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Abstract
In this paper, we study the framework of two-player Stackelberg games played on graphs in which
Player 0 announces a strategy and Player 1 responds rationally with a strategy that is an optimal
response. While it is usually assumed that Player 1 has a single objective, we consider here the
new setting where he has several. In this context, after responding with his strategy, Player 1 gets
a payoff in the form of a vector of Booleans corresponding to his satisfied objectives. Rationality
of Player 1 is encoded by the fact that his response must produce a Pareto-optimal payoff given
the strategy of Player 0. We study the Stackelberg-Pareto Synthesis problem which asks whether
Player 0 can announce a strategy which satisfies his objective, whatever the rational response of
Player 1. For games in which objectives are either all parity or all reachability objectives, we show
that this problem is fixed-parameter tractable and NEXPTIME-complete. This problem is already
NP-complete in the simple case of reachability objectives and graphs that are trees.
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1 Introduction

Two-player zero-sum infinite-duration games played on graphs are a mathematical model
used to formalize several important problems in computer science, such as reactive system
synthesis. In this context, see e.g. [26], the graph represents the possible interactions between
the system and the environment in which it operates. One player models the system to
synthesize, and the other player models the (uncontrollable) environment. In this classical
setting, the objectives of the two players are opposite, that is, the environment is adversarial.
Modelling the environment as fully adversarial is usually a bold abstraction of reality as it
can be composed of one or several components, each of them having their own objective.

In this paper, we consider the framework of Stackelberg games [31], a richer non-zero-
sum setting, in which Player 0 (the system) called leader announces his strategy and then
Player 1 (the environment) called follower plays rationally by using a strategy that is
an optimal response to the leader’s strategy. This framework captures the fact that in
practical applications, a strategy for interacting with the environment is committed before
the interaction actually happens. The goal of the leader is to announce a strategy that
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guarantees him a payoff at least equal to some given threshold. In the specific case of Boolean
objectives, the leader wants to see his objective being satisfied. The concept of leader and
follower is also present in the framework of rational synthesis [17, 24] with the difference that
this framework considers several followers, each of them with their own Boolean objective. In
that case, rationality of the followers is modeled by assuming that the environment settles to
an equilibrium (e.g. a Nash equilibrium) where each component (composing the environment)
is considered to be an independent selfish individual, excluding cooperation scenarios between
components or the possibility of coordinated rational multiple deviations. Our work proposes
a novel and natural alternative in which the single follower, modeling the environment, has
several objectives that he wants to satisfy. After responding to the leader with his own
strategy, Player 1 receives a vector of Booleans which is his payoff in the corresponding
outcome. Rationality of Player 1 is encoded by the fact that he only responds in such a way
to receive Pareto-optimal payoffs, given the strategy announced by the leader. This setting
encompasses scenarios where, for instance, several components can collaborate and agree
on trade-offs. The goal of the leader is therefore to announce a strategy that guarantees
him to satisfy his own objective, whatever the response of the follower which ensures him a
Pareto-optimal payoff. The problem of deciding whether the leader has such a strategy is
called the Stackelberg-Pareto Synthesis problem (SPS problem).

Contributions. In addition to the definition of the new setting, our main contributions are
the following ones. We consider the general class of ω-regular objectives modelled by parity
conditions and also consider the case of reachability objectives for their simplicity1. We
provide a thorough analysis of the complexity of solving the SPS problem for both objectives.
Our results are interesting and singular both from a theoretical and practical point of view.

First, we show that the SPS problem is fixed-parameter tractable (FPT) for reachability
objectives when the number of objectives of the follower is a parameter and for parity
objectives when, in addition, the maximal priority used in each priority function is also
a parameter of the complexity analysis (Theorem 3). These are important results as it is
expected that, in practice, the number of objectives of the environment is limited to a few.
To obtain these results, we develop a reduction from our non-zero-sum games to a zero-sum
game in which the protagonist, called Prover, tries to show the existence of a solution to the
problem, while the antagonist, called Challenger, tries to disprove it. This zero-sum game is
defined in a generic way, independently of the actual objectives used in the initial game, and
can then be easily adapted according to the case of reachability or parity objectives.

Second, we prove that the SPS problem is NEXPTIME-complete for both reachability
and parity objectives (Theorem 6 and Theorem 9), and that it is already NP-complete in
the simple setting of reachability objectives and graphs that are trees (Theorem 7). To the
best of our knowledge, this is the first NEXPTIME-completeness result for a natural class
of games played on graphs. To obtain the hardness for NEXPTIME, we present a natural
succinct version of the set cover problem that is complete for this class (Theorem 11), a result
of potential independent interest. We then show how to reduce this problem to the SPS
problem. To obtain the NEXPTIME-membership of the SPS problem, we have shown that
exponential-size solutions exist for positive instances of the SPS problem and this allows us
to design a nondeterministic exponential-time algorithm. Unfortunately, it was not possible
to use the FPT algorithm mentioned above to show this membership due to its too high time
complexity; conversely, our NEXPTIME algorithm is not FPT.

1 Indeed, in the classical context of two-player zero-sum games, solving reachability games is in P whereas
solving parity games is only known to be in NP ∩ co-NP, see e.g. [18].
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Related Work. Rational synthesis is introduced in [17] for ω-regular objectives in a setting
where the followers are cooperative with the leader, and later in [24] where they are adversarial.
Precise complexity results for various ω-regular objectives are established in [13] for both
settings. Those complexities differ from the ones of the problem studied in this paper.
Indeed, for reachability objectives, adversarial rational synthesis is PSPACE-complete, while
for parity objectives, its precise complexity is not settled (the problem is PSPACE-hard and
in NEXPTIME). Extension to non-Boolean payoffs, like mean-payoff or discounted sum, is
studied in [19, 20] in the cooperative setting and in [1, 16] in the adversarial setting.

When several players (like the followers) play with the aim to satisfy their objectives,
several solution concepts exist such as Nash equilibrium [25], subgame perfect equilibrium [27],
secure equilibria [11, 12], or admissibility [2, 4]. The constrained existence problem, close
to the cooperative rational synthesis problem, is to decide whether there exists a solution
concept such that the payoff obtained by each player is larger than some threshold. Let us
mention [13, 29, 30] for results on the constrained existence for Nash equilibria and [5, 6, 28]
for such results for subgame perfect equilibria. Rational verification is studied in [21, 22].
This problem (which is not a synthesis problem) is to decide whether a given LTL formula is
satisfied by the outcome of all Nash equilibria (resp. some Nash equilibrium). The interested
reader can find more pointers to works on non-zero-sum games for reactive synthesis in [3, 7].

