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Abstract
The classical Hennessy-Milner theorem is an important tool in the analysis of concurrent processes;
it guarantees that any two non-bisimilar states in finitely branching labelled transition systems can
be distinguished by a modal formula. Numerous variants of this theorem have since been established
for a wide range of logics and system types, including quantitative versions where lower bounds on
behavioural distance (e.g. in weighted, metric, or probabilistic transition systems) are witnessed
by quantitative modal formulas. Both the qualitative and the quantitative versions have been
accommodated within the framework of coalgebraic logic, with distances taking values in quantales,
subject to certain restrictions, such as being so-called value quantales. While previous quantitative
coalgebraic Hennessy-Milner theorems apply only to liftings of set functors to (pseudo)metric spaces,
in the present work we provide a quantitative coalgebraic Hennessy-Milner theorem that applies more
widely to functors native to metric spaces; notably, we thus cover, for the first time, the well-known
Hennessy-Milner theorem for continuous probabilistic transition systems, where transitions are given
by Borel measures on metric spaces, as an instance of such a general result. In the process, we also
relax the restrictions imposed on the quantale, and additionally parametrize the technical account
over notions of closure and, hence, density, providing associated variants of the Stone-Weierstraß
theorem; this allows us to cover, for instance, behavioural ultrametrics.
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22:2 Quantitative Hennessy-Milner Theorems via Notions of Density

1 Introduction

Modal logic in general is an established tool in the analysis of concurrent systems. One of its
uses is as a means to distinguish non-equivalent states; for instance, the classical Hennessy-
Milner theorem [18] guarantees that any two non-bisimilar states in finitely branching
labelled transition systems can be distinguished by a formula in a modal logic naturally
associated to labelled transition systems. Similar theorems have subsequently proliferated,
having been established, for instance, for probabilistic transition systems [24], neighbourhood
structures [17], and open bisimilarity in the π-calculus [3]. As a recent example application,
the counterproof for unlinkability in the ICAO 9303 standard for e-passports [13] is based on
providing a distinguishing modal formula in an intuitionistic modal logic.

For systems featuring quantitative data, such as probabilistic or weighted systems or
metric transition systems, behavioural distance provides a more fine-grained measure of
agreement between systems than two-valued bisimilarity (e.g. [15, 33, 32, 10]). In analogy to
the classical Hennessy-Milner theorem, behavioural distances can often be characterized by
quantitative modal logics, in the sense that the behavioural distance of any two states can be
approximated by the difference in value of quantitative modal formulae on these states (that
is, for states with distance > r one can find a quantitative modal formula on which the states
disagree by at least r). Such theorems, to which we refer as quantitative Hennessy-Milner
theorems, have been proved, e.g., for probabilistic transition systems [33, 32] and for metric
transition systems [10].

Universal coalgebra [29] serves as a generic framework for concurrent systems, based on
the key abstraction of encapsulating the system type in a functor, whose coalgebras then
correspond to the systems of interest. Both two-valued and quantitative Hennessy-Milner
theorems have been established at the level of generality offered by coalgebraic modal logic.
The two-valued coalgebraic Hennessy-Milner theorem [27, 30] covers all coalgebraic system
types, under the assumption of having a separating set of modalities; instances include
the mentioned Hennessy-Milner theorems for probabilistic systems [24] and neighbourhood
structures [17]. Various quantitative coalgebraic Hennessy-Milner theorems have been
established fairly recently [23, 34, 35, 22]. These existing theorems are tied to considering
liftings of set functors to metric spaces (or in fact more general topological categories [22]);
our contribution in the present work is to complement these theorems by a result that instead
applies to unrestricted functors on metric spaces (we give a more detailed comparison in
the related work section). In particular, our result covers, for the first time, the original
expressivity result for probabilistic modal logic on continuous probabilistic transition systems
(where “continuous” refers to the structure of the state space) [33, 32] as an instance of a
general coalgebraic result. We work not only in coalgebraic generality but also parametrize
the development over the choice of a quantale V, in which distances and truth values are
taken; this covers the case of standard bounded real-valued distances by taking V to be
the unit interval, and the classical two-valued case by taking V to be the set of Boolean
truth values. Previous work on quantalic distances [35] needed to restrict to so-called value
quantales [14]; we relax this assumption, covering, for instance, all finite quantales (such as
the four-valued quantale used in some paraconsistent logics; see, e.g., [28]), and the square of
the unit interval.

Technically, our results are additionally parametrized over the choice of closure operators
on sets of V-valued predicates, which induce a notion of density. The notion of density is the
key ingredient that lets our results apply beyond discrete state spaces (e.g. to the mentioned
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continuous probabilistic transition systems); by varying the notion of closure, we cover, for
instance, both standard metric spaces and ultrametric spaces (which in turn are induced by
different quantale structures on the unit interval).

Proofs are mostly omitted and can be found in arXiv version of the paper.

Related work. As indicated above, quantitative coalgebraic Hennessy-Milner theorems exist
in previous work [23, 34, 35, 22], from which our present work is distinguished in that it
applies to functors that live natively on metric spaces (such as tight Borel distributions) rather
than only to liftings of set functors (such as finitely supported distributions). We detach the
technical development from both lax extensions [34, 35] and fixpoint induction [23, 34, 35],
which work only for monotone modalities; we thereby cover also systems requiring non-
monotone modalities, such as weighted transition systems with negative weights. A recent
general framework for Hennessy-Milner theorems based on Galois connections between
real-valued predicates and (pseudo)metrics is aimed primarily at generality over a linear-
time/branching-time spectrum [7].

The framework of codensity liftings developed by Komorida et al. [21, 22] works at a very
high level of generality, and in fact applies to topological categories (or CLat⊓-fibrations, in the
terminology of op. cit.) beyond metric spaces, such as uniform spaces. Our present framework
is on the one hand more general in that we do not restrict to functors lifted from the category
of sets, but on the other hand less general in that we cover only (quantalic) behavioural
distances. In terms of the main technical result, we provide a coalgebraic quantitative
Hennessy-Milner theorem that is stated in fairly simple terms, and can be instantiated to
concrete logics and systems by just verifying a few fairly straightforward conditions that
concern only the functor and the modalities. In particular, we have no conditions requiring
that certain sets of formula evaluations on a given coalgebra are approximating (cf. [22,
Theorems IV.5, IV.7]); instead, we prove similar properties as lemmas along the way, using
the key notions of closure and density. In fact, one of the conditions of our Hennessy-Milner
theorem can be seen as a form of Stone-Weierstraß property, and in particular concerns
density of sets of functions closed under suitable propositional combinations; this property
depends only on the quantale, not on the functor or the modalities, and we give general
Stone-Weierstraß-type theorems for several classes of quantales.

2 Preliminaries

Basic familiarity with category theory will be assumed [1, 5]. More specifically, we make
extensive use of topological categories (e.g. [1]). We recall some central notions for convenience.

