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Abstract
For a family of graphs F , given a graph G and an integer k, the F-Deletion problem asks whether
we can delete at most k vertices from G to obtain a graph in the family F . The F-Deletion
problems for all non-trivial families F that satisfy the hereditary property on induced subgraphs are
known to be NP-hard by a result of Yannakakis (STOC’78). Ptolemaic graphs are the graphs that
satisfy the Ptolemy inequality, and they are the intersection of chordal graphs and distance-hereditary
graphs. Equivalently, they form the set of graphs that do not contain any chordless cycles or a gem
as an induced subgraph. (A gem is the graph on 5 vertices, where four vertices form an induced
path, and the fifth vertex is adjacent to all the vertices of this induced path.) The Ptolemaic
Deletion problem is the F-Deletion problem, where F is the family of Ptolemaic graphs. In this
paper we study Ptolemaic Deletion from the viewpoint of Kernelization Complexity, and obtain
a kernel with O(k6) vertices for the problem.
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1 Introduction

Graph modification problems are one of the central problems in Graph Theory, and vertex
deletion is one of the most natural graph modification operations. For a family of graphs F ,
F-Deletion takes as input an n-vertex graph G and an integer k, and the objective is to
determine whether we can remove a set of at most k vertices from G to obtain a graph in
F . Some of the classical examples of F-Deletion are the NP-hard problems like Vertex
Cover, Feedback Vertex Set, and Odd Cycle Transversal, corresponding to F
being the family of edgeless graphs, forests, and bipartite graphs, respectively. Unfortunately,
most of these F-Deletion problems are NP-hard by a result of [19, 22]. Thus, they have
received substantial attention in the algorithmic paradigms for coping with NP-hardness,
including Approximation Algorithms and Parameterized Complexity.
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1:2 A Polynomial Kernel for Deletion to Ptolemaic Graphs

In Parameterized Complexity each problem instance is accompanied by a parameter k.
One of the central notions in parameterized complexity is that of fixed parameter tractability
(FPT). A parameterized problem Π is FPT if given an instance (I, k) of Π, we can determine
whether (I, k) is a yes-instance of Π in time bounded by O(f(k)|I|O(1)), where f is some
computable function of k and |I| is the encoding length of I. One way to obtain an FPT
algorithm for a (decidable) parameterized problem algorithm is to exhibit a kernelization
algorithm, or kernel. A kernel for a problem Π is an algorithm that given an instance (I, k)
of Π, runs in polynomial time and outputs an equivalent instance (I ′, k′) of Π such that
|I ′|, k′ are both upper bounded by g(k) for some computable function g. The function g is
the size of the kernel, and if g is a polynomial function, then we say that the kernel is a
polynomial kernel. A kernel for a decidable problem implies that it admits an FPT algorithm,
but kernels are also very interesting in their own right, as they mathematically capture the
efficiency of polynomial time pre-processing routines.

A graph is a chordal graph if it does not contain any induced cycle on at least four vertices.
A graph G is distance hereditary if the distances between vertices in every connected induced
subgraph of G are the same as in the graph G. Ptolemaic graphs are the graphs that are
both chordal and distance hereditary. In this paper we study the F-Deletion problem
corresponding to the family of Ptolemaic graphs. Formally, we study the following problem.

Ptolemaic Deletion Parameter: k

Input: A graph G with n vertices and a non-negative integer k.
Question: Is there X ⊆ V (G) such that |X| ⩽ k and G \ X is a Ptolemaic graph?

We study the parameterized complexity of the Ptolemaic Deletion problem. Recently,
Ahn et al. [7] obtained a constant-factor approximation algorithm for the weighted version of
the problem. In their algorithm, for a given instance of Ptolemaic Deletion, they create
an equivalent (and approximation preserving) instance of a special Feedback Vertex
Set problem, which they call Feedback Vertex Set with Precedence Constraints.
With a minor modification to the well-known iterative-compression based FPT algorithm
for Feedback Vertex Set (see, for example [9]), we can obtain a cknO(1)-time algorithm
for Feedback Vertex Set with Precedence Constraints. The above together with
the reduction from Ptolemaic Deletion to the problem Feedback Vertex Set with
Precedence Constraints presented in [7] implies that Ptolemaic Deletion admits a
simple cknO(1)-time FPT algorithm. We remark that both Chordal Vertex Deletion [20]
and Distance Hereditary Deletion [13] are FPT, but their algorithms are more involved,
compared to the elegant FPT algorithm that Ptolemaic Deletion admits.

Due to the existence of a simple single-exponential FPT algorithm for Ptolemaic
Deletion, in this paper we focus on obtaining a polynomial kernel for the problem. In
particular, we obtain the following result.

▶ Theorem 1. Ptolemaic Deletion admits a kernel with O(k6) vertices.

We note that the kernelization complexity of Chordal Vertex Deletion was a well-
known open problem in the field of Parameterized Complexity. Jansen and Pilipczuk [16]
designed the first polynomial kernel for the above problem, and shortly afterwards, Agrawal
et al. [3] gave an improved kernel with O(k13) vertices. Kim and Kwon [17] showed that
Distance Hereditary Deletion admits a kernel of size O(k30 log5 k). We remark that the
kernel we obtain has only O(k6) vertices, which is much smaller than the kernels for both these
problems. We also believe that our techniques can prove to be useful in obtaining/improving
kernels for related classes of graphs.
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Our Methods. We now describe the techniques we use in obtaining our kernel, for the
given instance (G, k) of Ptolemaic Deletion. First, we compute an approximate solution
S, using the result of Ahn et al. [7]. We further construct a strengthened version of the
approximate solution called a redundant solution, D, introduced in [4]. Roughly speaking,
redundant solutions allow us to, in a sense, forget about small obstructions. This simplifies
many technical difficulties, while only maintaining a small set of vertices. We analyse the
set of maximal cliques and bound the size of any maximal clique in the Ptolemaic graph
G\(S ∪D) by O(k3) by exploiting structural properties of Ptolemaic graphs and the property
of “redundancy” ensured by the set D. To this end, we also use matchings in auxiliary
graphs, to determine which vertices are “safe” to delete.

