0}.
(k = 1): q(1) = 2y4x − y4 + y2 = 2y2q, hence q(1) ∈ ⟨ q ⟩.

We conclude that µ⊗(q) = 0.

▶ Remark 4.4. Note that we can define the generating function associated to Fibonacci
numbers, that is the function g(z) whose Taylor series expansion is

∑
j≥0 fjzj (where fj are

the Fibonacci numbers); such a generating function is

g(z) = z

1 − z − z2 . (18)

Now, from [4] it is known that the convolution product admits an inverse of a given stream
σ whenever σ(0) ̸= 0. Thus, from (15) we obtain µ×(x1) = µ×(x) × (µ×(1 − x − x2))−1 =

µ×(x)
1−µ×(x)−µ×(x)2 , where we use the usual notation σ

τ to denote σ × τ−1. This equation for
µ×(x1) is structurally identical to (18): this is of course no coincidence, as algebraic identities
on streams correspond exactly to algebraic identities on generating functions. This will be
made precise in the next section – see in particular Proposition 5.2.

Similarly, the equivalence µ⊗(p) = 0 obtained for the double factorial equations, when
solved algebraically for x1 yields the exponential generating function for A001147, that is
g(z) =

√
1/(1 − 2z): see Example 5.8 in Subsection 5.3.

We finally point out that Algorithm 1 can be easily modified to actually find all polynomials
p, up to a prescribed degree, s.t. µπ(p) = 0, along the lines of a similar procedure in [10].
Indeed, we actually found the polynomials in both examples above using this modified
algorithm4.

5 Shuffle, convolution and generating functions

We study the relation of the shuffle and convolution products, and of the corresponding
morphisms, with algebraic sequences arising in enumerative combinatorics [13, 22], and with
solutions of ordinary differential equations; Hadamard product plays also a role in connecting
the other two products. Our aim here is not to prove any new identity, but rather to relate
our framework with certain well established notions and results in these fields. In particular,
we will argue that our results can be useful for combinatorial reasoning on sequences and
ODEs: this means chiefly finding generating functions of sequences, ODE solutions, and/or
establishing nontrivial relations among them.

5.1 Generating functions
For a stream σ = (r0, r1, ..., rj , ...), we let the ordinary generating function [13, 22] of σ

in the variable z be the power series G[σ](z) :=
∑

j≥0 rjzj . We shall normally understand
G[σ](z) as a formal power series, which is just another convenient, functional notation for
the stream σ. When K = R or K = C, it is sometimes convenient to consider z as a real
or complex variable5: in this case, G[σ](z) defines a (real or complex) analytic function
around 0, provided that its radius of convergence is positive. In fact, we shall see that, when
σ = µ×(p), then G[σ](z) is analytic. We denote by G−1[g(z)] the inverse transformation,

4 Python code, with instructions and examples, available at https://local.disia.unifi.it/boreale/
papers/streams.py.

5 For example, the study of the generating function in a complex analytic sense, in particular of its poles,
provides detailed information on the asymptotic growth of the elements of σ; see [13].
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mapping a power series g(z) =
∑

j≥0 rjzj back to σ = (r0, r1, ...). More precisely, for any
(formal or analytic) power series g(z) around the origin, G−1[g(z)] can be obtained by taking
the Taylor coefficients of g(z):

G−1[g(z)] =
(

g(0)(0)
0! ,

g(1)(0)
1! ,

g(2)(0)
2! , ...

)
(19)

where g(j)(z) denotes the j-th derivative of g(z), in either formal or analytic sense. With
the same convention on z, we let the exponential generating function of σ to be the Taylor
series E [σ](z) :=

∑
j≥0

rj

j! zj . Again, E−1[g(z)] denotes the inverse transformation, mapping
a (formal or analytic) power series g(z) to the stream of its derivatives evaluated at 0:

E−1[g(z)] = (g(0)(0), g(1)(0), g(2)(0), ...) . (20)

Letting fact := (0!, 1!, 2!, ...) and exp(z) :=
∑

j≥0
zj

j! , the relation between G and E can be
written as follows, where the Hadamard product on power series is defined as (

∑
j ajzj) ⊙

(
∑

j bjzj) :=
∑

j(ajbj)zj as expected:

E [σ](z) = exp(z) ⊙ G[σ](z) (21)
E−1[g(z)] = fact ⊙ G−1[g(z)] . (22)

Again, for σ = µ⊗(p), we will see that E [σ](z) is analytic. The maps G[·] and E [·] act as
K-algebra homomorphisms between streams and functions. In particular, products of streams
is transformed into product of functions6, that is [13, 22]:

G[σ × τ ](z) = G[σ](z) · G[τ ](z) E [σ ⊗ τ ](z) = E [σ](z) · E [τ ](z) .