Universal coalgebra. For an endofunctor F : C → C on a category C, an F-coalgebra
(X, α) consists of an object X of C, thought of as an object of states, and a morphism
α : X → FX, thought of as assigning structured collections (sets, distributions, etc.) of
successors to states. A coalgebra morphism from (X, α) to (Y, β) is a morphism f : X → Y

such that β ◦ f = Ff ◦ α. A concrete category over Set comes equipped with a faithful
functor |−| : C → Set, which allows us to speak about individual states, as elements of |X|.
Given a coalgebra (X, α) and states x, y ∈ |X|, we say that x and y are behaviourally
equivalent if there are a coalgebra (Z, γ) and a coalgebra morphism f : X → Z such that
|f |(x) = |f |(y). (For brevity, we restrict the treatment of both behavioural equivalence and
behavioural distances to states in the same coalgebra; in all our examples the extension
to states in different coalgebras can be accommodated by taking coproducts.) The notion
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22:4 Quantitative Hennessy-Milner Theorems via Notions of Density

of behavioural equivalence is strictly two-valued, meaning that different states are either
behaviourally equivalent or not. The downside of this notion is thus that in systems dealing
with quantitative information, any slight change can render two states behaviourally distinct,
even though they may be virtually indistinguishable in any practical context. The rest of
this paper is concerned with quantifying the degree to which states differ from each other, as
well as with logics to witness these degrees.

▶ Example 1.
1. Labelled transition systems w.r.t. a set A of actions are coalgebras for the Set-functor

P(A × −). Behavioural equivalence coincides with the classical notion of (strong) bisimil-
arity.

2. We write □ for the four-element diamond-shaped lattice, i.e. □ = {⊥, N, B, ⊤}, ordered
by ⊥ < N < ⊤, ⊥ < B < ⊤. Let B be the □-valued powerset functor, which sends a
set X to the set of all maps q : X → □, and a map f : X → Y to the map Bf given by
Bf(q)(y) =

∨
f(x)=y q(x). A map q : X → □ can be seen as a □-valued fuzzy subset of X,

which for every element x tells us either that x is in the set (q(x) = ⊤), or that x is not in
the set (q(x) = ⊥), or that there is evidence both that x is in the set and that x is not in
the set (q(x) = B), or that nothing is known (q(x) = N). B-coalgebras have been used in
a Kripke-style semantics of paraconsistent modal logics [28] (our ⊥, ⊤, N, B respectively
correspond to f, t, ⊥, ⊤, and ≤ to ≤t in op. cit.).

3. We denote by D the functor that maps a set X to the set of finitely supported probability
distributions on X. Coalgebras for the functor FX = (1 + DX)A, for a finite set A

of actions, are probabilistic transition systems [24, 11]. In this context, behavioural
equivalence instantiates to probabilistic bisimilarity [20].

4. We consider weighted transition systems with possibly negative weights (e.g. [8]): Let W
be the functor on 1-bounded metric spaces that maps every set X to the set of finite
[−1, 1]-weighted sets over X. That is, the elements of WX are functions t : X → [−1, 1]
such that t(x) = 0 for all but finitely many x, and

∑
x∈A t(x) ∈ [−1, 1] for all A ⊆ X. On

morphisms, W acts by summing over preimages, that is, Wg(t)(y) =
∑

x∈g−1(y) t(x) for
g : X → Y , t ∈ WX.
The distance of s, t ∈ WX is given by d(s, t) = 1

2
∨

f

∑
x∈X s(x)f(x)− t(x)f(x) where the

join ranges over all nonexpansive functions f : X → [0, 1]. Then (W−)A coalgebras are
([−1, 1], +, 0)-weighted A-labelled transition systems. Behavioural equivalence instantiates
to weighted bisimilarity [20].

5. Consider the following variation of the Kantorovich functor K [32, 2]. We say that a
probability measure µ on the Borel σ-algebra of a (pseudo)metric space (X, d) is tight if
for every ϵ > 0, there is a totally bounded subset Y ⊆ X such that µ(X \ Y ) < ϵ. The
Kantorovich functor K maps a (pseudo)metric space (X, d) to the set of tight probability
measures on (X, d), equipped with the Kantorovich metric, defined as dKX(µ, ν) =
supf

{∫
f dµ −

∫
f dν

}
for µ, ν ∈ KX, where again f ranges over all nonexpansive maps

X → [0, 1]. On morphisms, K acts by taking image measures, i.e. for f : X → Y we have
Kf(µ)(Y ′) = µ(f−1(Y ′)) for Borel sets Y ′ ⊆ Y . Given a finite set A of actions, A-labelled
continuous probabilistic transition systems are K(1 + −)A-coalgebras [32, 33] (so the
term continuous applies to the state space, not the system evolution), and behavioural
equivalence instantiates to probabilistic bisimilarity of continuous systems.

Consider the probabilistic transition systems depicted in Figure 1. If ϵ > 0, then the root
states are not probabilistically bisimilar, as they have different probabilities of reaching a
deadlock state. Still one would like to say that their difference in behaviour is small if ϵ is
small. We will review formal definitions of such concepts in Section 4.
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Figure 1 Probabilistic transition systems with behaviourally inequivalent root states.

Topological Categories. Let F : C → X be a faithful functor. Given C-objects C, D, we say
that an X -morphism f : FC → FD is a morphism C → D if f = Ff̄ for some (necessarily
unique) f̄ : C → D. A cone (fi : C → Ci)i∈I in C (with I a class) is initial if the following
hods: whenever, given a C-object B and g : FB → FC, fi ◦ g is a morphism B → Ci for all
i ∈ I, then g is a morphism B → C. A morphism is initial if the corresponding singleton
cone is initial. A functor F : C → C preserves initial morphisms if Ff is initial whenever f

is initial. Now, an (F-)structured morphism is a pair (f, C) consisting of a C-object C

and a morphism f : X → FC, typically written just as f : X → FC, and an (F-)structured
cone is a family S = (fi : X → FCi)i∈I of structured morphisms. An initial lift of S is an
initial cone (f̄i : C → Ci) such that Ff̄i = fi for all i. The functor F is topological if every
F-structured cone has an initial lift; we then also say that C is topological over X , leaving F
implicit. (We note that we have assumed faithfulness of F only for ease of presentation, and
in fact one can show under a prima facie more general definition that all topological functors
are faithful [1, Theorem 21.3].) Typical examples of topological categories are topological
spaces, pseudometric spaces, and preordered sets (while subcategories of such categories that
are determined by separation conditions, e.g. Hausdorff spaces, metric spaces, or ordered sets,
are typically only monotopological, in the sense that only monic cones are guaranteed to
have initial lifts [1]). For instance, the initial lift of a structured cone (fi : X → (Yi, ≤i))i∈I

of preordered sets is the preorder ≤ on X given by x ≤ z iff fi(x) ≤i fi(z) for all i.
Recent work on codensity liftings [21, 22] employs CLat⊓-fibrations, which are easily seen

to be essentially equivalent to topological functors (more precisely, to amnestic topological
functors [1]). Topological functors come with a rich and well-developed theory, on which we
will draw to some degree in our technical treatment. Basic facts to note are that topological
functors lift limits, so topological categories are complete if their underlying category is
complete, and that topological functors are also cotopological, so the same holds for colimits.