Structure. The paper is structured as follows. In Section 2, we introduce the class of
Stackelberg-Pareto games and the SPS problem. We show in Section 3 that the SPS problem
is in FPT for reachability and parity objectives. The complexity class of this problem is
studied in Section 4 where we prove that it is NEXPTIME-complete and NP-complete in case
of reachability objectives and graphs that are trees. In Section 5, we provide a conclusion
and discuss future work. Detailed proofs of our results can be found in the full version of
this paper.

2 Preliminaries and Stackelberg-Pareto Synthesis Problem

This section introduces the class of two-player Stackelberg-Pareto games in which the first
player has a single objective and the second has several. We present a decision problem on
those games called the Stackelberg-Pareto Synthesis problem, which we study in this paper.

2.1 Preliminaries
Game Arena. A game arena is a tuple G = (V, V0, V1, E, v0) where (V,E) is a finite directed
graph such that: (i) V is the set of vertices and (V0, V1) forms a partition of V where V0
(resp. V1) is the set of vertices controlled by Player 0 (resp. Player 1), (ii) E ⊆ V × V is the
set of edges such that each vertex v has at least one successor v′, i.e., (v, v′) ∈ E, and (iii)
v0 ∈ V is the initial vertex. We call a game arena a tree arena if it is a tree in which every
leaf vertex has itself as its only successor. A sub-arena G′ with a set V ′ ⊆ V of vertices and
initial vertex v′

0 ∈ V ′ is a game arena defined from G as expected.

Plays. A play in a game arena G is an infinite sequence of vertices ρ = v0v1 . . . ∈ V ω such
that it starts with the initial vertex v0 and (vj , vj+1) ∈ E for all j ∈ N. Histories in G are
finite sequences h = v0 . . . vj ∈ V + defined similarly. A history is elementary if it contains
no cycles. We denote by PlaysG the set of plays in G. We write HistG (resp. HistG,i) the set
of histories (resp. histories ending with a vertex in Vi). We use the notations Plays, Hist, and
Histi when G is clear from the context. We write Occ(ρ) the set of vertices occurring in ρ

and Inf(ρ) the set of vertices occurring infinitely often in ρ.
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Strategies. A strategy σi for Player i is a function σi : Histi → V assigning to each history
hv ∈ Histi a vertex v′ = σi(hv) such that (v, v′) ∈ E. It is memoryless if σi(hv) = σi(h′v) for
all histories hv, h′v ending with the same vertex v ∈ Vi. More generally, it is finite-memory
if it can be encoded by a Moore machine M [18]. The memory size of σi is the number of
memory states of M. In particular, σi is memoryless when it has a memory size of one.

Given a strategy σi of Player i, a play ρ = v0v1 . . . is consistent with σi if vj+1 =
σi(v0 . . . vj) for all j ∈ N such that vj ∈ Vi. Consistency is naturally extended to histories.
We denote by Playsσi

(resp. Histσi) the set of plays (resp. histories) consistent with σi. A
strategy profile is a tuple σ = (σ0, σ1) of strategies, one for each player. We write out(σ) the
unique play consistent with both strategies and we call it the outcome of σ.

Objectives. An objective for Player i is a set of plays Ω ⊆ Plays. A play ρ satisfies the
objective Ω if ρ ∈ Ω. In this paper, we focus on the two following ω-regular objectives. Let
T ⊆ V be a subset of vertices called a target set, the reachability objective Reach(T ) =
{ρ ∈ Plays | Occ(ρ) ∩ T ̸= ∅} asks to visit at least one vertex of T . Let c : V → N be a
function called a priority function which assigns an integer to each vertex in the arena, the
parity objective Parity(c) = {ρ ∈ Plays | minv∈Inf(ρ)(c(v)) is even} asks that the minimum
priority visited infinitely often be even.

2.2 Stackelberg-Pareto Synthesis Problem
Stackelberg-Pareto Games. A Stackelberg-Pareto game (SP game) G = (G,Ω0,Ω1, . . . ,Ωt)
is composed of a game arena G, an objective Ω0 for Player 0 and t ≥ 1 objectives Ω1, . . . ,Ωt

for Player 1. In this paper, we focus on SP games where the objectives are either all
reachability or all parity objectives and call such games reachability (resp. parity) SP games.

Payoffs in SP Games. The payoff of a play ρ ∈ Plays corresponds to the vector of Booleans
pay(ρ) ∈ {0, 1}t such that for all i ∈ {1, . . . , t}, payi(ρ) = 1 if ρ ∈ Ωi, and payi(ρ) = 0
otherwise. Note that we omit to include Player 0 when discussing the payoff of a play.
Instead we say that a play ρ is won by Player 0 if ρ ∈ Ω0 and we write won(ρ) = 1, otherwise
it is lost by Player 0 and we write won(ρ) = 0. We write (won(ρ), pay(ρ)) the extended payoff
of ρ. Given a strategy profile σ, we write won(σ) = won(out(σ)) and pay(σ) = pay(out(σ)).
For reachability SP games, since reachability objectives are prefix-dependant and given a
history h ∈ Hist, we also define won(h) and pay(h) as done for plays.

We introduce the following partial order on payoffs. Given two payoffs p = (p1, . . . , pt)
and p′ = (p′

1, . . . , p
′
t) such that p, p′ ∈ {0, 1}t, we say that p′ is larger than p and write p ≤ p′

if pi ≤ p′
i for all i ∈ {1, . . . , t}. Moreover, when it also holds that pi < p′

i for some i, we say
that p′ is strictly larger than p and we write p < p′. A subset of payoffs P ⊆ {0, 1}t is an
antichain if it is composed of pairwise incomparable payoffs with respect to ≤.

Stackelberg-Pareto Synthesis Problem. Given a strategy σ0 of Player 0, we consider the
set of payoffs of plays consistent with σ0 which are Pareto-optimal, i.e., maximal with respect
to ≤. We write this set Pσ0 = max{pay(ρ) | ρ ∈ Playsσ0}. Notice that it is an antichain. We
say that those payoffs are σ0-fixed Pareto-optimal and write |Pσ0 | the number of such payoffs.
A play ρ ∈ Playsσ0 is called σ0-fixed Pareto-optimal if its payoff pay(ρ) is in Pσ0 .