After bounding the sizes of maximal cliques in G\(S∪D), we make use of a characterization
of Ptolemaic graphs based on their inter-clique digraph [21]. In particular, Uehara and
Uno [21] showed that a graph is Ptolemaic if and only if the underlying undirected graph of
the inter-clique digraph of the given graph is a forest. We now use the concept of independence
degree introduced in [3], and bound the independence degree of certain vertices, introducing
an annotated version of the problem, similar to [3]. We then design a procedure which
exploits the bounded independence degree and obtain a set R ⊆ D, so that the number
of leaves in the undirected inter-clique digraph of the Ptolemaic graph G \ (R ∪ S) can be
bounded by O(k3). Every vertex of this forest, which we call bags, corresponds to a set of
vertices which form a clique in G \ (R ∪ S). This, together with the fact that the size of
a maximal clique is bounded in G \ (R ∪ S), gives us a bound on the number of vertices
contained in degree-1 and degree ⩾ 3 bags in the (undirected) forest. Finally, we bound
the number of vertices in degree-2 bags. In order to do this, we examine the structure of
degree-2 paths (paths containing only degree 2 bags of the forest) in the inter-clique digraph.
We first give several structural reduction rules and then show that we can safely replace
“large” portions of the graph with smaller-sized graphs, if we maintain the size of a minimum
separator in an augmented graph. Combining everything together, we obtain our kernel for
Ptolemaic Deletion with O(k6) vertices.

Related Works. As Ptolemaic graphs are hereditary on induced subgraphs, by the seminal
result of Lewis and Yannakakis [22, 19] it follows that Ptolemaic Deletion is NP-complete.
As mentioned earlier, very recently Ahn et al. [7] obtained a constant factor approximation
algorithm for Ptolemaic Deletion. There have been several studies of the parameterized
complexity for deletion to subclasses of chordal graphs and distance hereditary graphs.
As mentioned previously, both Chordal Vertex Deletion [3, 20, 16] and Distance
Hereditary Deletion [13, 17] admit FPT algorithms and polynomial kernels. Interval
graphs are an important subclass of chordal graphs. Cao and Marx [8] showed that Interval
Vertex Deletion admits an FPT algorithm. Recently, Agrawal et al. [4] obtained the first
polynomial kernel for Interval Vertex Deletion with O(k1741) vertices. Block graphs
are a subclass of Ptolemaic graphs, and Block Vertex Deletion is known to admit an
FPT algorithm running in time 4knO(1) and a kernel with O(k4) vertices [2]. Split graphs
form a well-known subclass of chordal graphs, and Split Vertex Deletion is known
to admit a O(1.2738kkO(log k) + nO(1))-time FPT algorithm [10] and a kernel with O(k2)
vertices [1]. Another class of graphs which form a subclass of Ptolemaic graphs are 3-leaf
power graphs. The corresponding deletion problem, 3-Leaf Power Deletion was shown
to be FPT by [11, 5]. Recently, Ahn et al. [6] designed a polynomial kernel for 3-Leaf
Power Deletion.
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2 Preliminaries

Sets and Undirected Graphs. For k ∈ N, we use [k] as a shorthand for {1, 2, . . . , k}.
Given an undirected graph G, we let V (G) and E(G) denote its vertex-set and edge-set,
respectively. We let n denote the number of vertices in a graph G, whenever the context is
clear. The open neighborhood, or simply the neighborhood, of a vertex v ∈ V (G) is defined as
NG(v) = {w | {v, w} ∈ E(G)}. We extend the definition of neighborhood of a vertex to a
set of vertices as follows. Given a subset U ⊆ V (G), NG(U) =

⋃
u∈U NG(u) \ U . We omit

subscripts when the graph G is clear from the context. The induced subgraph G[U ] is the
graph with vertex-set U and edge set {{u, u′} | u, u′ ∈ U, and {u, u′} ∈ E(G)}. Moreover,
we define G \ U as the induced subgraph G[V (G) \ U ].

We define the distance d(u, v) between two vertices u, v ∈ V (G) as the length of the
shortest path between them.

For a graph G and vertices s, t ∈ V (G), where s ̸= t, an s-t separator is a subset U ⊆ V (G)
such that G \ U has no s-t path. It is well known that a minimum sized s-t separator (also
called a minimum s-t separator) can be found in polynomial time using, for example, an
algorithm for maximum flow, see for instance Chapter 7 of [18].

A gem is a graph on five vertices, with one vertex adjacent to each of the remaining four
vertices which form an induced path.

A graph G is chordal if it does not contain a chordless cycle as an induced subgraph.
G is distance hereditary if for every connected induced subgraph H of G and two distinct
vertices u, v ∈ V (H), the length of the shortest path between u and v in H is equal to the
length of the shortest path between u and v in G.

Ptolemaic Graphs. A graph G is a Ptolemaic graph if for every four vertices u, v, w, x in
the same connected component, d(u, v)d(w, x) + d(u, x)d(v, w) ⩾ d(u, w)d(v, x).

▶ Proposition 2 (Theorems 2.1,3.2 [15]). Given a graph G, the following statements are
equivalent: i) G is Ptolemaic, ii) G is both chordal and distance hereditary, and iii) G does
not contain a gem or a chordless cycle as an induced subgraph.

We call gems and chordless cycles obstructions and say that G contains an obstruction, if it
has an obstruction as an induced subgraph.

Inter-Clique Digraphs. For a graph G, let C(G) be the set that contains i) all maximal
cliques in G, and ii) non-empty intersections of (any number of) distinct maximal cliques
in G. Consider the directed graph DG which has a vertex vC for each C ∈ C(G). For every
X, Y ∈ C(G), where i) X ⊂ Y , and ii) there is no W ∈ C(G) such that X ⊂ W and W ⊂ Y ;
we add an arc from vY directed towards vX . For a directed graph T , Und(T ) denotes the
underlying undirected graph (obtained by removing the directions associated with arcs in T ).
We make use of a characterization of Ptolemaic Graphs based on Inter-Clique Digraphs by
Uehara and Uno[21].

▶ Proposition 3 (Theorem 5,8 [21]). A graph G is Ptolemaic if and only if Und(DG) is a
forest. Moreover, the inter-clique digraph of a Ptolemaic graph can be computed in linear
time.

For a Ptolemaic graph G, let TG denote its inter-clique digraph. We refer to the vertices
in TG (and Und(TG)) as bags, to avoid confusions. A leaf of TG is a leaf in Und(TG). For a
bag B ∈ TG, denote the associated set of vertices in G in the bag B by V (B).
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In Weighted Ptolemaic Deletion, we are given a graph G and a weight function
w : V → R+ ∪ {0}, and the objective is to compute a minimum weight subset X ⊆ V (G)
such that G \ X is a Ptolemaic graph.