3 Quantales and Quantale-Enriched Categories

A central notion of our development are quantales, which will serve as objects of both truth
values and distance values, subsuming in particular the two-valued and the real-valued case.
A quantale (V,

∨
, ⊗, k), more precisely a commutative and unital quantale, is a complete

lattice V that carries the structure of a commutative monoid (V, ⊗, k), with ⊗ called tensor
and k called unit, such that for every u ∈ V, the map u ⊗ − : V → V preserves suprema,
which entails that every u ⊗ − : V → V has a right adjoint hom(u, −) : V → V , characterized
by the property u ⊗ v ≤ w ⇐⇒ v ≤ hom(u, w). We denote by ⊤ and ⊥ the greatest and the
least element of a quantale respectively. A quantale is non-trivial if ⊥ ≠ ⊤, and integral if
⊤ = k.

▶ Example 2.
1. Every frame (i.e. a complete lattice in which binary meets distribute over infinite joins)

is a quantale with ⊗ = ∧ and k = ⊤. In particular, every finite distributive lattice is a
quantale, prominently 2, the two-element lattice {⊥, ⊤}. In this case, the hom operation
is implication in the usual sense.

CSL 2023



22:6 Quantitative Hennessy-Milner Theorems via Notions of Density

2. Every left continuous t-norm [4] defines a quantale on the unit interval equipped with its
natural order.

3. The previous clause further specializes as follows (up to isomorphism):
a. The quantale [0, ∞]+ = ([0, ∞], inf, +, 0) of non-negative real numbers with infinity,

ordered by the greater or equal relation, and with tensor given by addition.
b. The quantale [0, ∞]max = ([0, ∞], inf, max, 0) of non-negative real numbers with infinity,

ordered by the greater or equal relation, and with tensor given by maximum.
c. The quantale [0, 1]⊕ = ([0, 1], inf, ⊕, 0) of the unit interval, ordered by the greater or

equal order, and with tensor given by truncated addition. In this case as well as in
[0, ∞]+, the hom operation is truncated addition: hom(u, v) = max(v − u, 0).

(Note that in all these examples, the quantalic order is dual to the standard numeric
order.)

4. Every commutative monoid (M, ·, e) generates a quantale structure on (PM,
⋃

), the free
quantale on M . The tensor ⊗ on PM is defined by A ⊗ B = {a · b | a ∈ A and b ∈ B},

for all A, B ⊆ M . The unit of this multiplication is the set {e}.
5. For every quantale V and every partially ordered set X, the set of monotone maps

Pos(X, V) ordered pointwise becomes a quantale with tensor defined pointwise. For
instance, Pos(2, [0, 1]⊕) with discrete 2 yields the quantale [0, 1]2⊕, and by replacing 2
with the two-element chain 0 ≥ 1 we obtain the quantale I([0, 1]⊕) of non-empty closed
subintervals of [0, 1] [35].

Category theory highlights preordered sets as 2-enriched categories. By replacing 2 with a
quantale V, we enrich the relevant preorders with a quantitative extent: A V-category is
pair (X, a) consisting of a set X and a map a : X × X → V that satisfies the inequalities
k ≤ a(x, x) and a(x, y) ⊗ a(y, z) ≤ a(x, z) for all x, y, z ∈ X. We think of a as providing
a generalized notion of similarity (which under the reverse ordering becomes a notion of
distance). The quantale V itself is canonically a V-category (V, hom), which we also denote by
just V . A V-functor f : (X, a) → (Y, b) is a map f : X → Y such that a(x, y) ≤ b(f(x), f(y))
for all x, y ∈ X. V-categories and V-functors form the category V-Cat.

Every V-category (X, a) carries a natural order defined by x ≤ y whenever k ≤ a(x, y),
which induces a faithful functor V-Cat → Ord into the category Ord of partially ordered sets.

A V-category (X, a) is symmetric if a(x, y) = a(y, x) for all x, y ∈ X, and separated if its
natural order is antisymmetric. We denote by V-Catsym and V-Catsym,sep the full subcategories
of V-Cat determined by the symmetric and the symmetric separated V-categories, respectively.
For real-valued V, V-Cat, V-Catsym, and V-Catsym,sep correspond to categories of hemimetric,
pseudometric, and metric spaces, respectively. We will use V-Catsym as the main device
to formalize examples and state our main results, although most of these results can be
meaningfully reinterpreted for V-Cat.

▶ Example 3.
1. The category 2-Cat is equivalent to the category Ord of preordered sets and monotone

maps.
2. As noted by Lawvere [25], metric, ultrametric, and bounded metric spaces can be seen as

quantale-enriched categories:
a. The category [0, ∞]+-Catsym,sep is equivalent to the category Met of generalized metric

spaces and non-expansive maps.
b. The category [0, ∞]max-Catsym,sep is equivalent to the category UMet of generalized

ultrametric spaces and non-expansive maps.
c. The category [0, 1]⊕-Catsym,sep is equivalent to the category BMet of bounded-by-1

metric spaces and non-expansive maps.
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Table 1 V-categorical notions in the qualitative and the quantitative setting. The prefix “pseudo”
refers to absence of separatedness, and the prefix “hemi” additionally indicates absence of symmetry.

General V Qualitative (V = 2) Quantitative (V = [0, 1]⊕)
V-category preorder bounded-by-1 hemimetric space
symmetric V-category equivalence bounded-by-1 pseudometric space
V-functor monotone map non-expansive map
initial V-functor order-reflecting

monotone map
isometry

L-dense V-functor monotone map that is
surjective up to the induced
equivalence

non-expansive map with dense
image

L-closure closure under the induced
equivalence

topological closure

3. Categories enriched in the powerset of the monoids underlying the quantales of the
previous example can be thought of as spaces where a non-deterministic distance is
assigned to each pair of points.

4. Categories enriched in the quantale I([0, 1]⊕) can be thought of as spaces where a distance
range is assigned to each pair of points.

The examples V = 2 and V = [0, 1]⊕ are particularly instructive, as they represent the
most established qualitative and quantitative aspects quantales aim to generalize. Table 1
provides some instances of generic quantale-based concepts (either introduced above or to be
introduced presently) in these two cases, for further reference.

The forgetful functor |−| : V-Cat → Set is topological (Section 2): The initial lift (X, a)
of a structured cone S = (fi : X → |(Xi, ai)|)i∈I , with a referred to as the initial structure
w.r.t. S, is given by a(x, y) =

∧
i∈I ai(fi(x), fi(y)) for x, y ∈ X. If all ai are symmetric,

then a is symmetric, and if all ai are separated and the cone S is monic, then a is separated.
Thus, V-Catsym is topological over Set, while V-Catsep and V-Catsym,sep are monotopological
over Set (but not topological). It follows by general results [1] that all these categories are
reflective in V-Cat. In particular, the reflector

(−)q : V-Catsym → V-Catsym,sep

quotients (X, a) by its natural preorder, which for symmetric (X, a) is an equivalence. The
category V-Catsym is also coreflective in V-Cat; the coreflector

(−)s : V-Cat → V-Catsym

sends a V-category (X, a) to its symmetrization (X, a)s = (X, as), where as(x, y) =
a(x, y) ∧ a(y, x) (keep in mind that in Example 2.3, the order is the dual of the numeric
order). In particular, Vs is the set V equipped with the V-category structure a given by
a(u, v) = hom(u, v) ∧ hom(v, u). For instance, for V = [0, 1]⊕ (Example 2.3), the V-category
structure of Vs is just the usual Euclidean distance |u − v| on [0, 1].