The problem studied in this paper asks whether there exists a strategy σ0 for Player 0
such that every play in Playsσ0 which is σ0-fixed Pareto-optimal satisfies the objective of
Player 0. This corresponds to the assumption that given a strategy of Player 0, Player 1 will
play rationally, that is, with a strategy σ1 such that out((σ0, σ1)) is σ0-fixed Pareto-optimal.
It is therefore sound to ask that Player 0 wins against such rational strategies.
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v0

v1

v2

v3

v4

v5

v7

v6(0, (0, 0, 1))

(0, (1, 0, 0))

(1, (1, 1, 0))

(1, (0, 1, 1))

Figure 1 A reachability SP game.

▶ Definition 1. Given an SP game, the Stackelberg-Pareto Synthesis problem (SPS problem)
is to decide whether there exists a strategy σ0 for Player 0 (called a solution) such that for
each strategy profile σ = (σ0, σ1) with pay(σ) ∈ Pσ0 , it holds that won(σ) = 1.

Witnesses. Given a strategy σ0 that is a solution to the SPS problem and any payoff
p ∈ Pσ0 , for each play ρ consistent with σ0 such that pay(ρ) = p it holds that won(ρ) = 1.
For each p ∈ Pσ0 , we arbitrarily select such a play which we call a witness (of p). We denote
by Witσ0 the set of all witnesses, of which there are as many as payoffs in Pσ0 . In the
sequel, it is useful to see this set as a tree composed of |Witσ0 | branches. Additionally for
a given history h ∈ Hist, we write Witσ0(h) the set of witnesses for which h is a prefix, i.e.,
Witσ0(h) = {ρ ∈ Witσ0 | h is prefix of ρ}. Notice that Witσ0(h) = Witσ0 when h = v0 and
that Witσ0(h) decreases as h increases, until it contains a single value or becomes empty.

▶ Example 2. Consider the reachability SP game with arena G depicted in Figure 1 in which
Player 1 has t = 3 objectives. The vertices of Player 0 (resp. Player 1) are depicted as ellipses
(resp. rectangles)2. Every objective in the game is a reachability objective defined as follows:
Ω0 = Reach({v6, v7}), Ω1 = Reach({v4, v7}), Ω2 = Reach({v3}), Ω3 = Reach({v1, v6}). The
extended payoff of plays reaching vertices from which they can only loop is displayed in the
arena next to those vertices, and the extended payoff of play v0v2(v3v5)ω is (0, (0, 1, 0)).

Consider the memoryless strategy σ0 of Player 0 such that he chooses to always move to v5
from v3. The set of payoffs of plays consistent with σ0 is {(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1)}
and the set of those that are Pareto-optimal is Pσ0 = {(1, 0, 0), (0, 1, 1)}. Notice that play
ρ = v0v2(v4)ω is consistent with σ0, has payoff (1, 0, 0) and is lost by Player 0. Strategy
σ0 is therefore not a solution to the SPS problem. In this game, there is only one other
memoryless strategy for Player 0, where he chooses to always move to v7 from v3. One can
verify that it is again not a solution to the SPS problem.

We can however define a finite-memory strategy σ′
0 such that σ′

0(v0v2v3) = v5 and
σ′

0(v0v2v3v5v3) = v7 and show that it is a solution to the problem. Indeed, the set of
σ′

0-fixed Pareto-optimal payoffs is Pσ′
0

= {(0, 1, 1), (1, 1, 0)} and Player 0 wins every play
consistent with σ′

0 whose payoff is in this set. A set Witσ′
0

of witnesses for these payoffs is
{v0v2v3v5v

ω
6 , v0v2v3v5v3v

ω
7 } and is in this case the unique set of witnesses. This example

shows that Player 0 sometimes needs memory in order to have a solution to the SPS problem.

3 Fixed-Parameter Complexity

In this section, we show that the SPS problem is in FPT for both cases of reachability and
parity SP games. We refer the reader to [15] for the concept of fixed-parameter complexity.

2 This convention is used throughout this paper.
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⊥

v0, P, {p1, p2} v0, P, (∅, {p1, p2})

v1, P, ∅

v2, P, {p1, p2} v2, P, ({p1, p2}, ∅)

v3, P, {p1, p2}

v4, P, ∅

v5, P, {p1, p2}

v7, P, {p1, p2}

v5, P, ({p1}, {p2})

v5, P, ({p2}, {p1})

v3, P, {p2}

v6, P, {p1}

v7, P, {p2}

v5, P, ({p1, p2}, ∅)

v6, P, ∅

v3, P, {p1}

v6, P, {p2}

v7, P, {p1}

. . .

. . . . . . . . .

. . .. . . . . .

. . . . . .

. . .

Figure 2 A part of the C-P game for Example 2 with P = {p1, p2}, p1 = (1, 1, 0), and p2 = (0, 1, 1).

▶ Theorem 3. Solving the SPS problem is in FPT for reachability SP games for parameter t
equal to the number of objectives of Player 1 and it is in FPT for parity SP games for
parameters t and the maximal priority according to each parity objective of Player 1.

3.1 Challenger-Prover Game

In order to prove Theorem 3, we provide a reduction to a specific two-player zero-sum game,
called the Challenger-Prover game (C-P game). This game is a zero-sum3 game played
between Challenger (written C) and Prover (written P). We will show that Player 0 has a
solution to the SPS problem in an SP game if and only if P has a winning strategy in the
corresponding C-P game. In the latter game, P tries to show the existence of a strategy
σ0 that is solution to the SPS problem in the original game and C tries to disprove it. The
C-P game is described independently of the objectives used in the SP game and its objective
is described as such in a generic way. We later provide the proof of our FPT results by
adapting it specifically for reachability and parity SP games.

Intuition on the C-P Game. Without loss of generality, the SP games we consider in this
section are such that each vertex in their arena has at most two successors. It can be shown
that any SP game G with n vertices can be transformed into an SP game Ḡ with O(n2)
vertices such that every vertex has at most two successors and Player 0 has a solution to the
SPS problem in G if and only if he has a solution to the SPS problem in Ḡ.