For a graph G, we say that a set X ⊆ V (G) is a solution for G if G \ X is a Ptolemaic
graph. By opt(G), we denote the size of a minimum sized solution for G. Moreover, if we are
given a weight function w : V (G) → R+ ∪ {0}, then opt(G) denotes the weight of a minimum
weight solution for G.1 The following result is known regarding Weighted Ptolemaic
Deletion.

▶ Proposition 4 (Theorem 1.1 [7]). There is a constant c ∈ N and a polynomial time algorithm
Approx for Weighted Ptolemaic Deletion, which given a graph G and a weight function
w : V (G) → R+ ∪ {0}, outputs a solution for G of weight at most c · opt(G).

2.1 Computing a Redundant Solution
Our kernelization algorithm will also use a “strengthened” approximate solution, which will
be slightly larger in size than the solution that we obtain using the known constant-factor
approximation algorithm (Proposition 4). The type of strengthening of an approximate
solution that we use will be the same as the notion of redundant solution that was introduced
in the context of Interval Vertex Deletion [4]. Intuitively speaking, a redundant solution
allows us to “forget” about “small” obstructions in some of our reduction rules. This is
achieved with the help of an implicit family of subsets of V (G) which has a guarantee that
any solution for G of size at most k is a hitting set for this family. We will now formalise the
above notions.

Consider a graph G. For a family W ⊆ 2V (G), a subset S ⊆ V (G) hits W if for all
W ∈ W, we have S ∩ W ̸= ∅. We say that W ⊆ 2V (G) is t-necessary if every solution for G

of size at most t hits W. Moreover, we say that an obstruction O is covered by W if there
exists W ∈ W, such that W ⊆ V (O). Now, we are ready to formally define the notion of
redundant solution (for our context).

▶ Definition 5. For a graph G, a family W ⊆ 2V (G) and t ∈ N, a subset M ⊆ V (G) is
t-redundant with respect to W if for any obstruction O that is not covered by W, it holds
that |M ∩ V (O)| > t.

Let (G, k) be an instance of Ptolemaic Deletion. We will next focus on computing a
t-redundant solution for G, for an appropriately defined W (and t).

▶ Lemma 6. [♠] 2 In polynomial time we can either correctly conclude that (G, k) is a
no-instance, or compute a (k + 1)-necessary family W ⊆ 2V (G) and a set M ⊆ V (G), such
that W ⊆ 2M , M is a solution for G that is 4-redundant with respect to W and |M | ∈ O(k5).

The utility of a redundant solution is captured in the following lemma.

▶ Lemma 7. [♠] Consider an instance (G, k) of Ptolemaic Deletion, and D be a 4-
redundant solution for G with respect to a (k + 1)-necessary family W, returned by Lemma 6.
For v ∈ V (G) \ D, let X be any solution of size at most k (if it exists) for G \ {v}. Then X

hits all obstructions of size at most 5 in G. In other words, G \ X does not contain a gem or
a chordless cycle of length less than 6.

1 For a subset S ⊆ V (G), w(S) =
∑

s∈S
w(S).

2 Proofs of results marked with ♠ can be found in the full version of the paper.
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3 Kernel for Ptolemaic Vertex Deletion

The objective of this section is to prove Theorem 1. Let (G, k) be an instance of Ptole-
maic Deletion. Our algorithm begins by computing a c-approximate solution S, for the
Weighted Ptolemaic Deletion instance (G, w∗

n+1,∅) using Approx (see Proposition 4).3
If |S| > ck, we conclude that (G, k) is a no-instance, and return a trivial no-instance of
the problem as a kernel. We now assume |S| ⩽ ck. Next, we use Lemma 6 to compute
(in polynomial time) a (k + 1)-necessary family W and a 4-redundant (with respect to W)
solution D for G of size bounded by O(k5). Note that we have W ⊆ 2D, from the lemma.

Firstly, we bound the size of a maximal clique in G \ (S ∪ D) using the structure of
the connected components upon removal of a maximal clique in a Ptolemaic graph and the
properties guaranteed by the 4-redundant solution D. Intuitively, for each maximal clique
C in G \ S, we do the following. Firstly we mark a few vertices in C which are neighbours
of some vertices in S. Secondly, we create auxiliary graphs, with the guarantee that: i) if
the maximum matching in these auxiliary graphs is “large”, we find a vertex v that can be
safely deleted to obtain the instance (G \ {v}, k − 1), and ii) otherwise, we will be able to
use maximum matchings in these auxiliary graphs to mark at most O(k3) many vertices in
C. The marked neighbours of S in C and the vertices marked using the help of auxiliary
graphs will help us capture different behaviours of C in an obstruction. Finally we argue
that deleting unmarked vertices in C \ D is safe. Formally, we prove the following lemma in
Section 4.

▶ Lemma 8. In polynomial time we can either conclude that (G, k) is a no-instance, or
obtain an equivalent instance (G′, k′), such that k′ ⩽ k, G′ is an induced subgraph of G, such
that S ∪ D ⊆ V (G′), and each (maximal) clique in G′ \ (S ∪ D) has at most O(k3) vertices.

If at any point in our algorithm, we are able to conclude that the given instance is a
no-instance, then we output some trivial no-instance as a kernel with O(1) vertices. We use
Lemma 8 for the given instance, and without loss of generality assume that we obtained an
equivalent instance of Ptolemaic Deletion, which satisfies all the conditions guaranteed by
the lemma. For the sake of notational simplicity, we use (G, k) as the instance of Ptolemaic
Deletion that we currently have, i.e., the one returned by the lemma.

Next, we use the fact that the undirected version of the inter-clique digraph of a Ptolemaic
graph is an undirected forest. We construct a suitable Ptolemaic graph G \ (S ∪ R) for a
carefully constructed set R ⊆ D and reduce the number of leaves in its undirected inter-clique
digraph. Towards this, we use the idea of bounding the independence degree of vertices from
[3]. We introduce two sets of pairs of vertices EM and EI , which will stand for mandatory
and irrelevant pairs of vertices. Moreover, we call an edge {u, v} ∈ E(G) mandatory if
{u, v} ∈ EM and irrelevant if {u, v} ∈ EI . An edge is relevant if it is not irrelevant.

For a graph H and sets EM , EI ⊆ V (H) × V (H), for a vertex v ∈ V (H), by NH
rel(v) we

denote the set of vertices in the neighbourhood of v in H which are adjacent to v using
an edge in E(H) \ EI . We omit the superscript H from the above notation, whenever the
context is clear.