For a set X and a V-category (Y, b), we write (Y, b)X for the set of all maps X →
Y , equipped with the V-category structure [−, −] given by [h, l] =

∧
x∈X b(h(x), l(x)) for

h, l : X → Y (in the numeric ordering on real-valued quantales, this corresponds to the usual
supremum metric on functions). For a V-category (X, a), we moreover write (Y, b)(X,a) for
V-Cat((X, a), (Y, b)), equipped with the V-category structure inherited from (Y, b)X . We note
that we will often designate V-categories just by single letters such as X; disambiguation
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22:8 Quantitative Hennessy-Milner Theorems via Notions of Density

between spaces of maps and spaces of V-functors should nevertheless always be clear from the
context. For instance, if X is a V-category, then VX

s is the space of all V-functors X → Vs,
while V |X|

s is the space of all maps X → Vs.
Quantale-enriched categories come equipped with a canonical closure operator. A V-

functor m : M → X is L-dense [19] if for all V-functors f, g : X → V, f · m = g · m implies
f = g. The composite of L-dense V-functors is again L-dense. For a subset A of X, the
L-closure A of A in (X, a) is the largest V-subcategory of (X, a) in which A is L-dense; this
can be explicitly computed as

A =
{

x ∈ X | k ≤
∨

y∈A a(x, y) ⊗ a(y, x)
}

.

A subset A ⊆ X of a V-category (X, a) is L-closed if A = A, and L-dense in (X, a)
if A = X. A function f : X → Y between V-categories (X, a) and (Y, b) is said to be
L-continuous if f [A] ⊆ f [A] for every A ⊆ X. It is easy to see that the notion of L-closure
is so designed that for metric-like examples, it coincides with the topological closure w.r.t. the
open-ball topology, and continuity in the sense defined above coincides with continuity w.r.t.
this topology. For a preorder (X, ≤), A ⊆ X is L-closed iff it is closed under the induced
equivalence. It is easy to check that every V-functor is L-continuous, in generalization of the
standard fact that every non-expansive map of metric spaces is continuous.

▶ Proposition 4. For every V-category X, V-Cat(X, V) is L-closed in V |X|. For every
symmetric V-category X, V-Cat(X, Vs) is L-closed in V |X|

s .

Maps that are continuous w.r.t. L-closure or other closures will be essential in Section 6.

4 Quantitative Coalgebraic Modal Logics

We proceed to introduce a variant of (quantitative) coalgebraic logic [27, 30, 9, 23, 34], which
in particular follows the paradigm of interpreting modalities via predicate liftings, in this
case of V-valued predicates.

Given a cardinal κ, a classical κ-ary predicate lifting for a functor F : Set → Set is a
natural transformation λ : Set(−, 2κ) → Set(F−, 2), where we see a map X → 2κ as κ many
predicates on X; we switch freely between predicates and subsets. For example, the Kripke
semantics of the modal logic K can be couched in terms of the diamond modality ♢, which
we identify with the unary predicate lifting ♢X(A) = {B ⊆ X | A ∩ B ̸= ∅} for the powerset
functor. This notion of predicate lifting naturally extends to V-Catsym-functors:

▶ Definition 5. Given a cardinal κ, a κ-ary predicate lifting for a functor F : V-Catsym →
V-Catsym is a natural transformation of type λ : V-Catsym(−, Vκ

s ) → V-Catsym(F−, Vs).

A κ-ary predicate lifting thus lifts κ-many V-functorial V-valued predicates on X to a
V-functorial predicate on FX.
▶ Remark 6 (Yoneda Lemma). By the Yoneda lemma, a κ-ary predicate lifting λ for a functor
F : V-Catsym → V-Catsym is completely determined by its action on the identity map on Vκ

s .
For the sake of brevity, we restrict the technical treatment to unary predicate liftings (κ = 1)
henceforth; we do occasionally use non-unary liftings in examples, in particular nullary ones.

The syntax of quantitative coalgebraic modal logic can now be defined by the grammar

ϕ ::= ⊤ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | u ⊗ ϕ | homs(u, ϕ) | λ(ϕ) (u ∈ V, λ ∈ Λ)

where Λ is a set of modalities, which we identify, by abuse of notation, with predicate
liftings for a functor F : V-Catsym → V-Catsym. We view all other connectives as propositional
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operators. Let L(Λ) be the set of modal formulas thus defined. The semantics is given by
assigning to each formula ϕ ∈ L(Λ) and each coalgebra α : X → FX the interpretation of ϕ

over α, the V-functor JϕKα : X → Vs recursively defined as follows:
for ϕ = ⊤, we take J⊤Kα to be the V-functor given by the constant map into ⊤;
for an n-ary propositional operator p, we put Jp(ϕ1, . . . , ϕn)Kα = p(Jϕ1Kα, . . . , JϕnKα),
with p interpreted using the lattice structure of V and the V-categorical structure homs

of Vs, respectively, on the right-hand side;
for λ ∈ Λ, we put Jλ(ϕ)Kα = λ(JϕKα) · α.

Given a coalgebra (X, α), we denote the set of all maps of the form JϕKα by JLKα. Interpret-
ing ⊤ as ⊤ and not as k is essential for non-integral quantales, for which the constant map
with value k fails to be a V-functor.

▶ Example 7. For a first example instance of the generic logic introduced above (more
examples are seen in Section 8), recall the functor K from Example 1(5), which assigns to a
pseudometric space X the space of tight probability measures on X, and put F = K(1 + −)A

for a set A of actions; then, F-coalgebras are pseudometric probabilistic labelled transition
systems [33]. We have the expectation predicate lifting E for K, given by

EX(f)(µ) =
∫

X
f(x) dµ(x)

for µ ∈ KX and non-expansive f : X → [0, 1]. From E, we define a set Λ = {Ea,+1 |
a ∈ A} of predicate liftings for F, given by Ea,+1

X (f)(l) = E1+X(f+1)(la) for an A-indexed
family l of tight probability measures la on 1 + X and non-expansive f : X → [0, 1], where
f+1 : X + 1 → [0, 1] acts like f on X and sends the other element to 0. The arising instance
of quantitative coalgebraic modal logic is van Breugel and Worrell’s quantitative probabilistic
modal logic [33].

Quantitative coalgebraic modal logic is invariant under coalgebra morphisms:

▶ Proposition 8. Let Λ be a set of predicate liftings for a functor F : V-Catsym → V-Catsym,
and let f : (X, α) → (Y, β) be a morphism of F-coalgebras. Then, for every formula ϕ ∈ L(Λ),
JϕKα = JϕKβ · f .