Let G be an SP game. The C-P game G′ is a zero-sum game associated with G that
intuitively works as follows. First, P selects a set P of payoffs which he announces as the
set of Pareto-optimal payoffs Pσ0 for the solution σ0 to the SPS problem in G he is trying
to construct. Then, P tries to show that there exists a set of witnesses Witσ0 in G for the
payoffs in P . After the selection of P in G′, there is a one-to-one correspondence between
plays in the arenas G and G′ such that the vertices in G′ are augmented with a set W which
is a subset of P . Initially W is equal to P and after some history in G′, W contains payoff p

if the corresponding history in G is prefix of the witness with payoff p in the set Witσ0 that
P is building. In addition, the objective ΩP of P is such that he has a winning strategy σP
in G′ if and only if the set P that he selected coincides with the set Pσ0 for the corresponding
strategy σ0 in G and the latter strategy is a solution to the SPS problem in G. A part of the
arena of the C-P game for Example 2 with a positional winning strategy for P highlighted in
bold is illustrated in Figure 2.

3 We assume that the reader is familiar with the concept of zero-sum games, see e.g. [18].
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Arena of the C-P Game. The initial vertex ⊥ belongs to P . From this vertex, he selects a
successor (v0, P,W ) such that W = P and P is an antichain of payoffs which P announces
as the set Pσ0 for the strategy σ0 in G he is trying to construct. All vertices in plays starting
with this vertex will have this same value for their P -component. Those vertices are either
a triplet (v, P,W ) that belongs to P or (v, P, (Wl,Wr)) that belongs to C. Given a play ρ
(resp. history h) in G′, we denote by ρV (resp. hV ) the play (resp. history) in G obtained by
removing ⊥ and keeping the v-component of every vertex of P in ρ (resp. h), which we call
its projection.

After history hm such that m = (v, P,W ) with v ∈ V0, P selects a successor v′ such
that (v, v′) ∈ E and vertex (v′, P,W ) is added to the play. This corresponds to Player 0
choosing a successor v′ after history hV v in G.
After history hm such that m = (v, P,W ) with v ∈ V1, P selects a successor
(v, P, (Wl,Wr)) with (Wl,Wr) a partition of W . This corresponds to P splitting the set
W into two parts according to the two successors vl and vr of v. For the strategy σ0 that
P tries to construct and its set of witnesses Witσ0 he is building, he asserts that Wl (resp.
Wr) is the set of payoffs of the witnesses in Witσ0(hV vl) (resp. Witσ0(hV vr)).
From a vertex (v, P, (Wl,Wr)), C can select a successor (vl, P,Wl) or (vr, P,Wr) which
corresponds to the choice of Player 1.

Formally, the game arena of the C-P game is the tuple G′ = (V ′, V ′
P , V

′
C , E

′,⊥) with
V ′

P = {⊥} ∪ {(v, P,W ) | v ∈ V, P ⊆ {0, 1}t is an antichain and W ⊆ P},
V ′

C = {(v, P, (Wl,Wr)) | v ∈ V1, P ⊆ {0, 1}t is an antichain and Wl,Wr ⊆ P},
(⊥, (v, P,W )) ∈ E′ if v = v0 and P = W ,
((v, P,W ), (v′, P,W )) ∈ E′ if v ∈ V0 and (v, v′) ∈ E,
((v, P,W ), (v, P, (Wl,Wr))) ∈ E′ if v ∈ V1 and (Wl,Wr) is a partition of W ,
((v, P, (Wl,Wr)), (v′, P,W )) ∈ E′ if (v, v′) ∈ E and {v′ = vl and W = Wl} or {v′ = vr

and W = Wr}.
In the definition of E′, if v has a single successor v′ in G, it is assumed to be vl and Wr is
always equal to ∅. Given the two successors vi and vj of v, vi is the left successor if i < j.

Objective of P in the C-P Game. Let us now discuss the objective ΩP of P. The W -
component of the vertices controlled by P has a size that decreases along a play ρ in G′.
We write limW (ρ) the value of the W -component at the limit in ρ. Recall that with this
W -component, P tries to construct a solution σ0 to the SPS problem with associated sets
Pσ0 and Witσ0 . Therefore, for him to win in the C-P game, limW (ρ) must be a singleton or
empty in every consistent play such that:

limW (ρ) must be a singleton {p} with p the payoff of ρV in G, showing that ρV ∈ Witσ0

is a correct witness for p. In addition, it must hold that won(ρV ) = 1 as p ∈ P and as P
wants σ0 to be a solution.
limW (ρ) must be the empty set such that either the payoff of ρV belongs to Pσ0 and
won(ρV ) = 1, or the payoff of ρV is strictly smaller than some payoff in Pσ0 .

These conditions verify that the sets P = Pσ0 and Witσ0 are correct and that σ0 is indeed a
solution to the SPS problem in G. They are generic as they do not depend on the actual
objectives used in the SP game.
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Let us give the formal definition of ΩP . For an antichain P of payoffs, we write PlaysP
G′

the set of plays in G′ which start with ⊥(v0, P, P ) and we define the following set

BP =
{
ρ ∈ PlaysP

G′ | (limW (ρ) = {p} ∧ pay(ρV ) = p ∈ P ∧ won(ρV ) = 1) ∨ (1)
(limW (ρ) = ∅ ∧ pay(ρV ) ∈ P ∧ won(ρV ) = 1) ∨ (2)
(limW (ρ) = ∅ ∧ ∃p ∈ P, pay(ρV ) < p)

}
. (3)

Objective ΩP of P in G′ is the union of BP over all antichains P . As the C-P game is
zero-sum, objective ΩC equals PlaysG′ \ ΩP . The following theorem holds.

▶ Theorem 4. Player 0 has a strategy σ0 that is solution to the SPS problem in G if and
only if P has a winning strategy σP from ⊥ in the C-P game G′.

Proof. Let us first assume that Player 0 has a strategy σ0 that is solution to the SPS problem
in G. Let Pσ0 be its set of σ0-fixed Pareto-optimal payoffs and let Witσ0 be a set of witnesses.
We construct the strategy σP from σ0 such that

σP(⊥) = (v0, P, P ) such that P = Pσ0 (this vertex exists as Pσ0 is an antichain),
σP(hm) = (v′, P,W ) if m = (v, P,W ) with v ∈ V0 and v′ = σ0(hV v),
σP(hm) = (v, P, (Wl,Wr)) if m = (v, P,W ) with v ∈ V1 and for i ∈ {l, r}, Wi = {pay(ρ) |
ρ ∈ Witσ0(hV vi)}.