These relations allow one to transform algebraic equations on streams into algebraic equations
on generating functions. One reason to perform this transformation is that, if a closed
expression for the generating function can be found via analytic manipulations, the actual
stream can be recovered by applying the inverse transforms (19) and (20) – that is essentially
via Taylor expansion.

5.2 Algebraic streams
In what follows, we let p range over P = K[x, x1, ..., xn] and q = q(x, y) over K[x, y], while
g(z) still denotes a formal power series or analytic function at the origin.

▶ Definition 5.1 (algebraic streams, [13]). A function g(z) is algebraic if there is a nonzero
polynomial q(x, y) such that q(z, g(z)) is identically 0. In this case, g(z) is called a branch
of q(x, y). A stream σ is algebraic if G[σ](z) is algebraic.

If the degree of q(x, y) in y is k, then q(x, y) has at most k branches. For example,
q(x, y) = y2 + x − 1 has two distinct branches, that is algebraic functions: g(z) = ±

√
1 − z.

When the coefficients of q are drawn from a subfield of C, then it can be shown that the
corresponding branches are also complex analytic (hence real analytic when restricted to R);
see [2]. Our starting point in the study of the connections between coalgebra morphisms and
algebraic streams is the following simple result, whose easy proof relies on the fact that both
µπ and G are K-algebra homomorphisms.

6 When interpreted in a purely formal sense, hence in terms of streams: the equation for G just defines
an alternative notation for convolution product; the equation for E reduces to (25).



M. Boreale and D. Gorla 19:13

▶ Proposition 5.2. Let p ∈ P and σ = µ×(p). Suppose there is a polynomial q(x, y) ̸= 0
such that µ×(q(x, p)) = 0. Then G[σ](z) is a branch of q. The corresponding statement for
µ⊗(·) and E [·] is also true.

Pragmatically, the above result implies that, if one proves a nontrivial polynomial equation
q(x, σ) = 0 for σ = µπ(p) (π ∈ {×, ⊗}), e.g. by using the algorithm in the previous section,
then one can recover σ by Taylor expansion of one of the branches of q; see Example 5.4
below.

In the case of the convolution product ×, the result also implies that, under the given
hypotheses, σ is algebraic. In fact, something more general can be said. Let the considered
system of differential equations and initial conditions be D = {ẋ1 = p1, ..., ẋn = pn} and
ρ = (r1, ..., rn) ∈ Kn, respectively; let σi := µ×(xi) for i = 1, ..., n. As a consequence of
(1), it is easy to check that the streams σi, hence the corresponding generating functions
G[σ1](z), ..., G[σn](z), satisfy the following system of polynomial equations in the variables
x1, ..., xn:

x1 = r1 + xp1 · · · xn = rn + xpn . (23)

In the terminology of Kuich and Salomaa [17, Ch.14], (23) is a weakly strict polynomial
system (in the single letter alphabet {x}). They prove that there is a unique tuple of formal
power series that solves this system, which therefore coincides with (σ1, ..., σn). Moreover, by
invoking elimination theory, Kuich and Salomaa prove that, for each i = 1, ..., n, (23) implies
a nontrivial polynomial equation q(x, xi) = 0 for the variable xi: see [17, Ch.16, Cor.16.11],
which covers the case K = Q. We sum up the above discussion in the following.

▶ Corollary 5.3 (algebraicity of µ×). Suppose that K = Q. Then, for each p ∈ P, µ×(p) is
an algebraic stream in the sense of Definition 5.1.

When K = Q, the above result implies that G[µ×(p)](z) is analytic. At present we do not
know if the converse of this corollary is true, i.e. if all algebraic functions are expressible via
polynomial SDE.