The established approach to coalgebraic behavioural distances is to start with a set functor
F : Set → Set and obtain a V-Catsym-functor as a lifting of F. In the quantalic setting, this
approach may take the following shape. Topological properties of V-Catsym entail that every
set Λ of predicate liftings for a functor F : Set → Set induces a functor FΛ : V-Catsym →
V-Catsym, known as the Kantorovich lifting of F w.r.t. Λ [6]. Concretely, FΛ sends a
V-category (X, a) to the V-category determined by the initial structure on FX w.r.t. the
structured cone of all maps λ(f) : FX → |Vs| with λ ∈ Λ and f : (X, a) → Vs ∈ V-Catsym. As
the name indicates, FΛ is indeed a lifting of F to V-Catsym, that is, |−| · FΛ = F · |−| where
|−| : V-Catsym → Set is the forgetful functor. Every predicate lifting λ ∈ Λ for F becomes a
predicate lifting for the Kantorovich lifting FΛ.

Kantorovich liftings are crucial prerequisites for existing expressivity results of quantitative
coalgebraic logics for Set-functors (e.g. [34, 35, 22]). It turns out that the Kantorovich property
can be usefully detached from the notion of functor lifting:

▶ Definition 9 (Kantorovich Functor). Let Λ be a set of predicate liftings for a functor
F : V-Catsym → V-Catsym. The functor F is Λ-Kantorovich if for every V-category X, the
cone of all V-functors λ(f) : FX → Vs with λ ∈ Λ and f ∈ V-Catsym(X, Vs) is initial.

Clearly, every Kantorovich lifting F Λ is Λ-Kantorovich.
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▶ Example 10. Recall the finite distribution functor D : Set → Set from Example 1(3);
in analogy to Example 7, we have the expectation predicate lifting E for D, given by
EX(f)(µ) =

∑
x∈X f(x)µ(x) for µ ∈ DX and f : X → [0, 1]. The corresponding lifting DE is

the usual Kantorovich distance on finite distributions. The closely related functor K from
Example 1(5) already lives on bounded pseudometric spaces (that is, on [0, 1]⊕-Catsym), and
is not a lifting of any set functor. However, K is Λ-Kantorovich for Λ = {E} where E is the
expectation predicate lifting for K as in Example 7. The functor DE is a subfunctor of K,
and the components of the associated inclusion natural transformation are initial.

Using the above, one easily checks that, similarly, the functor F = K(1 + −)A as in
Example 7 is Λ-Kantorovich for Λ = {Ea,+1 | a ∈ A}, and the functor DE(1 + −)A is the
Kantorovich lifting of the functor D(1 + −)A : Set → Set w.r.t Λ = {Ea,+1 | a ∈ A}, where
the predicate liftings Ea,+1 for the D(1 + −)A are given analogously to the predicate liftings
Ea,+1 for K(1 + −)A.

It has been shown recently that the Kantorovich functors (w.r.t. a class of predicate
liftings of possibly ininite arities) are precisely the ones that preserve initial morphisms [16,
Theorem 5.3].

5 Behavioural and Logical Distances

Every functor F : V-Catsym → V-Catsym comes with a natural notion of behavioural distance
on F-coalgebras, defined in analogy to behavioural equivalence (which identifies two states if
they can be identified under some coalgebra morphism) by regarding states as similar if they
can be made similar under some coalgebra morphism:

▶ Definition 11. Let F : V-Catsym → V-Catsym be a functor. The behavioural distance on
an F-coalgebra (X, a, α), denoted by bdF

α, is defined on all x, y ∈ X by

bdF
α(x, y) =

∨
{b(f(x), f(y)) | f : (X, a, α) → (Y, b, β) ∈ CoAlg(F)}. (1)

We observe next that if F preserves initial morphisms, then we can restrict the supremum (1)
to morphisms carried by the identity map. Given V-category structures a, b on X such
that a ≤ b, we write ιa,b for the identity V-functor (X, a) → (X, b). We note that ιa,b is a
coalgebra morphism ιa,b : (X, a, α) → (X, b, β), for some β, under two conditions, the first
being commutativity of the diagram

(X, a) F(X, a)

(X, b) F(X, b)

α

ιa,b Fιa,b

Fιa,b·α

which just means that as a map, β must be Fιa,b ·α. The second condition is that β = Fιa,b ·α
must be a V-functor (X, b) → F(X, b).

▶ Proposition 12. Let (X, a, α) be a coalgebra for a functor F : V-Catsym → V-Catsym that
preserves initial morphisms. Then, we can equivalently restrict the definition (1) of behavioural
distance to morphisms of the form f = ιa,b:

bdF
α(x, y) =

∨
{b(x, y) | (X, b) ∈ V-Catsym, a ≤ b, Fιa,b · α ∈ V-Catsym((X, b), F(X, b))}.
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▶ Remark 13. Since the forgetful functor |−| : V-Catsym → Set is topological, the elements of
its fiber over a set X that are greater or equal than an element (X, a) form a complete lattice
{(X, b) ∈ V-Catsym | a ≤ b}. Moreover, for every F-coalgebra (X, a, α), the endofunction on
this complete lattice that sends a V-category (X, b) to the V-category given by the initial
structure on X w.r.t. the structured map |Fιa,b · α| : X → |F(X, b)| is monotone. Therefore,
by the Knaster-Tarski fixpoint theorem this map has a greatest fixpoint. By Proposition 12,
if F preserves initial morphisms, then this greatest fixpoint is precisely the behavioural
distance on (X, a, α). In particular, it follows that β : (X, bdF

α) → F(X, bdF
α) is a V-functor.

Furthermore, if F is a lifting of a functor G : Set → Set, then the behavioural distance on
an F-coalgebra (X, a, α) is given by the greatest V-categorical structure on X that makes
the G-coalgebra |α| : X → GX an F-coalgebra. This is in line with the notion of behavioural
distance based on liftings of Set-functors (e.g. [6, 22]).
Behavioural distance is invariant under coalgebra morphisms:

▶ Proposition 14. Let F : V-Catsym → V-Catsym be a functor and f : (X, a, α) → (Y, b, β) a
coalgebra morphism of F-coalgebras. Then, for all x, y ∈ X, bdF

α(x, y) = bdF
β(f(x), f(y)).

Coalgebraic modal logic complements behavioural distance with a notion of logical distance:

▶ Definition 15. Let Λ be a set of predicate liftings for a functor F : V-Catsym → V-Catsym.
The logical distance ldΛ

α on an F-coalgebra (X, a, α) is the initial structure on X w.r.t.
the structured cone of all maps JϕKα : X → |(V, homs)| with ϕ ∈ L(Λ). More explicitly, for
x, y ∈ X,

ldΛ
α(x, y) =

∧
{homs(JϕKα(x), JϕKα(y)) | ϕ ∈ L(Λ)}.

It is immediate from Proposition 8 that logical distance is also invariant under coalgebra
morphisms. The remainder of the paper is devoted to establishing criteria under which
logical distance and behavioural distance coincide. Recall that a (quantitative) coalgebraic
logic is adequate if for every F-coalgebra (X, α), bdF

α ≤ ldΛ
α, and expressive if ldΛ

α ≤ bdF
α,

for every F-coalgebra (X, α). The former property is straightforward to show:

▶ Theorem 16 (Adequacy). Let Λ be a set of predicate liftings for a functor F : V-Catsym →
V-Catsym. Then, the coalgebraic logic L(Λ) is adequate.

6 Expressivity of Quantitative Coalgebraic Modal Logic

We fix a functor F : V-Catsym → V-Catsym and a set Λ of predicate liftings for F throughout
this section.