It is clear that given a play ρ in G′ consistent with σP , the play ρV in G is consistent with σ0.
Let us show that σP is winning for P from ⊥ in G′. Consider a play ρ in G′ consistent with σP .
There are two possibilities. (i) ρV is a witness of Witσ0 and by construction limW (ρ) = {p}
with p = pay(ρV ); thus won(ρV ) = 1 as σ0 is a solution and ρV is a witness. (ii) ρV is not a
witness and by construction limW (ρ) = ∅; as σ0 is a solution, then p = pay(ρV ) is bounded
by some payoff of Pσ0 and in case of equality won(ρV ) = 1. Therefore ρ satisfies the objective
BP of ΩP since it satisfies condition (1) in case (i) and condition (2) or (3) in case (ii).

Let us now assume that P has a winning strategy σP from ⊥ in G′. Let P be the
antichain of payoffs chosen from ⊥ by this strategy. We construct the strategy σ0 from σP
such that σ0(hV v) = v′ given σP(hm) = (v′, P,W ) with m = (v, P,W ) and v ∈ V0. Notice
that this definition makes sense since there is a unique history hm ending with a vertex of P
associated with hV v showing a one-to-one correspondence between those histories.

Let us show σ0 is a solution to the SPS problem with Pσ0 being the set P . First notice
that P is not empty. Indeed let ρ be a play consistent with σP . As ρ belongs to ΩP and
in particular to BP , one can check that P ̸= ∅ by inspecting conditions (1) to (3). Second
notice that by definition of E′, if ((v, P,W ), (v, P, (Wl,Wr))) ∈ E′ with W ̸= ∅, then either
Wl or Wr is not empty. Therefore given any payoff p ∈ P , there is a unique play ρ consistent
with σP such that limW (ρ) = {p}. By construction of σ0 and as σP is winning, the play ρV

is consistent with σ0, has payoff p, and is won by Player 0 (see (1)).
Let ρV be a play consistent with σ0 and ρ be the corresponding play consistent with σP .

It remains to consider (2) and (3). These conditions indicate that ρV has a payoff equal to
or strictly smaller than a payoff in P and that in case of equality won(ρV ) = 1. This shows
that Pσ0 = P and that σ0 is a solution to the SPS problem. ◀

3.2 Proof of the FPT Results
We now sketch the proof of Theorem 3 which works by specializing the generic objective
ΩP to handle reachability and parity SP games. We begin with reachability SP games. We
extend the arena G′ of the C-P game such that its vertices keep track of the objectives of
G which are satisfied along a play. Given an extended payoff (w, p) ∈ {0, 1} × {0, 1}t and a
vertex v ∈ V , we define the payoff update upd(w, p, v) = (w′, p′) such that
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w′ = 1 ⇐⇒ w = 1 or v ∈ T0,

p′
i = 1 ⇐⇒ pi = 1 or v ∈ Ti, ∀i ∈ {1, . . . , t}.

We obtain the extended arena G∗ as follows: (i) its set of vertices is V ′×{0, 1}×{0, 1}t, (ii) its
initial vertex is ⊥∗ = (⊥, 0, (0, . . . , 0)), and (iii) ((m,w, p), (m′, w′, p′)) with m′ = (v′, P,W )
or m′ = (v′, P, (Wl,Wr)) is an edge in G∗ if (m,m′) ∈ E′ and (w′, p′) = upd(w, p, v′).

We define the zero-sum game G∗ = (G∗,Ω∗
P) in which the three abstract conditions (1-3) de-

tailed previously are encoded into the following Büchi objective by using the (w, p)-component
added to vertices. We define Ω∗

P = Büchi(B∗) with

B∗ =
{

(v, P,W,w, p) ∈ V ∗
P | (W = {p} ∧ w = 1) ∨ (1’)

(W = ∅ ∧ p ∈ P ∧ w = 1) ∨ (2’)
(W = ∅ ∧ ∃p′ ∈ P, p < p′)

}
. (3’)

The proof of the next proposition is a consequence of Theorem 4.

▶ Proposition 5. Player 0 has a strategy σ0 that is solution to the SPS problem in a
reachability SP game G if and only if P has a winning strategy σ∗

P in G∗.

We obtain the following FPT algorithm for deciding the existence of a solution to the
SPS problem in a reachability SP game G. First, we construct the zero-sum game G∗ whose
number of vertices is linear in the number of vertices in the original game and double
exponential in the number t of objectives of Player 1. Second, by Proposition 5, deciding
whether there exists a solution to the SPS problem in G amounts to solving the zero-sum
Büchi game G∗; this can be done in quadratic time in the number of vertices of G∗ [10].
Those two steps are in FPT for parameter t.

We now turn to parity SP games and briefly explain why solving the SPS problem in
these games is in FPT, again by reduction to the C-P game. The arena G′ of the C-P
game remains as is and its objective ΩP is replaced by a Boolean Büchi objective Ω′

P which
encodes the three conditions for parity objectives. Boolean Büchi objectives are Boolean
combinations of Büchi objectives and zero-sum games with such objectives are shown to be
solvable in FPT in [8]. It follows that the SPS problem is also in FPT.

4 Complexity Class of the SPS Problem

In this section, we study the complexity class of the SPS problem and prove its NEXPTIME-
completeness for both reachability and parity SP games.

4.1 NEXPTIME-Membership
We first show the membership to NEXPTIME of the SPS problem by providing a nondetermin-
istic algorithm with time exponential in the size of the game G. By size, we mean the number
|V | of its vertices and the number t of objectives of Player 1. Notice that the time complexity
of the FPT algorithms obtained in the previous section is too high, preventing us from directly
using the C-P game to show a tight membership result. Conversely, the nondeterministic
algorithm provided in this section is not FPT as it is exponential in |V |.

▶ Theorem 6. The SPS problem is in NEXPTIME for reachability and parity SP games.

CONCUR 2021
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Figure 3 The creation of strategies σ̂0 and σ̃0 from a solution σ0 with Witσ0 = {ρ1, ρ2, ρ3, ρ4}.

We show this membership result by proving that if Player 0 has a strategy which is a
solution to the problem, he has one which is finite-memory with at most an exponential number
of memory states4. This yields a NEXPTIME algorithm in which we nondeterministically
guess such a strategy and check in exponential time that it is indeed a solution.