▶ Definition 9. Given a set EI ⊆ V (G) × V (G) and a vertex v ∈ V (G), the independence
degree of v in G, denoted by dG

I (v), is the size of a maximum independent set in the graph
G[Nrel(v)].

3 The choice of n + 1 is arbitrary.
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We remark that we omit the superscript in dG
I (v) when the graph is clear from the context.

Next, we consider an annotated version of Ptolemaic Deletion similar to [3].

Augmented Ptolemaic Deletion Parameter: k

Input: An undirected graph G, sets EM , EI ⊆ V (G) × V (G) and a non-negative integer
k, such that any X ⊆ V (G) which hits all chordless cycles in G which contain no edge
from EI , hits all chordless cycles in G.
Question: Does there exist a subset X ′ ⊆ V (G) (called a solution for (G, k, EM , EI)),
such that (i) |X ′| ⩽ k (ii) For each {u, v} ∈ EM , X ′ ∩ {u, v} ̸= ∅ and (iii) G \ X ′ is a
Ptolemaic graph?

We next obtain an instance of Augmented Ptolemaic Deletion, where the number
of leaves in the inter-clique digraph of the Ptolemaic graph obtained after removing S and a
suitable subset of D is bounded by O(k3).

▶ Lemma 10. [♠] In polynomial time, either we can conclude that (G, k) is a no-instance,
or output an instance (G′, k′, E′

M , E′
I) of Augmented Ptolemaic Deletion, a set R ⊆ D

and the inter-clique digraph TG′\(R∪S) of G′ \ (R ∪ S) so that the following hold:
1. k′ ⩽ k, S, D ⊆ V (G′), and G′ is an induced subgraph of G.
2. for each {u, v} ∈ E′

M , either u ∈ S or v ∈ S.
3. Each chordless cycle in G′ which contains a vertex from R contains an edge from E′

I .
4. (G, k) is a yes-instance of Ptolemaic Deletion if and only if (G′, k′, E′

M , E′
I) is a

yes-instance of Augmented Ptolemaic Deletion.
5. The neighbourhood of every vertex r ∈ R in G \ (R ∪ S) is a clique.
6. The number of leaves in TG′\(R∪S) is bounded by O(k3).
7. The independence degree (in G′) of every vertex s ∈ S is bounded by O(k2) and |E′

M | ∈
O(k2).

We use Lemma 10, and assume that we have an instance (G′, k′, E′
M , E′

I) of Augmented
Ptolemaic Deletion and a set R ⊆ D, satisfying the properties guaranteed by the
lemma. Using the next lemma we obtain an instance of Augmented Ptolemaic Deletion
equivalent to that of (G′, k′, E′

M , E′
I), with O(k6) vertices.

▶ Lemma 11. [♠] For the Ptolemaic Deletion instance (G, k), let (G′, k′, E′
M , E′

I) be
the instance of Augmented Ptolemaic Deletion and R ⊆ D be the set returned by
Lemma 10.4 In polynomial time we either conclude that (G′, k′, E′

M , E′
I) is a no-instance or

output an equivalent instance (G̃, k̃, ẼM , ẼI) of Augmented Ptolemaic Deletion, such
that k̃ ⩽ k′, |V (G̃)| ∈ O(k6), and |ẼM | ⩽ |E′

M |.

To prove the above lemma, we reduce the number of vertices in 2-degree bags in the
undirected inter-clique digraph of G′ \ (R ∪ S). We do this by exploiting the structure of
2-degree paths, which are paths in TG′\(R∪S) where each bag is of degree 2. On a high level,
we mark many bags in TG′\(R∪S) so that each 2-degree path splits into several maximal
unmarked sub-paths. We ensure that the vertices of G′ in bags of these subpaths do not
“interact” with R ∪ S, that is, they do not have any neighbours in R ∪ S, using several
reduction rules. We then show that we can reduce the number of vertices in these bags, by
designing a reduction rule which preserves the size of a minimum separator in an augmented
graph. Since we already have a bound on the number of leaves from Lemma 11, we get a

4 We assume that in G, each maximal clique has at most O(k3) vertices, using Lemma 8.

IPEC 2021



1:8 A Polynomial Kernel for Deletion to Ptolemaic Graphs

bound on the number of degree ⩾ 3 bags as well. Thus, proving a bound on the number of
vertices present in bags of degree 2 gives us a bound on the total number of vertices in the
inter-clique digraph of G′ \ (R ∪ S), since we already have a bound on clique size (and hence,
on the number of vertices in any bag) from Lemma 8. Accounting for each step we obtain an
Augmented Ptolemaic Deletion instance with O(k6) vertices.

Equipped with Lemmas 8 to 11, we are now ready to prove Theorem 1.

Proof of Theorem 1. Consider an instance (Ĝ, k̂) of Ptolemaic Deletion. If Lemma 8
returns that (Ĝ, k̂) is a no-instance of Ptolemaic Deletion, then we return some trivial
no-instance with O(1) vertices as a kernel for Ptolemaic Deletion. Otherwise, we have
an equivalent instance (G, k), where each (maximal) clique in G \ (S ∪ D) has at most O(k3)
vertices. Next we apply Lemma 10 for the instance (G, k). Again, if the lemma returns
that (G, k) is a no-instance, we return a trivial O(1)-vertex kernel. Otherwise, we have an
Augmented Ptolemaic Deletion instance (G′, k′, E′

M , E′
I) and the set R ⊆ D, returned

by the lemma. We next apply Lemma 11. Firstly consider the case when the lemma returns
that (G′, k′, E′

M , E′
I) is a no-instance of Augmented Ptolemaic Deletion. Then together

with Lemma 10, we have that (G, k), and hence, (Ĝ, k̂) is a no-instance of Ptolemaic
Deletion. Now consider the case when Lemma 11 returns an instance (G̃, k̃, ẼM , ẼI) of
Augmented Ptolemaic Deletion, where |V (G̃)| ∈ O(k6). From Lemmas 8 to 11, we
obtain that (Ĝ, k̂) is a yes-instance of Ptolemaic Deletion if and only if (G̃, k̃, ẼM , ẼI)
is a yes-instance of Augmented Ptolemaic Deletion.