The following lemma is related to the Knaster-Tarski proof principle for expressivity
identified in work on codensity liftings [22, Theorem IV.5]:

▶ Lemma 17. Let (X, a, α) be an F-coalgebra. If the cone of all V-functors λ(f) : F(X, ldΛ
α) →

Vs with λ ∈ Λ and f ∈ JL(Λ)Kα is initial, then ldΛ
α ≤ bdF

α.

Kantorovich functors come with a natural strategy to show that the assumption of Lemma 17
holds. By definition, the cone of all V-functors (X, ldΛ

α) → Vs that are interpretations of
formulas of L(Λ) is initial. Roughly speaking, one wishes to conclude from this fact that
one can approximate every V-functor (X, ldΛ

α) → Vs by interpretations of formulas; then, to
apply Lemma 17 we just need to guarantee that predicate liftings preserve approximations
(that is, satisfy a notion of continuity), as, by the definition of Kantorovich functor, the cone
of all V-functors λ(f) : F(X, ldΛ

α) → Vs with λ ∈ Λ and f ∈ V-Cat((X, ldΛ
α), Vs) is initial. We

formalize this approach using closure operators. We begin by introducing some notation.
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Given a V-functor i : Y → X and a set A ⊆ V-Catsym(X, Vs), we denote by A · i the set
{f · i | f ∈ A}, by Λ(A) the set {λ(f) | f ∈ A, λ ∈ Λ}, and by |A| the set {|f | | f ∈ A} (of
maps). It will be convenient to encapsulate the propositional part of the logic algebraically:

▶ Definition 18. Let X be a V-category. A subset A of VX
s is a propositional algebra

if it contains the V-functor that is constantly ⊤, and is closed under the operations ∧, ∨,
homs(u, −), and u ⊗ −, for every u ∈ V.

In particular, given an F-coalgebra (X, a, α), JL(Λ)Kα ⊆ V(X, ldΛ
α)

s is a propositional algebra.
We will base the mentioned notion of continuity on a notion of closure, over which we

parametrize the technical framework (with one intended instance being L-closure as recalled
in Section 3):

▶ Definition 19 (Vs-closure). Given a set X, a Vs-closure operator is a family C =
(CX)X∈Set of closure operators CX on Set(X, V) (i.e. operators CX : P(Set(X, V)) →
P(Set(X, V)) satisfying the standard extensiveness, monotonicity and idempotence laws)
such that for every symmetric V-category (X, a), V-Catsym((X, a), Vs) ⊆ Set(X, V) is closed
w.r.t. CX . When no ambiguities arise, we write C(A) instead of CX(A).

A Vs-closure operator C is equivalently given by a family C = (CX)X∈V-Catsym of closure
operators on V-Catsym(X, Vs) such that for all A ⊆ V-Catsym(X, Vs) and B ⊆ V-Cat(Y, Vs),
where |Y | = |X|, if |A| = |B| then |CX(A)| = |CY (B)|. We make no distinction between C
and C, e.g. we apply C also to A ⊆ VX

s = V-Catsym(X, Vs), for a V-category X. In particular,
we say that A ⊆ VX

s is C-dense on X if C(A) = VX
s .

▶ Example 20. The following closure operators on Set(X, V) are Vs-closure operators:
1. the identity operator IdX ;
2. the operator LVs

X that sends every set to its L-closure in the V-category VX
s ;

3. the closure operator cInf∨
X that sends every set A to its closure under codirected infima

and finite suprema;
4. the closure operator InfX that sends every set A to its closure under infima;
5. the closure operator FunX that sends every set A to |V-Catsym(XA, Vs)|, where XA denotes

the V-category determined by the initial structure with respected to the structured cone
of all maps f : X → |Vs| with f ∈ A (Fun is in fact the closure operator of a Galois
connection, relating to recent work by Beohar et al. [7]).

While Id is the least Vs-closure operator, somewhat less trivially Fun is the greatest one
(and hence induces the weakest notion of density).

The next result connects initiality, closure and density.

▶ Proposition 21. Let C be a Vs-closure operator. For every V-category X and A ⊆ VX
s ,

1. if A is C-dense on X, then A is initial; for C = Fun, the converse holds as well;
2. if C(A) is initial, then A is initial.

▶ Definition 22. Let C be a Vs-closure operator. A predicate lifting λ ∈ Λ is C-continuous
if for every V-category X, λX : VX

s → VFX
s is continuous w.r.t. CX and CFX (i.e. f [CX(A)] ⊆

CFX(f [A]) for all A ⊆ VX
s ).

▶ Example 23. A predicate lifting λ is
1. always Id-continuous;
2. L-continuous iff its components are L-continuous;
3. cInf∨-continuous iff its components preserve codirected infima and finite suprema;
4. Inf -continuous iff its components preserve all infima.
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It is easily verified that if a predicate lifting λ for a {λ}-Kantorovich functor is Fun-continuous,
then it preserves initial cones. Thus, Fun-continuity is a very strong assumption, which
by Lemma 17 entails that L({λ}) is expressive. In order to obtain expressivity results for
coalgebraic logics under weaker assumptions, we will consider situations where Fun-density
can be equivalently described as C-density for more suitable Vs-closure operators C.

▶ Definition 24. Let I be a class of symmetric V-categories. A Vs-closure operator C
characterizes initiality on I if for every V-category X ∈ I, every propositional algebra
A ⊆ VX

s that is Fun-dense on X (that is, by Proposition 21, initial) is already C-dense on X

(recall that the reverse implication holds universally).

Characterization of initiality for a given class I depends only on the quantale and the closure
operator, and may be seen as a form of Stone-Weierstraß property; we will give general
Stone-Weierstraß theorems for some classes of quantales in Section 7. In most of these, I will
be the class of finite symmetric V-categories (and in one case, the class of totally bounded
pseudometric spaces). We introduce next a key technical definition.

▶ Definition 25. Let C be a Vs-closure operator. A cocone (i : Xi → X)i∈I of morphisms
in V-Catsym coreflects C-density if the cone (− · i : VX

s → VXi
s )i∈I reflects C-density;

that is, for every A ⊆ VX
s , if A · i is C-dense for every i ∈ I, then A is C-dense.

Since by Proposition 21, Fun-density is equivalent to initiality, we refer to coreflection of
Fun-density also as coreflection of initiality.

▶ Example 26.
1. An initial V-functor coreflects Id-density iff it is L-dense.
2. A classical 1-bounded metric space (X, d) is totally bounded if for every u > 0 there is a

finite set Xu such that for every x ∈ X there is y ∈ Xu so that d(x, y) < u. It can be
shown that for every totally bounded metric space (X, d), the cocone of embeddings of
finite subspaces coreflects L-density.

3. It follows from [19, Lemma 1.10(4)] that every jointly L-dense directed cocone coreflects
initiality. In particular, every directed colimit coreflects initiality.

Since in general, we can only replace Fun-density with C-density in a restricted class of
V-categories, our results will depend on functors that are compatible with such a class.

▶ Definition 27. A class I of symmetric V-categories coreflects initiality under F if for
every V-category X, the cocone

(Fi : FY → FX)Y ∈I, i : Y →X initial

coreflects initiality.