While our proof requires some specific arguments to treat both reachability and parity
objectives, it is based on the following common principles. We first explain why, when there
is a solution σ0 to the SPS problem, there is one that is finite-memory. We consider a fixed
set of witnesses Witσ0 . Figure 3 illustrates the two steps of the following construction.

We start by showing the existence of a strategy σ̂0 constructed from σ0, in which Player 0
follows σ0 as long as the current consistent history is prefix of at least one witness
in Witσ0 . Then when a deviation from Witσ0 occurs, Player 0 switches to a so-called
punishing strategy. A deviation is a history that leaves the set of witnesses Witσ0 after
a move of Player 1 (this is not possible by a move of Player 0). After such a deviation,
σ̂0 systematically imposes that the consistent play either satisfies Ω0 or is not σ0-fixed
Pareto-optimal, i.e., it gives to Player 1 a payoff that is strictly smaller than the payoff
of a witness in Witσ0 . This makes the deviation irrational for Player 1. We show that
this can be done, both for reachability and parity objectives, with at most exponentially
many different punishing strategies, each having a size bounded exponentially in the size
of the game. The strategy σ̂0 that we obtain is therefore composed of the part of σ0 that
produces Witσ0 and a punishment part whose size is at most exponential.
Then, we show how to decompose each witness in Witσ0 into at most exponentially many
sections that can, in turn, be compacted into finite elementary paths or lasso shaped
paths of polynomial length. As Witσ0 contains exactly |Pσ0 | witnesses ρ, those compact
witnesses cρ can be produced by a finite-memory strategy with an exponential size for
both reachability and parity objectives. This allows us to construct a strategy σ̃0 that
produces the compact witnesses and acts as σ̂0 after any deviation. This strategy is a
solution of the SPS problem and has an exponential size as announced.

We can now sketch the proof of Theorem 6, again by giving arguments that work for both
reachability and parity objectives. We guess a solution σ0 to the SPS problem that we can
assume to be finite-memory, that is, we guess it as a Moore machine M with an exponential
number of memory states. We then verify that σ0 is indeed a solution by first computing the
set Pσ0 and then checking that every σ0-fixed Pareto-optimal play satisfies the objective Ω0
of Player 0. To this end, we construct the cartesian product G× M which is an automaton
whose infinite paths are exactly the plays consistent with σ0. We then use classical results
from automata theory about the emptiness problem for an intersection of reachability (resp.
parity) objectives to get the announced exponential complexity of our verifying algorithm.

4 Recall that to have a solution to the SPS problem, memory may be necessary as shown in Example 2.
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Figure 4 The tree arena used in the reduction from the SC problem.

4.2 NP-Completeness for Tree Arenas

Before turning to the NEXPTIME-hardness of the SPS problem in the next section, we
first want to show that the SPS problem is already NP-complete in the simple setting of
reachability objectives and arenas that are trees. To do so, we use a reduction from the Set
Cover problem (SC problem) which is NP-complete [23].

▶ Theorem 7. The SPS problem is NP-complete for reachability SP games on tree arenas.

Notice that when the game arena is a tree, it is easy to design an algorithm for solving
the SPS problem that is in NP. First, we nondeterministically guess a strategy σ0 that can
be assumed to be memoryless as the arena is a tree. Second, we apply a depth-first search
algorithm from the root vertex which accumulates to leaf vertices the extended payoff of
plays which are consistent with σ0. Finally, we check that σ0 is a solution.

Let us explain why the SPS problem is NP-hard on tree arenas by reduction from the SC
problem. We recall that an instance of the SC problem is defined by a set C = {e1, e2, . . . , en}
of n elements, m subsets S1, S2, . . . , Sm such that Si ⊆ C for each i ∈ {1, . . . ,m}, and an
integer k ≤ m. The problem consists in finding k indexes i1, i2, . . . , ik such that the union of

the corresponding subsets equals C, i.e., C =
k⋃

j=1
Sij .

Given an instance of the SC problem, we construct a game with an arena consisting of
n+ k · (m+ 1) + 3 vertices. The arena G of the game is provided in Figure 4 and can be
seen as two sub-arenas reachable from the initial vertex v0. The game is such that there
is a solution to the SC problem if and only if Player 0 has a strategy from v0 in G which
is a solution to the SPS problem. The game is played between Player 0 with reachability
objective Ω0 and Player 1 with n + 1 reachability objectives. The objectives are defined
as follows: Ω0 = Reach({v2}), Ωi = Reach({ei} ∪ {Sj | ei ∈ Sj}) for i ∈ {1, 2, . . . , n} and
Ωn+1 = Reach({v2}). First, notice that every play in G1 is consistent with any strategy of
Player 0 and is lost by that player. It holds that for each ℓ ∈ {1, 2, . . . , n}, there is such a play
with payoff (p1, . . . , pn+1) such that pℓ = 1 and pj = 0 for j ̸= ℓ. These payoffs correspond to
the elements eℓ which are to be covered in the SC problem. A play in G2 visits v2 and then
a vertex c from which Player 0 selects a vertex S. Such a play is always won by Player 0
and its payoff is (p1, . . . , pn+1) such that pn+1 = 1 and pr = 1 if and only if the element er

belongs to the set S. It follows that the payoff of such a play corresponds to a set of elements
in the SC problem. It is easy to see that the following proposition holds.

▶ Proposition 8. There is a solution to an instance of the SC problem if and only if Player 0
has a strategy from v0 in the corresponding SP game that is a solution to the SPS problem.
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4.3 NEXPTIME-Hardness
Let us come back to regular game arenas and show the NEXPTIME-hardness result thanks
to the succinct variant of the SC problem presented below.

▶ Theorem 9. The SPS problem is NEXPTIME-hard for reachability and parity SP games.