We next obtain an instance (G′, k′) of Ptolemaic Deletion such that |V (G′)| ∈ O(k6)
and (G′, k′) is a yes-instance of Ptolemaic Deletion if and only if (G̃, k̃, ẼM , ẼI) is a
yes-instance of Augmented Ptolemaic Deletion. Initialize G′ = G̃ and set k′ = k̃. For
each {u, v} ∈ ẼM , add k + 2 vertex disjoint paths between u and v using 2 new vertices for
each path. As |ẼM | ⩽ |E′

M | ∈ O(k2), we obtain that |V (G′)| ∈ O(k6). Notice that no gem
in G′ can contain a vertex from V (G′) \ V (G̃). For every {u, v} ∈ ẼM and any solution X

to the Ptolemaic Deletion instance (G′, k′) , we must have either u ∈ X or v ∈ X, for
if not, then G′ \ X must contains a chordless cycle through u, v by construction. It follows
that (G′, k′) is a yes-instance of Ptolemaic Deletion if and only if (G̃, k̃, ẼM , ẼI) is
a yes-instance of Augmented Ptolemaic Deletion. Hence, it must be the case that
(G′, k′) and (Ĝ, k̂) are equivalent instances of Ptolemaic Deletion, where |V (G′)| ∈ O(k6)
and k′ ⩽ k. This concludes the proof. ◀

Since the proof of each of the three main lemmas is quite involved, in this short version
we defer the proofs of Lemma 10 and Lemma 11 to the full version in the interest of space.
At the same time we try to present all the results towards proving Lemma 8, to the extent
possible.

4 Bounding Sizes of Maximal Cliques in G \ (S ∪ D)

The objective of this section is to prove Lemma 8. As S is a solution for G, G \ S does not
have any chordless cycles. We next state a well-known result regarding enumerating maximal
cliques in chordal graphs.

▶ Proposition 12 (see, for example, Theorem 4.8 [14]). In polynomial time we can compute
the set of all maximal cliques in a given chordal graph.

From the above proposition, the number of distinct cliques and the time required to
enumerate them, are both bounded by nO(1). Thus, for the remainder of this section, we
work with a fixed maximal clique C in G \ S, and our objective will be to either conclude
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that the number of vertices in C \ D is bounded by O(k3), or find a vertex in C which we
can safely delete from G. To achieve this, we will design some marking schemes, and show
that if there are unmarked vertices, then we can safely delete them. We start with a useful
lemma regarding the structure of connected components upon removal of a maximal clique
from a Ptolemaic graph.

▶ Lemma 13. Let Ĝ be a Ptolemaic graph and C be a maximal clique in Ĝ. Let A be a
connected component of Ĝ \ C. Then for every vertex v ∈ V (A) we must have N

Ĝ
(v) ∩ C = ∅

or N
Ĝ

(v) ∩ C = N
Ĝ

(V (A)) ∩ C.

Proof. Consider a connected component A of Ĝ\C. Towards a contradiction suppose that the
result is not true, and let u, v ∈ V (A) be two distinct vertices such that N

Ĝ
(u)∩C, N

Ĝ
(v)∩C ̸=

∅ and N
Ĝ

(u) ∩ C ̸= N
Ĝ

(v) ∩ C. Furthermore, let u and v be a pair of vertices satisfying
the above property that have shortest possible distance between them in A. Note that
C ̸⊆ N

Ĝ
(u) and C ̸⊆ N

Ĝ
(v), as C is a maximal clique in Ĝ.

Suppose that {u, v} ∈ E(Ĝ). If there exist vertices a, b ∈ V (C) such that a ∈ N
Ĝ

(u) \
N

Ĝ
(v), b ∈ N

Ĝ
(v)\N

Ĝ
(u) then Ĝ[{u, v, a, b}] is a chordless cycle in Ĝ, which is a contradiction,

as Ĝ is Ptolemaic graph. Therefore, either N
Ĝ

(u)∩C ⊆ N
Ĝ

(v)∩C or N
Ĝ

(v)∩C ⊆ N
Ĝ

(u)∩C.
Assume without loss of generality that N

Ĝ
(u) ∩ C ⊆ N

Ĝ
(v) ∩ C. This together with the

choice of u and v implies that there are vertices a ∈ (N
Ĝ

(v) ∩ C) \ N
Ĝ

(u), b ∈ N
Ĝ

(u) ∩ C and
x ∈ C \ (N

Ĝ
(u) ∪ N

Ĝ
(v)). But then, Ĝ[{a, b, x, u, v}] is a gem in Ĝ, which is a contradiction.

Now suppose {u, v} /∈ E(Ĝ) and consider the shortest path P between u, v in A. Note
that P has at least one more vertex apart from u and v, as {u, v} /∈ E(Ĝ). Firstly consider
the case when there are vertices a ∈ (N

Ĝ
(u) ∩ C) \ N

Ĝ
(v), b ∈ (N

Ĝ
(v) ∩ C) \ N

Ĝ
(u). Note

that by the choice of u and v (of them being at shortest distance in A satisfying the assumed
properties), no internal vertex of P can be adjacent to a or b. But then P along with the edges
{a, b}, {a, u} and {v, b} forms a chordless cycle in Ĝ, which is a contradiction. We now consider
the case when there are no such a and b, as assumed previously. This implies that either
N

Ĝ
(u) ∩ C ⊆ N

Ĝ
(v) ∩ C or N

Ĝ
(v) ∩ C ⊆ N

Ĝ
(u) ∩ C. Suppose that N

Ĝ
(u) ∩ C ⊆ N

Ĝ
(v) ∩ C

(the other case is symmetric). Now consider a vertex a ∈ N
Ĝ

(v) ∩ N
Ĝ

(u) ∩ C. If there is
an internal vertex of P that is not adjacent to a, then we conclude that Ĝ[V (P ) ∪ {a}]
contains a chordless cycle. If every internal vertex of P is adjacent to a, P must have exactly
1 vertex, say w, apart from {u, v}, since otherwise we would obtain a gem obstruction in
Ĝ[V (P ) ∪ {a}]. Since N

Ĝ
(u) ∩ C ̸= N

Ĝ
(v) ∩ C we must have either N

Ĝ
(w) ∩ C ≠ N

Ĝ
(u) ∩ C

or N
Ĝ

(w) ∩ C ̸= N
Ĝ

(v) ∩ C. In either case, since {u, w}, {w, v} ∈ E(Ĝ), this is impossible
from the analysis in the preceeding paragraph of the case when {u, v} ∈ E(Ĝ). It follows
that such an a cannot exist, and therefore N

Ĝ
(v) ∩ N

Ĝ
(u) ∩ C = ∅. Together, we must have

either N
Ĝ

(v) ∩ C = ∅ or N
Ĝ

(u) ∩ C = ∅, a contradiction. ◀

Recall that we computed D, a 4-redundant solution with respect to W. This will allow
us to only focus on chordless cycles of length at least 6 (see Lemma 7). A chordless cycle can
contain at most 2 vertices from C, as C is a (maximal) clique. If C has many vertices, we
would like to argue that, we can find a vertex c ∈ C \ D to delete from G. Roughly speaking,
to achieve this, for every pair of vertices u, v, that are neighbours of c in some chordless
cycle, we would like to ensure that, after removing some solution of size at most k, there
is either (i) at least one marked common neighbour c′ ∈ C of u and v or (ii) two distinct
marked vertices c1, c2 ∈ C, such that {u, c1}, {v, c2} ∈ E(G). We show, through a simple
observation, that preserving such marked vertices is enough to safely delete the vertex c from
the input instance (G, k) to obtain the instance (G \ {c}, k).