▶ Example 28.
1. The class V-Catsym coreflects initiality under every V-Catsym-functor.
2. The class of all finite symmetric V-categories coreflects initiality under Kantorovich

liftings of finitary Set-functors to V-Catsym.
The second example above indicates that coreflection of initiality relates to size bounds on
the functor. The following proposition shows that such size bounds are only needed up to
approximation.

CSL 2023



22:14 Quantitative Hennessy-Milner Theorems via Notions of Density

▶ Proposition 29. Let j : G → F be a natural transformation between V-Catsym-functors
such that each component of j is initial and L-dense. If a class I of symmetric V-categories
coreflects initiality under G, then I coreflects initiality under F.

For instance, combining Example 28.2 and Proposition 29, we obtain:

▶ Corollary 30. If G is a Kantorovich lifting of a finitary set functor and j : G → F is a
natural transformation between V-Catsym-functors such that each component of j is initial
and L-dense, then the class of all finite symmetric V-categories coreflects initiality under F.

▶ Remark 31. The previous notion of a finitarily separable lax extension L of a set func-
tor F0 [34] requires essentially that the finitary part of F0 is L-dense in the lifting F of F0
induced by L (in a way that is immaterial here), that is, if for every V-category X, the
set {Fi(t) | Y finite, i : Y → X, t ∈ FY } is L-dense in FX. For instance, the standard
Kantorovich lifting of the discrete distribution functor is finitarily separable [34]. For finitarily
separable F, the class of finite symmetric V-categories coreflects initiality by Corollary 30.
We are now ready to present our main result:

▶ Theorem 32 (Quantitative coalgebraic Hennessy-Milner theorem). Let F : V-Catsym →
V-Catsym be Λ-Kantorovich, let C be a Vs-closure operator, and let I be a class of symmetric
V-categories such that I coreflects initiality under F and C characterizes initiality on I. If
every predicate lifting in Λ is C-continuous, then L(Λ) is expressive.

We note that there is a balance to be struck in the choice of I: The larger I is, the more
functors one finds under which I coreflects initiality, but the harder it is to establish a
characterization of initiality in I. We tackle the latter issue next.

7 Stone-Weierstraß-Type Theorems

We now develop some usage scenarios for Theorem 32; concrete expressivity proofs using
these criteria will be given in Section 8. As a warm-up, we have

▶ Theorem 33. Let V be a finite quantale. Then the Vs-closure operator Id characterizes
initiality on finite symmetric V-categories.

(Note that for V = 2, this is essentially the well-known functional completeness of Boolean
logic.) Hence, by instantiating Theorem 32, we obtain

▶ Corollary 34. Let V be a finite quantale, and let F : V-Catsym → V-Catsym be a Λ-Kantorovich
functor that admits as an L-dense subfunctor a lifting of a finitary Set-functor. Then the
coalgebraic logic L(Λ) is expressive.

Most remarkably, while Corollary 34 allows us to derive expressivity for many-valued logics,
it also relates our present expressivity criterion to the known criterion for the properly
qualitative case (i.e. for V = 2) [27, 30]. To that end, recall that a set Λ of predicate
liftings for a functor F : Set → Set is separating if for every set X the cone of all maps
λ(f) : FX → 2 with λ ∈ Λ and f : X → 2 is mono. For a Set-coalgebra (X, α), let us denote
by beqα the standard notion of behavioural equivalence, as explained in preliminaries. Let
Equ = 2-Catsym (the category of equivalence relations).

The following result generalizes [26, Theorem 11] (which applies only to functor liftings
that arise from lax extensions, in particular requires modalities to be monotone):

▶ Theorem 35. Let FΛ : Equ → Equ be a Kantorovich lifting that preserves discrete equival-
ence relations. Then, for every F-coalgebra (X, α), bdFΛ

α = beqα.
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We now can recover the general expressivity result [27, 30] for V = 2 as a direct consequence
of Corollary 34 and Theorem 35.

▶ Theorem 36 (Qualitative coalgebraic Hennessy-Milner theorem). Let Λ be a separating set
of predicate liftings for a finitary functor F : Set → Set. Then the coalgebraic logic L(Λ) is
expressive; that is, if two states in an F-coalgebra are logically indistinguishable, then they
are behaviourally equivalent.

Next, we obtain a characterization of L-density. Recall that an element x of an ordered set
is way above an element y if whenever y ≥

∧
A for a codirected set A, then x ≥ a for some

a ∈ A.

▶ Theorem 37. Suppose that V satisfies the condition

k =
∨

{u ⊗ u | u ∈ V and for all v ∈ V, hom(u, v) is way above v}. (2)

Then L characterizes initiality on finite symmetric V-categories.

We thus obtain the following quantalic generalization of the previous coalgebraic Hennessy-
Milner theorem for finitarily separable [0, 1]⊕-lax extensions [34, Corollary 8.6]:

▶ Corollary 38. Let V be a quantale satisfying (2), and let F : V-Catsym → V-Catsym be a
Λ-Kantorovich functor that admits as an L-dense subfunctor a lifting of a finitary Set-functor.
If every predicate lifting in Λ is L-continuous, then L(Λ) is expressive.

Specifically, besides allowing more general quantales, we drop the assumptions that the
modalities in Λ are monotone and that F is a lifting of a Set-functor, and we weaken the
assumption of non-expansiveness of predicate liftings to L-continuity.

The following fact sometimes allows us to enlarge the class on which initiality is charac-
terized:

▶ Proposition 39. Let C be a Vs-closure operator that characterizes initiality on I, and let J
be a class of symmetric V-categories. If for every X ∈ J , the cocone (i : Y → X)Y ∈I, i initial
coreflects C-density, then C characterizes initiality on J .

In particular, we obtain by Example 26.2 that for V = [0, 1]⊕, L characterizes initiality on
totally bounded pseudometric spaces, so we can, in this case, further relax the assumptions
of Corollary 38 as follows.

▶ Definition 40. A functor F : V-Catsym → V-Catsym, for V = [0, 1]⊕, is totally bounded if for
every symmetric V-category X and every t ∈ FX, there exists a totally bounded X0 ⊆ X

and t′ ∈ FX0 such that t = Fi(t′), where i is the inclusion X0 → X.

▶ Corollary 41. Let F : [0, 1]⊕-Catsym → [0, 1]⊕-Catsym be a Λ-Kantorovich functor that
admits an L-dense totally bounded subfunctor. If every predicate lifting in Λ is L-continuous,
then L(Λ) is expressive.

We conclude with some variants employing order-theoretic closure operators:

▶ Theorem 42. Let V be a quantale such that for every u ∈ V the map u ⊗ − preserves
codirected infima. Then the closure operator cInf∨ characterizes initiality on finite symmetric
V-categories.

Notice that the assumption on V in the above theorem is satisfied in particular when V is a
frame (Example 2.1).
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▶ Corollary 43. Let V be a quantale such that for every u ∈ V the map u ⊗ − preserves
codirected infima, and let F : V-Catsym → V-Catsym be a Λ-Kantorovich functor that admits
as an L-dense subfunctor a lifting of a finitary Set-functor. If every predicate lifting in Λ
preserves codirected infima and finite suprema, then the coalgebraic logic L(Λ) is expressive.