Succinct Set Cover Problem. The Succinct Set Cover problem (SSC problem) is defined as
follows. We are given a Conjunctive Normal Form (CNF) formula ϕ = C1 ∧C2 ∧ · · · ∧Cp over
the variables X = {x1, x2, . . . , xm} made up of p clauses, each containing some disjunction
of literals of the variables in X. The set of valuations of the variables X which satisfy
ϕ is written JϕK. We are also given an integer k ∈ N (encoded in binary) and an other
CNF formula ψ = D1 ∧ D2 ∧ · · · ∧ Dq over the variables X ∪ Y with Y = {y1, y2, . . . , yn},
made up of q clauses. Given a valuation valY : Y → {0, 1} of the variables in Y , called
a partial valuation, we write ψ[valY ] the CNF formula obtained by replacing in ψ each
variable y ∈ Y by its valuation valY (y). We write Jψ[valY ]K the valuations of the remaining
variables X which satisfy ψ[valY ]. The SSC problem is to decide whether there exists a set
K =

{
valY | valY : Y → {0, 1}

}
of k valuations of the variables in Y such that the valuations

of the remaining variables X which satisfy the formulas ψ[valY ] include the valuations of X
which satisfy ϕ. Formally, we write this JϕK ⊆

⋃
valY ∈K

Jψ[valY ]K.

We can show that this corresponds to a set cover problem succinctly defined using CNF
formulas. The set JϕK of valuations of X which satisfy ϕ corresponds to the set of elements
we aim to cover. Parameter k is the number of sets that can be used to cover these elements.
Such a set is described by a formula ψ[valY ], given a partial valuation valY , and its elements
are the valuations of X in Jψ[valY ]K. This is illustrated in the following example.

▶ Example 10. Consider the CNF formula ϕ = (x1 ∨ ¬x2) ∧ (x2 ∨ x3) over the vari-
ables X = {x1, x2, x3}. The set of valuations of the variables which satisfy ϕ is
JϕK = {(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 0, 1)}. Each such valuation corresponds to one ele-
ment we aim to cover. Consider the CNF formula ψ = (y1 ∨ y2) ∧ (x1 ∨ y2) ∧ (x2 ∨ x3 ∨ y1)
over the variables X ∪ Y with Y = {y1, y2}. Given the partial valuation valY of the
variables in Y such that valY (y1) = 0 and valY (y2) = 1, we get the CNF formula
ψ[valY ] = (0 ∨ 1) ∧ (x1 ∨ 1) ∧ (x2 ∨ x3 ∨ 0). This formula describes the contents of the set
identified by the partial valuation (as a partial valuation yields a unique formula). The
valuations of the variables X which satisfy ψ[valY ] are the elements contained in the set. In
this case, these elements are Jψ[valY ]K = {(0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 1, 0), (1, 0, 1), (1, 1, 1)}.
We can see that this set contains the elements {(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 0, 1)} of JϕK.

It is easy to see that the SSC problem is in NEXPTIME. Its NEXPTIME-hardness can
be obtained by reduction from the Succinct Dominating Set problem, which is NEXPTIME-
complete for graphs succinctly encoded using CNF formulas [14].

▶ Theorem 11. The SSC problem is NEXPTIME-complete.

We now describe our reduction from the SSC problem to show the NEXPTIME-hardness
of solving the SPS problem for reachability SP games. The proof of this result for parity SP
games uses similar arguments, adapted to the prefix-independent nature of parity objectives.

Given an instance of the SSC problem, we construct a reachability SP game with arena
G consisting of a polynomial number of vertices in the number of clauses and variables in the
formulas ϕ and ψ and in the length of the binary encoding of the integer k. This reduction
is such that there is a solution to the SSC problem if and only if Player 0 has a strategy
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Figure 5 The arena G used in the reduction from the SSC problem.

from v0 in G which is a solution to the SPS problem. The arena G, provided in Figure 5,
can be viewed as three sub-arenas reachable from v0. Sub-arenas G1 and G2 are completely
controlled by Player 1. Plays entering these sub-arenas are therefore consistent with any
strategy of Player 0. Sub-arena G3 starts with a gadget Qk whose vertices belong to Player 1
and which provides exactly k different paths from v0 to v3.

Objectives. The game is played between Player 0 with reachability objective Ω0 and
Player 1 with t = 1 + 2 ·m+ p+ q reachability objectives. The payoff of a play therefore
consists in a single Boolean for objective Ω1, a vector of 2 · m Booleans for objectives
Ωx1 ,Ω¬x1 , . . . ,Ωxm ,Ω¬xm , a vector of p Booleans for objectives ΩC1 , . . . ,ΩCp and a vector
of q Booleans for objectives ΩD1 , . . . ,ΩDq

. The objectives are defined as follows.
The target set for objective Ω0 of Player 0 and objective Ω1 of Player 1 is {v2, v3}.
The target set for objective Ωxi

(resp. Ω¬xi
) with i ∈ {1, . . . ,m} is the set of vertices

labeled xi (resp. ¬xi) in G1, G2 and G3.
The target set for objective ΩCi

with i ∈ {1, . . . , p} is the set of vertices in G1 and G3
corresponding to the literals of X which make up the clause Ci in ϕ. In addition, vertex
ij in G2 belongs to the target set of objective ΩCℓ

for all ℓ ∈ {1, . . . , p} such that ℓ ̸= j.
The target set of objective ΩDi

with i ∈ {1, . . . , q} is the set of vertices in G3 corresponding
to the literals of X and Y which make up the clause Di in ψ. In addition, vertices v1
and v2 satisfy every objective ΩDi

with i ∈ {1, . . . , q}.

Payoff of Plays in G1. Plays in G1 do not satisfy objective Ω0 of Player 0 nor objective
Ω1 of Player 1. A play in G1 is of the form v0 v1 z1 � · · · � (zm)ω where zi is either xi or
¬xi. It follows that a play satisfies the objective Ωxi

or Ω¬xi
for each xi ∈ X. The vector of

payoffs for these objectives corresponds to a valuation of the variables in X, expressed as a
vector of 2 ·m Booleans. In addition, due to the way the objectives are defined, objective
ΩCi

is satisfied in a play if and only if clause Ci of ϕ is satisfied by the valuation this play
corresponds to. The objective ΩDi for i ∈ {1, . . . , q} is satisfied in every play in G1.