IPEC 2021
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▶ Observation 14. Consider a graph Ĝ and a spanning cycle K of Ĝ. Then the graph Ĝ

contains an obstruction if one of the following holds: i) |V (Ĝ)| ⩾ 5 and there is v ∈ V (K),
such that for each {x, y} ∈ E(Ĝ) \ E(K), v ∈ {x, y}, or ii) |V (Ĝ)| ⩾ 7 and there is
{u, v} ∈ E(K), such that for each {x, y} ∈ E(Ĝ) \ E(K), we have {u, v} ∩ {x, y} ≠ ∅.

Proof. To prove (i), notice that if v is not adjacent (in Ĝ) to at least one vertex in V (K)\{v},
then Ĝ must contain a chordless cycle. Otherwise, since K has at least 5 vertices, any four
consecutive vertices a, b, c, d on K, all different from v, together with v give us a gem.

To prove (ii), let us consider five consecutive vertices of the cycle K starting from u, v,
taken in order, say u, v, a, b, c. We claim that apart from its two neighbours u and a in K,
the vertex v can be adjacent to only the vertices b and c in Ĝ. Suppose this is not the case.
Then we get a cycle K ′ with V (K ′) ⊆ V (K) in Ĝ of length at least 5 which does not include
u. Applying part (i) with the graph Ĝ[V (K ′)] then gives an obstruction in Ĝ.

Therefore v can only be adjacent to u, a, b, c in K. Consider the case when v is adjacent
to b but not c. Let K ′ be the cycle in Ĝ, obtained from K by deleting a and adding the
edge {v, b}. Notice that Ĝ[V (K ′)] and the spanning cycle K ′ of Ĝ[V (K ′)], satisfy part (i) of
the observation. Thus, Ĝ[V (K ′)] (and hence Ĝ) must contain an obstruction. For the case
when v is adjacent to c, we can obtain an obstruction in Ĝ by using arguments similar to
our previous case. Finally, if v is not adjacent to both b and c, then Ĝ and K satisfy the
conditions of (i). ◀

Now we define the notions of replacement vertices.

▶ Definition 15. Given a vertex c ∈ C, a set X ⊆ V (G) \ {c} of size at most k, and a
chordless cycle K of length at least 6 in G \ X containing c, a vertex c′ ∈ C \ (X ∪ V (K)) is
a replacement for c in K, if c′ is adjacent to both the neighbours of c in K.

▶ Definition 16. Given a vertex c ∈ C, a set X ⊆ V (G) \ {c} of size at most k, and a
chordless cycle K of length at least 6 in G \ X containing c, a pair of distinct vertices
c1, c2 ∈ C \ (X ∪ V (K)), is a replacement for c in K, if {u, c1}, {v, c2} ∈ E(G), where u, v

are the neighbours of c in K.

The purpose of this notion of replacements for a vertex is captured in the following lemma
whose proof follows from Observation 14.

▶ Lemma 17. Consider any vertex c ∈ C. Let X ⊆ V (G) be a set of vertices such that c /∈ X.
Suppose that G \ X contains a chordless cycle K of length at least 6 which includes the vertex
c. Now suppose that there is either a single replacement vertex c′ or a pair of replacement
vertices c1, c2 for c in K, such that c′ ∈ C \ (X ∪ V (K)) and c1, c2 ∈ C \ (X ∪ V (K)), as the
case may be. Then G \ (X ∪ {c}) must contain an obstruction.

Proof. Let u and v be the neighbours of c in K. If we have a single replacement vertex c′

for c in K, then consider the cycle K ′ obtained by replacing the path ucv by the path uc′v

in K. The cycle K ′ is clearly of length at least 6. Applying part (i) of Observation 14 to
the graph G[V (K ′)], we must have an obstruction in G \ (X ∪ {c}). Likewise, if we have a
pair of distinct vertices c1, c2 ∈ C as a replacement for c in K, then consider the cycle K ′

obtained by replacing the path ucv by the path uc1c2v. The cycle K ′ is of length at least 7,
therefore by item (ii) of Observation 14 applied to the graph G[V (K ′)], G \ (X ∪ {c}) must
contain an obstruction. ◀

Now suppose that we mark a certain number of vertices in C. Consider any unmarked
vertex c ∈ C \ D, and let X be a solution of size at most k for G \ {c}. If X is not a
solution for G, then G \ X must contain an obstruction that contains the vertex c. This
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Figure 1 Bounding the size of a maximal clique C. The figure shows the components of
G \ (S ∪ C) for a particular instance. For every component A and vertex vA ∈ A, N(vA) ∩ C = ∅ or
N(vA) ∩ C = N(A) ∩ C.

obstruction must be a chordless cycle K of length at least 6 since c /∈ D. If we design our
marking scheme in such a way that for every such obstruction K, there is either (i) a marked
replacement vertex c′ such that c′ /∈ (X ∪ V (K)) or (ii) a pair of distinct marked replacement
vertices c1, c2 for c in K such that c1, c2 /∈ (X ∪ V (K)) as per the definitions above, then
by Lemma 17, G \ (X ∪ {c}) must contain an obstruction - a contradiction since X was a
solution for G \ {c}. It follows that X must be a solution for G, and therefore the instances
(G, k) and (G \ {c}, k) are equivalent. Thus, given that we design our marking scheme to
satisfy the above, we may delete an unmarked vertex from the input instance G without
reducing the parameter.

We now describe our marking scheme and formalize the ideas from above, by looking
at where the neighbours of an unmarked vertex in a chordless cycle can potentially lie.
Whenever we say - mark any ℓ vertices satisfying a property P , if there are less than ℓ vertices
satisfying P , then we mark all vertices which satisfy P . We start by designing our marking
scheme to handle the case when the neighbours of an unmarked vertex in a chordless cycle
lie in S.