▶ Theorem 44. Let V be a completely distributive quantale such that for every u ∈ V the
map u ⊗ − preserves codirected infima. Then the closure operator Inf characterizes initiality
on finite symmetric V-categories.

▶ Corollary 45. Let V be a completely distributive quantale such that for every u ∈ V the
map u ⊗ − preserves codirected infima, and let F : V-Catsym → V-Catsym be a Λ-Kantorovich
functor that admits as an L-dense subfunctor a lifting of a finitary Set-functor. If every
predicate lifting in Λ preserves all infima, then the coalgebraic logic L(Λ) is expressive.

▶ Remark 46. We note that the preservation conditions imposed on the predicate liftings in
Corollary 43 and Corollary 45 (which instantiate the continuity condition from Theorem 32)
are quite restrictive: Modalities must be diamond-like in Corollary 43, and box-like in
Corollary 45. On the other hand, these conditions depend only on the underlying lattice of a
quantale and, therefore, have the potential to be applied to multiple quantales based on the
same lattice.

8 Examples

We apply the concretizations of the quantitiative coalgebraic Hennessy-Milner theorem
(Theorem 32) proved in the previous section (Corollaries 34, 38, 41, 43, and 45) to the logics
discussed in Example 1 and variants thereof.

1. Metric transition systems. We consider finitely branching metric transition systems
in which every state is labelled with a non-negative extended real number number (while
transitions are unlabelled). Such systems are coalgebras for the functor F = [0, ∞] × Pω,
where Pω denotes the finite powerset functor. Also, we aim for an example based on
ultrametrics, so we we consider the quantale [0, ∞]max (see Example 2(3a)). We define a
nullary predicate lifting o (formally accommodated as a unary predicate lifting that ignores
its argument) by oX(r, S) = r, and a unary predicate lifting ♢ by

♢X(f)(r, S) =
∨

x∈S f(x).

We write F̄ for the Kantorovich lifting of F under the set Λ of these modalities. We then
obtain that the coalgebraic logic L(Λ) is expressive, via Corollary 43: F̄ is itself a lifting
of a finitary set functor, o trivially preserves all infima and suprema, and one checks easily
that ♢ preserves codirected infima and finite suprema. Similarly, by replacing the predicate
lifting ♢ with the predicate lifting □ given by

□X(f)(r, S) =
∧

x∈S f(x).

we obtain that the corresponding coalgebraic logic L(Λ) is expressive via Corollary 45. We
note that these results still hold if, for example, we replace the quantale [0, ∞]max with the
quantale [0, ∞]+ (See Example 2(3b)); that is, if we are interested in all generalized metric
spaces, not only in the ultrametric ones. The metric version of these results relates to known
characteristic logics for metric transition systems [10, 31]; the ultrametric versions appear to
be new.
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2. □-valued powerset. The lattice □ from Example 1.2 can be equipped with the structure
of quantale by defining a commutative operator ∗, with B as a unit, ⊥ as a zero and
N ∗ N = ⊥, N ∗ ⊤ = N, ⊤ ∗ ⊤ = ⊤. The resulting quantale is finite, and hence our general
Corollary 34 applies to it, but not the previously existing expressivity theorem for quantale-
valued distances [35], for this quantale is not a value quantale [14]. The induced logic is a
paraconsistent four-valued logic with L(Λ) instantiated as follows:

ϕ ::= ⊤ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | u ∗ ϕ | homs(u, ϕ) | λ(ϕ) (u ∈ V, λ ∈ Λ)

where Λ can be defined in different ways, and the expressivity result remains true for
any such choice (for the respective Kantorovich lifting, which also depends on Λ). A
natural choice is Λ = {♢} where ♢ is interpreted as an instance of a generic formula:
♢X(p ∈ BX)(q : X → V) =

∨
x∈X p(x)∗q(x). This predicate lifting was previously considered

by Rivieccio et al [28], who interpreted it over generalized Kripke frames, which are precisely
coalgebras for the functor B as per Example 1.2.

3. Discrete probabilistic transition systems. As mentioned already in Example 10, the
functor DE(1 + −)A is the Kantorovich lifting of the finitary functor D(1 + −)A w.r.t
Λ = {Ea,+1 | a ∈ A}. Moreover, it is easy to see that every predicate lifting in Λ gives
rise to an L-continuous predicate lifting for DE(1 + −)A. Hence, we obtain by Corollary 38
that quantitative probabilistic modal logic – the coalgebraic modal logic generated by the
expectation modality – is expressive [32, 2].

4. Weighted transition systems with negative weights. The functor W defining our variant
of weighted transition systems is Kantorovich for the set Λ of (non-monotone) predicate
liftings ⟨a⟩+r, for a ∈ A and r ∈ R, defined by

J⟨r⟩K(f)(t) = min
{

1, max
{

0, r + 1
2

∑
x∈X f(x)t(a)(x)

}}
Since W is, moreover, a lifting of a finitary set functor, we obtain by Corollary 38 the new
result that the coalgebraic modal logic L(Λ) is expressive.

5. Continuous probabilistic transition systems. Our variant K of the Kantorovich functor
admits, by definition, a totally bounded L-dense subfunctor that assigns to a space X the set of
all Borel distributions on X with totally bounded support. Hence, as A is finite, it follows that
the functor K(1 + −)A admits a totally bounded L-dense subfunctor. Furthermore, as noted
already in Example 10, the functor K(1 + −)A is Λ-Kantorovich, where Λ = {Ea,+1 | a ∈ A},
and it is easy to see that every predicate lifting in Λ is L-continuous. Therefore, we obtain by
Corollary 41 that the coalgebraic modal logic L(Λ) is expressive, thus essentially recovering
expressivity of quantitative probabilistic modal logic on continuous probabilistic transition
systems [33, 32].

9 Conclusions and Further Work

We have presented a quantitative Hennessy-Milner theorem in coalgebraic and quantalic
generality, covering behavioural distances on a wide range of system types. Notably, our
results apply to functors on metric spaces that fail to be liftings of any set functor, such
as the (tight) Borel distribution functor. A key factor in the technical development was
the interplay between notions of density on the one hand, and initiality of cones in the
topological category of generalized metric spaces taking values in a quantale V (V-categories)
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on the other hand. We have illustrated how to instantiate our results in several salient cases,
in particular continuous probabilistic transition systems and weighted transition systems
allowing negative weights.

For simplicity, we have worked exclusively with symmetric V-categories throughout;
nevertheless, we stress that our results carry over straightforwardly to the non-symmetric
case, which covers quantitative analogues of simulation preorders (indeed, some of the existing
quantitative coalgebraic Hennessy-Milner theorems already do apply to non-symmetric
distances [35, 22, 36]). In fact, we expect our main expressivity theorem to be easily
transported to topological categories that admit an initial dense object (which takes the
role of Vs). We leave this issue to future work. Another important direction is to develop a
general coalgebraic treatment of characteristic logics for non-branching-time (e.g. linear-time)
behavioural distances (e.g. [10, 12]), possibly building on recent results in this direction [7].
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