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Abstract
This document describes our heuristic Cluster Editing solver, µSolver, which got the third place
in the 2021 PACE Challenge. We present the local search and kernelization techniques for Cluster
Editing that are implemented in the solver.
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1 Large neighborhood local search for Cluster Editing

Our solver, µSolver [1], uses various local moves to iteratively improve a solution (that is, a
partition of the input into clusters) during the allotted time. The initial solution is a trivial
solution with n clusters: all vertices belong to the same cluster and the remaining n − 1
clusters are empty.

The first local move that we use is the best_move: it takes as parameter a vertex v and
a solution S, and returns a solution S′ in which v has been moved to the cluster c that
minimizes the cost of S′. One can notice that c is either the cluster of a neighbor of v or
an empty cluster. Therefore, the best_move function can be implemented to run in O(d(v))
time, where d(v) is the degree of v. This local move is not sufficient to obtain good solutions,
as it is very sensitive to local minima.

Our second local move, bfs_greedy, aims to avoid these local minima by making larger
moves. Instead of moving a single vertex at a time, we select a random subset X of t vertices,
isolate them in the graph (by moving them to a cluster of size 0), and then insert them back
using best_move. In order to maximize the efficiency of this move, we fill X with vertices
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that are close to one another. Namely, we call the function select_BFS on a vertex v, which
performs a BFS starting from v, and returns the first t vertices that it visits. We then use
this move on every vertex of the graph: the select_BFS function only returns vertices that
were not returned before. Running bfs_greedy on every vertex can be done in O(n + m).

Our final algorithm works in passes: a pass runs the bfs_greedy move on every vertex
of every connected component, and runs passes until it timeouts.

2 Parameter learning

Notice that our bfs_greedy heuristic requires a parameter t. Our experiments showed a
trade-off: setting t ≃ 15 yields good results on sparse instances, while setting t ≃ 50 yields
good results on dense instances. Instead of settling on a single value for every instance, we
opted for a learning algorithm: we specify a set of values t1, . . . tℓ with associated weights
w1, . . . , wℓ. At each step, we sample a value ts according to the weights (wi) and select a set
X of size ts. If the call to the heuristic with this choice of t yields an improved solution, we
add 1 to the value ws.

3 Overview

We combine our local search with some kernelization rules, that apply mostly on sparse
instances (see next section). Moreover, we process each connected component of the graph
separately, as it is easy to see that vertices from different connected components cannot be
in the same cluster of an optimal cluster editing.

Algorithms 1 and 2 give a global overview of the pseudo code of our solver.

Algorithm 1 Main solver.

Input: G, t, w

1: G← kernelize(G)
2: for each connected component Ci do
3: Si ← trivial_solution(Ci)
4: while timeout is not reached do
5: for each connected component Ci do
6: j ← sample_weights(w1, . . . , wℓ)
7: S′ ← bfs_greedy(Ci, Si, t[j])
8: if cost(S′) < cost(Si) then
9: Si ← S′

10: w[j]← w[j] + 1
11: return S =

⋃
i Si

Algorithm 2 bfs_greedy heuristic.

Input: C, S, t

1: seen← [false] ∗ n

2: for each v ∈ C in a random order do
3: if seen[v] then
4: go to the next vertex
5: X ← select_BFS(C, v, seen, t)
6: S′ ← S

7: for u in X do
8: S′ ← isolate(u, S′)
9: for u in X do

10: S′ ← best_move(u, S′)
11: return S′

4 Kernelization rules

We present here our kernelization rules (see figure) without their safeness proofs due to space
constraints. Our algorithm applies these rules until none of them can be applied.

▶ Rule 4.1. Let u be a vertex with either a 1-neighbor or two adjacent 2-neighbors. If u has
another neighbor v such that u and v have no common neighbor, then delete uv.

This implies that we delete all edges but one between each vertex and its 1-neighbors.
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▶ Rule 4.2. Let uvxw be an induced C4 where v and w have degree 2. Delete uv and wx.

▶ Rule 4.3. Let u be a 3-vertex with neighbors a, b, c.
If ab, bc and ac are edges, a has degree 3 and b, c both have degree at most 5, delete all
edges bx and cx for x /∈ {u, a, b, c}.
If ac and bc are edges, ab is a non-edge, and a, b, c all have degree at most 3, delete all
edges ax and bx for x /∈ {u, c}.
If ab is an edge but not ac and bc, and a, b both have degree at most 3, delete uc and all
edges ax and bx for x /∈ {u, a, b}.

The last item is actually a special case of a more general rule that we present below (with
k = 3). The two other items are actually specification designed to handle the case where the
disjointness hypothesis is not met anymore. However, we did not implement it since it does
not provide a better kernelization on the public instances.

▶ Rule 4.4. Let K be a clique on k vertices such that each vertex outside of K has at
most one neighbor in K. For every u ∈ K, denote by f(u) the number of neighbors of u

outside of k. Write K = {u1, . . . , uk} where f(u1) ⩽ · · · ⩽ f(uk). If, for every i ∈ [1, k],∑k
j=i+1 f(uj) ⩽

(
k
2
)
−

(
i
2
)
, delete all edges with exactly one endpoint in K.

As a final remark, note that Rule 4.3 allows to solve the Cluster Editing problem in
polynomial time on subcubic graphs. Indeed, applying Rule 4.3 removes all the triangles in
subcubic graphs. It then remains to find a maximum matching problem in the kernel.
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Figure 1 Kernelization rules. Vertices labeled by an integer i are of degree i.
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