▶ Marking Scheme 1. For every pair of (not necessarily distinct) vertices s1, s2 ∈ S, mark
any k + 2 vertices in N(s1) ∩ N(s2) ∩ C.

To consider the cases when the neighbours of a potential unmarked vertex lie in connected
components of G \ (S ∪ C), we make use of two auxiliary bipartite graphs H1

s and H2
s ,

corresponding to each vertex s in S. Let us denote the set of connected components of
G \ (S ∪ C) by A . The vertex set of H1

s is V 1
s ∪ V2 where V 1

s = {c ∈ C : (s, c) /∈ E(G)} and
V2 = {vA : A ∈ A}. We add an edge from a vertex c ∈ V 1

s and a vertex vA ∈ V2 whenever
both c and s have (possibly different) neighbours in A. The vertex set of H2

s is V 2
s ∪ V2,

where V 2
s = {c ∈ C : (s, c) ∈ E(G)}. We add an edge from a vertex c ∈ V 2

s and a vertex
vA ∈ V2 whenever there is an obstruction in the subgraph induced on {s, c} ∪ V (A). We
have the following observation that follows from the above description and Proposition 3.5

▶ Observation 18. For s ∈ S, H1
s and H2

s can be constructed in polynomial time.

5 We note that there are other well-known polynomial time recognition algorithm for Ptolemaic graphs,
that can also be used to infer that H2

s , for s ∈ S, can be constructed in polynomial time.
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Roughly speaking, we next show that, for s ∈ S and two edges of H1
s , incident to different

vertices in V2, we can construct an obstruction in G.

▶ Lemma 19. Consider s ∈ S and edges {c1, vA1}, {c2, vA2} ∈ E(H1
s ), where c1, c2 ∈ V 1

s

and A1, A2 ∈ A, where A1 ̸= A2. Then, G[V (A1) ∪ V (A2) ∪ {s, c1, c2}] has a chordless cycle.

Proof. By the construction of V 1
s , {s, c1}, {s, c2} /∈ E(G). For i, j ∈ {1, 2}, let Pij (if it

exists) be a shortest path between s and ci such that every internal vertex is from Aj . By
the construction of H1

s , P11 and P22 must necessarily exist. Notice that if at least one of c1
or c2, say c1, is a neighbour of both vA1 and vA2 in H1

s , then G[{s, c1} ∪ V (P11) ∪ V (P12)]
is a chordless cycle. Otherwise, the vertices s, c1, c2 together with the paths P11, P22 and
the edge {c1, c2} constitute a chordless cycle G[{s, c1, c2} ∪ V (P11) ∪ V (P22)] in G[V (A1) ∪
V (A2) ∪ {s, c1, c2}]. ◀

For s ∈ S, we now attempt to find (k + 2)-sized matchings in the graphs H1
s and H2

s .
Note that the existence of a (k + 2)-sized matching in Hs1 would imply that (at least) two
matching edges “remain”, even after we delete at most k vertices from G. The above together
with Lemma 19 will allow us to conclude that s must belong to every solution for G of size
at most k. The definition of H2

s implies that even a single “remaining” matching edge in H2
s

would give us an obstruction, if s is not included in the solution.

▶ Lemma 20. Consider s ∈ S, and let M1
s and M2

s be maximum matchings in H1
s and H2

s ,
respectively. If either |M1

s | ⩾ k + 2 or |M2
s | ⩾ k + 2, then any solution for G of size at most

k must include the vertex s.

Proof. Towards a contradiction, suppose that X is a solution for G of size at most k which does
not include the vertex s. Consider the case when |M1

s | ⩾ k+2. It follows that there are distinct
components A1, A2 ∈ A, and vertices c1, c2 ∈ V 1

s , so that (i) X∩(V (A1)∪V (A2)∪{c1, c2}) = ∅
and (ii) {c1, vA1}, {c2, vA2} ∈ E(H1

s ) hold. But then Lemma 19 implies that G \ X contains
an obstruction, which is a contradiction. Next consider the case when |M2

s | ⩾ k +2. Again as
X is of size at most k, we can obtain that there is a component A ∈ A and a vertex c ∈ V 2

s

so that (i) X ∩ (V (A) ∪ {c}) = ∅ and (ii) {c, vA} ∈ E(H2
s ) hold. By the definition of H2

s , this
implies that G \ X contains an obstruction in the subgraph induced on V (A) ∪ {s, c}, which
is a contradiction. ◀

Using the above lemma, we devise our first reduction rule.

▶ Reduction Rule 1. If there is s ∈ S, such that |M1
s | ⩾ k + 2 or |M2

s | ⩾ k + 2, then return
(G \ {s}, k − 1).

The correctness of the above reduction rule follows from Lemma 20, and the polynomial
time applicability of it follows from the fact that maximum matching in a graph can be
computed in polynomial time (see, for example [12]). Hereafter we assume that Reduction
rule 1 is not applicable, and we proceed with our next marking scheme.

▶ Marking Scheme 2. For each s ∈ S, let M1
s and M2

s be maximum matchings in H1
s H2

s ,
respectively. Then we do the following: i) for each i ∈ {1, 2}, we mark all the vertices in
V (M i

s)∩C, ii) for each A ∈ A, where vA ∈ V (M1
s ), mark any k+2 vertices in N(V (A))∩V 1

s ,
and iii) for each A ∈ A, where vA ∈ V (M2

s ), mark any k + 2 vertices in N(V (A)) ∩ V 2
s .

The next reduction rule deletes unmarked vertices in C.

▶ Reduction Rule 2. If there is c ∈ C \ D that is not marked by Marking Scheme 1 or 2,
then return (G \ {c}, k).
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As Marking Scheme 1 and 2 can be executed in polynomial time, the above reduction
rule can be executed in polynomial time as well. In the next lemma we show its safeness.

▶ Lemma 21. Reduction rule 2 is safe.