▶ Example 5.4 (Catalan numbers). Let K = R. Consider the differential equation in one
dependent variable (here y = x1)

ẏ = y2 (24)

with the initial condition y(0) = 1. Let us analyse this equation from the point of view of
convolution product. By (1), we have µ×(y) = µ×(y)(0)+x×(µ×(y))′ = 1+x×µ×(δ×(y)) =
1 + x × µ×(y2) = 1 + x × µ×(y)2. Let σ = µ×(y), this leads to the polynomial equation
q(x, σ) = 0, where q(x, y) = y − xy − y2 − 1. Solving for y as a function of x (and renaming
x to z), we obtain two branches, y(z) = (1 ±

√
1 − 4z)/2z. By Proposition 5.2, σ must be

the series of Taylor coefficients of one or the other of these two functions. One checks that
the stream obtained using the minus sign solves the equation:

σ = G−1
[

1 −
√

1 − 4z

2z

]
= (1, 1, 2, 5, 14, 42, 132, ...) .

These are the Catalan numbers, sequence A000108 in [1].

5.3 Solutions of ODEs
The shuffle product ⊗ provides a connection between streams and differential equations. A
recurrent motif here is that streams and their generating functions can be used to reason
on solutions of ODEs – and the other way around. In what follows, solutions might be
considered in both formal and analytic sense.
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When applied to ⊗, Proposition 5.2 may help one to recover closed forms for algebraic
solutions of a ODE system, in case they exist. This is entailed by Corollary 5.6 below.
In the rest of the section, we let x(z) = (x1(z), ..., xn(z)) denote a solution around 0 of
D = {ẋ1 = p1, ..., ẋn = pn}, considered as a system of ODEs, with the given initial conditions
x(0) := ρ ∈ Kn. In particular, note that, when K = R, a solution always exists, is unique
and analytic (Picard-Lindelöf theorem). For p(x, x1, ..., xn) ∈ P, we let p(z, x(z)) denote
the composition of p as a function with (z, x(z)); in turn, p(z, x(z)) is a formal power series
or analytic function around the origin. The following proposition provides a link between
solutions of ODEs and shuffle product and the induced morphism, via exponential generating
functions. The essential point here is that δ⊗ coincides with Lie derivative.

▶ Proposition 5.5. p(z, x(z)) = E [µ⊗(p)](z).

When K = R, the above result implies that E [µ⊗(p)](z) is always real analytic.

▶ Corollary 5.6 (algebraic solutions of ODEs). Suppose that, for some nonzero q = q(x, y),
we have µ⊗(q(x, p)) = 0. Then p(z, x(z)) is a branch of q(x, y).

Proof. By Proposition 5.2, we deduce that E [µ⊗(p)](z) is a branch of q(x, y). But, by
Proposition 5.5, p(z, x(z)) = E [µ⊗(p)](z). ◀

A discussion on the relation of µ⊗ with algebraic and other classes of streams is deferred
to the end of the section. We illustrate now the above results with a simple example.

▶ Example 5.7 (factorial numbers and the solution of ẏ = y2). Consider again the equation
ẏ = y2 with y(0) = 1 of Example 5.4. This time we analyse this equation from the point of
view of shuffle product. Let σ = µ⊗(y). Consider the polynomial q = q(x, y) := yx − y + 1.
One checks that q ∼ 0 in the coalgebra over P induced by δ⊗: to see this, one applies the
algorithm in Section 4, noting that o(q) = q(0, 1) = 0 and that δ⊗(q) = yq ∈ ⟨q⟩. This
implies µ⊗(q(x, y)) = 0, hence, according to Proposition 5.2, E [σ](z) is a branch of q(x, y).
Now q(x, y) defines a unique branch, y(z) = 1

1−z . Then using also (22):

σ = E−1
[

1
1 − z

]
= fact ⊙ G−1

[
1

1 − z

]
= fact ⊙ (1, 1, 1, ...) = (0!, 1!, 2!, ...) .

Finally, by Corollary 5.6, the solution of (24) as an ODE with the initial condition y(0) = 1
is the unique branch of q, that is y(z) = 1

1−z .

▶ Example 5.8 (double factorials, again). Consider again the equation ẏ = y3 with y(0) = 1
of Example 4.3, and the equivalence µ⊗(q) = 0, for q(x, y) := y2(x − 1/2) + 1/2, we proved
there. Let σ = µ⊗(y). According to Proposition 5.2, the exponential generating function
E [σ](z) is a branch of q(x, y). Now q(x, y) has two branches, which are obtained by solving
for y the corresponding quadratic equation. Of these, y(z) =

√
1/(1 − 2z) solves the ODE

and, by Proposition 5.5, is the exponential generating function of σ.