▶ Lemma 12. Plays in G1 are consistent with any strategy of Player 0. Their payoff are of
the form (0, val, sat(ϕ, val), 1, . . . , 1) where val is a valuation of the variables in X expressed
as a vector of payoffs for objectives Ωx1 to Ω¬xm

and sat(ϕ, val) is the vector of payoffs for
objectives ΩC1 to ΩCp corresponding to that valuation. All plays in G1 are lost by Player 0.
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Payoff of Plays in G2. Plays in G2 satisfy the objectives Ω0 of Player 0 and Ω1 of Player 1.
A play in G2 is of the form v0 v2 ij � z1 � · · · � (zm)ω where zℓ is either xℓ or ¬xℓ. It follows
that a play satisfies either the objective Ωx or Ω¬x for each x ∈ X which again corresponds
to a valuation of the variables in X. The objective ΩDi for i ∈ {1, . . . , q} is satisfied in every
play in G2. Compared to the plays in G1, the difference lies in the objectives corresponding
to clauses of ϕ which are satisfied. In any play in G2, a vertex ij with j ∈ {1, . . . , p} is first
visited, satisfying all the objectives ΩCℓ

with ℓ ∈ {1, . . . , p} and ℓ ≠ j. All but one objective
corresponding to the clauses of ϕ are therefore satisfied.

▶ Lemma 13. Plays in G2 are consistent with any strategy of Player 0. Their payoff are of
the form (1, val, vec, 1, . . . , 1) where val is a valuation of the variables in X expressed as a
vector of payoffs for objectives Ωx1 to Ω¬xm and vec is a vector of payoffs for objectives ΩC1

to ΩCp
in which all of them except one are satisfied. All plays in G2 are won by Player 0.

Plays in G2 are such that their payoff is strictly larger than the payoff of plays in G1 whose
valuation of X does not satisfy ϕ. It is easy to see that, when considering G1 and G2, the
only plays in G1 with a Pareto-optimal payoff are exactly those whose valuation satisfies all
clauses of ϕ. The following lemma therefore holds.

▶ Lemma 14. The set of payoffs of plays in G1 that are σ0-fixed Pareto-optimal when
considering G1 ∪G2 for any strategy σ0 of Player 0 is equal to the set of payoffs of plays in
G1 whose valuation of X satisfy ϕ.

Problematic Payoffs in G1. The plays described in the previous lemma correspond exactly
to the valuations of X which satisfy ϕ and therefore to the elements we aim to cover in the
SSC problem. They are σ0-fixed Pareto-optimal when considering G1 ∪G2 and are lost by
Player 0. All other σ0-fixed Pareto-optimal payoffs in G1 ∪G2 are only realized by plays in
G2 which are all won by Player 0. It follows that in order for Player 0 to find a strategy σ0
from v0 that is solution to the SPS problem, it must hold that those payoffs are not σ0-fixed
Pareto-optimal when considering G1 ∪G2 ∪G3. Otherwise, a play consistent with σ0 with a
σ0-fixed Pareto-optimal payoff is lost by Player 0. We call those payoffs problematic payoffs.

In order for Player 0 to find a strategy σ0 which is a solution to the SPS problem, this
strategy must be such that for each problematic payoff in G1, there is a play in G3 consistent
with σ0 and with a strictly larger payoff. Since the plays in G3 are all won by Player 0, this
would ensure that the strategy σ0 is a solution to the problem. This corresponds in the SSC
problem to selecting a series of sets in order to cover the valuations of X which satisfy ϕ.

Payoff of Plays in G3. Plays in G3 satisfy the objectives Ω0 of Player 0 and Ω1 of Player 1. A
play in G3 consistent with a strategy σ0 is of the form v0�· · ·�v3 r1, · · · , rn�z1�· · ·�(zm)ω

where ri is either yi or ¬yi and zi is either xi or ¬xi. Since only the vertices leading to y or
¬y for y ∈ Y belong to Player 0, it holds that v3 r1, · · · , rn is the only part of any play
in G3 which is directly influenced by σ0. That part of a play comes after a history from v0
to v3 of which there are k, provided by gadget Qk. By definition of a strategy, this can be
interpreted as Player 0 making a choice of valuation of the variables in Y after each of those
k histories. After this, the play satisfies either the objective Ωx or Ω¬x for each x ∈ X which
corresponds to a valuation of X. Due to the way the objectives are defined, the objective
ΩCi (resp. ΩDi) is satisfied if and only if clause Ci of ϕ (resp. Di of ψ) is satisfied by the
valuation of the variables in X (resp. X and Y ) the play corresponds to.
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Creating Strictly Larger Payoffs in G3. In order to create a play with a payoff r′ that
is strictly larger than a problematic payoff r, σ0 must choose a valuation of Y such that
there exists a valuation of the remaining variables X which together with this valuation of Y
satisfies ψ and ϕ (since in r every objective ΩCi for i ∈ {1, . . . , p} and ΩDi for i ∈ {1, . . . , q}
is satisfied). Since the plays in G3 also satisfy the objective Ω1 and plays in G1 do not, this
ensures that r < r′.

We finally briefly explain why the proposed reduction is correct. In case of a positive
instance of the SSC problem, by carefully selecting k valuations of Y , Player 0 ensures
that for each valuation valX satisfying ϕ, there is a play in G3 with a valuation valY such
that valX ∈ Jψ[valY ]K. Therefore, when considering the whole arena, no play in G1 is
Pareto-optimal and every Pareto-optimal play is won by Player 0. In case of a negative
instance, Player 0 is not able to do so and some play in G1 thus has a Pareto-optimal payoff
and is lost by Player 0.

5 Conclusion

We have introduced in this paper the class of two-player SP games and the SPS problem in
those games. We provided a reduction from SP games to a two-player zero-sum game called
the C-P game, which we used to obtain FPT results on solving this problem. We showed how
the arena and the generic objective of this C-P game can be adapted to specifically handle
reachability and parity SP games. This allowed us to prove that reachability (resp. parity)
SP games are in FPT when the number t of objectives of Player 1 (resp. when t and the
maximal priority according to each priority function in the game) is a parameter. We then
turned to the complexity class of the SPS problem and sketched the main arguments used
in our proof of its NEXPTIME-membership, which relied on showing that any solution to
the SPS problem in a reachability or parity SP game can be transformed into a solution
with an exponential memory. We showed the NP-completeness of the problem in the simple
setting of reachability SP games played on tree arenas. We then came back to regular game
arenas and established the NEXPTIME-hardness of the SPS problem in reachability and
parity SP games. This result relied on a reduction from the SSC problem which we proved
to be NEXPTIME-complete, a result of potential independent interest.

In future work, we want to study other ω-regular objectives as well as quantitative
objectives such as mean-payoff in the framework of SP games and the SPS problem. It would
also be interesting to study whether other works, such as rational synthesis, could benefit
from the approaches used in this paper.
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