Proof. Consider c ∈ C \ D that is not marked by Marking Scheme 1 or 2. As Ptolemaic
graphs are closed under induced subgraphs, to prove the lemma, it is enough to argue that a
solution X for G \ {c} of size at most k is also a solution for G. Towards a contradiction
suppose that X is not a solution for G. Thus, G \ X has an obstruction K, containing the
vertex c. Since c /∈ D, by Lemma 7, we may assume that K is a chordless cycle of length at
least 6. Next we will construct an obstruction in (G \ {c}) \ X, and thus contradict that X

is a solution for G \ {c}.
Firstly, consider the case when K has no other vertex from C, apart from c. Let u and v

be the neighbours of c in K. Lemma 17 implies that, if we manage to find a replacement
for c from C \ (X ∪ V (K)) (see Definition 15 and 16), then we can find an obstruction in
(G \ {c}) \ X. Firstly consider the case when u, v ∈ S. Since k + 2 common neighbours
of u, v in C were marked by Marking Scheme 1, there is at least one common neighbour
c′ ∈ (V (G) \ (X ∪ {c})) ∩ C which forms a replacement for c. This together with Lemma 17
and the premise of the case that K has no other vertex apart from c from C implies that
(G \ {c}) \ X contain an obstruction.

Recall that we are in the case when K contain exactly one vertex, namely, c from C. Next
we suppose that u ∈ S and v ∈ V (A), for some A ∈ A. Let s be the first vertex from S on the
path from v to u in K \{c} (Clearly, such an s must exist since S is an approximate solution).
Notice that every internal vertex on the path from c to s, containing v, on K must be from A.
Consider the case when u ̸= s. As K is a chordless cycle, we can obtain that {s, c} /∈ E(G),
and thus {c, vA} ∈ E(H1

s ). Since c is unmarked, c /∈ V (M1
s ). Moreover, as M1

s is a maximum
matching in H1

s , it follows that vA ∈ V (M1
s ). Recall that Marking Scheme 2 marked k + 2

vertices from N(V (A)) ∩ V 1
s . Thus, there is a vertex c′ ∈ (C \ (X ∪ {c})) ∩ N(V (A)) ∩ V 1

s .
By Lemma 13, since {v, c} ∈ E(G) we must have {v, c′} ∈ E(G). Marking Scheme 1 marked
k + 2 neighbors of u ∈ S from C. Thus, there must exist a vertex cu ∈ C \ (X ∪ {c}), such
that {cu, u} ∈ E(G). If c′ = cu, the vertex c′ is a replacement for c with respect to K, and
otherwise, the pair of vertices c′, cu forms a replacement for c in K. In either case, using
Lemma 17 and the fact that K is a chordless cycle on at least 6 vertices, we can obtain
an obstruction in (G \ {c}) \ X, for the case when u ̸= s. Next we consider the case when
u = s. Notice that {c, vA} is an edge in H2

s . As c is unmarked, it must be the case that
vA ∈ V (M2

s ). Since k + 2 vertices in N(V (A)) ∩ C ∩ N(s) were marked by Marking Scheme 2,
there is a vertex c′ ∈ (N(V (A)) ∩ N(s) ∩ C) \ (X ∪ {c}). Again, by Lemma 13 we obtain
that {v, c′} ∈ E(G), and therefore the vertex c′ forms a replacement for c, and hence from
Lemma 17 we can construct an obstruction in (G \ {c}) \ X.

Next we consider the case when u ∈ V (A1) and v ∈ V (A2), for some (not necessarily
distinct) A1, A2 ∈ A, and K has no other vertex from C, apart from c. Let s1, s2 be the first
vertices from S on the paths from u to v and v to u in K \ {c}, respectively. Observe that
{c, vA1} ∈ E(H1

s1
) and {c, vA2} ∈ E(H1

s2
). Since c is unmarked, we must have vA1 ∈ M1

s1

and vA2 ∈ M1
s2

. Marking Scheme 2 ensures that there are c′
1, c′

2 ∈ C ∩ V (G) \ (X ∪ {c}),
where c′

1 ∈ N(V (A1)) and c′
2 ∈ N(V (A2)) which, by Lemma 13, are adjacent to vertices u, v

respectively. If c′
1 = c′

2, we use c′
1 as a replacement for c in K, else the pair c′

1, c′
2 forms a

replacement for c.
Now we consider the case when the chordless cycle K contains two vertices from C. (Note

that since K is a chordless cycle, it can contain at most 2 vertices from C.) Since K contains
c, exactly one of u, v /∈ C, say u /∈ C (the other case can be argued symmetrically). We
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further consider the following cases based on whether u ∈ S. Firstly consider the case when
u ∈ S. Since Marking Scheme 1 marked k + 2 neighbours of u ∈ S from C, it follows that
there is a vertex c′ ∈ C \ (X ∪ V (K)) which is a replacement for c, and thus using Lemma 17
we can obtain an obstruction in (G \ {c}) \ X. Now suppose that u ∈ V (A) for some A ∈ A.
Let s be the first vertex from S on the path from u to v in K \ {c}. This implies that
{c, vA} ∈ E(H1

s ) and that vA ∈ V (M1
s ). Therefore, k + 2 vertices in N((V (A)) ∩ V 1

s must
have been marked by Marking Scheme 2. Since |X| ⩽ k, c is an unmarked vertex, and
|C ∩ V (K)| ⩽ 2, there must exist a marked vertex c′ ∈ (N(V (A)) ∩ V 1

s ) \ (X ∪ V (K)). By
Lemma 13 we must have {u, c′} ∈ E(G). Thus, c′ forms a replacement for c in K, and we
obtain an obstruction in (G \ {c}) \ X, using Lemma 17. ◀

Proof of Lemma 8. For the given instance (G, k) of Ptolemaic Deletion, an approximate
solution S for G of size O(k), and a solution D for G that is 4-redundant with respect to
a (k + 1)-necessary family W, returned by Lemma 6, we do the following. In polynomial
time, we enumerate the set C, of all maximal maximal cliques in G \ S using Observation 12.
For each clique C ∈ C, we exhaustively apply Reduction Rule 1 and 2, where the lowest
applicable reduction rule is applied first. Note that each of these reduction rules can be
executed in polynomial time, and they can only be applied polynomially many times. If none
of the reduction rules are applicable, then we argue below that the number of vertices in
C \ D can be bounded by O(k3). Note that Marking Scheme 1 marks at most O(k3) vertices
in C. Note that while executing Marking Scheme 2, Reduction Rule 1 is not applicable.
Thus the number of vertices marked by Marking Scheme 2 are bounded by O(k3) as for
every s ∈ S, there can be at most k + 1 matching edges in both the matchings M1

s and M2
s ,

and corresponding to each edge we mark O(k) vertices in C. As the unmarked vertices of
C \ D are deleted by Reduction Rule 2, we must have |C \ D| ∈ O(k3). ◀
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