Let us also point out an interesting interplay between × and ⊗, that may ease composi-
tional reasoning on streams. Depending on the equations at hand, the convolution of two
streams might be more easily understood and described than their shuffle product; or a
stream can be better understood in terms of the solution of an ODE. The following equality,
that can be readily checked, allows one to transform convolution into stream product, and
back. We let fact−1 := (1/0!, 1/1!, ..., 1/j!, ...).

fact−1 ⊙ (σ ⊗ τ) = (fact−1 ⊙ σ) × (fact−1 ⊙ τ) . (25)

We illustrate this idea with a simple example.
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▶ Example 5.9 (harmonic numbers). Consider the system of two equations ẏ = y2, ẇ = y

with initial conditions y(0) = 1 and w(0) = 0. We want to analyze this system in terms of ⊗.
In Example 5.7, we have seen that y(z) = 1

1−z and that σ := µ⊗(y) = fact. We can obtain
µ⊗(w) via Proposition 5.5 and (22), after solving the second ODE: w(z) =

∫ z

0 y(u)du =
ln( 1

1−z ), hence τ := µ⊗(w) = E−1[w(z)] = fact ⊙ (0, 1, 1/2, ..., 1/j, ...). To understand what
µ⊗(yw) = µ⊗(y) ⊗ µ⊗(w) represents, it is convenient to switch to the convolution product,
by applying (25). We have

fact−1 ⊙ µ⊗(yw) = fact−1 ⊙ (σ ⊗ τ) = (fact−1 ⊙ σ) × (fact−1 ⊙ τ)

= (1, 1, 1, ...) × (0, 1, 1/2, ..., 1/j, ...) = (0, 1, 3/2, ...,

j∑
i=1

1
i
, ...)

which is the sequence α = (h0, h1, ...) of the harmonic numbers. Therefore µ⊗(yw) = fact⊙α,
and y(z)w(z) = 1

1−z ln( 1
1−z ) = E [fact ⊙ α](z) =

∑
j≥0 hjzj = G[α](z) is the ordinary

generating function of the harmonic numbers.

Another example of interplay between the two products arises in connection with the
solutions of linear ODEs and Laplace transform; this is elaborated in the full version of the
present article [11].
▶ Remark 5.10. One would like to prove for µ⊗ a result analogous to Corollary 5.3. In this
respect, let us first note that µ⊗(p) need not be algebraic: as we have seen in Example 5.4,
µ⊗(y) = fact = (0!, 1!, 2!, ...), which is not an algebraic stream – cf. [22], or simply note that
G[fact](z) is not analytic. The next natural candidate class to consider for inclusion is that
of streams with a holonomic (a.k.a. D-finite) ordinary generating function [22]: that is, a
function y(z) satisfying a linear differential equation with polynomial coefficients in z. This
class includes strictly algebraic streams, but µ⊗(p) need not be holonomic either. To see this,
consider the single ODE ḟ = 1 + f2 with f(0) = 0, which defines the trigonometric tangent
function: f(z) = tan(z). It is known that σ = G−1[tan(z)] is not holonomic, see e.g. [18,
Ch.1]. It is also known that fact is holonomic, and that the class of holonomic functions is
closed under the Hadamard product [22]. Now, from Proposition 5.5 and (22), we have that:
µ⊗(f) = E−1[tan(z)] = fact ⊙ σ. This equality implies that µ⊗(f) is not holonomic, because
otherwise σ would be as well. At present, we also ignore if algebraic and/or holonomic
streams are included in streams obtainable via µ⊗.

6 Conclusion

We have studied connections between polynomials, differential equations and streams, in
terms of algebra and coalgebra. Our main result shows that, given any stream product that
satisfies certain reasonable assumptions, there is a way to define a transition function on
polynomials such that the induced unique coalgebra morphism into streams is a K-algebra
homomorphism – and vice-versa. We have applied this result to the design of a decision
algorithm for polynomial stream equivalence, and to reasoning on generating functions and
ordinary differential equations.

As for future work, it would be interesting to see whether we can define new notions of
products that respect the format we devised in this paper. Somewhat orthogonal to this, the
relation of our framework with bialgebras [16] deserves further investigation. Finally, in the
field of nonlinear dynamical systems [15], convolution of discrete sequences arises as a means
to describe the composition of distinct signals or subsystems (e.g., a plant and a controller);
we would like to understand if our approach can be useful to reason on such systems as well.
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