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1 Introduction

This paper presents results on terminal coalgebras and initial algebras for certain endofunctors
on the categories Haus of Hausdorff topological spaces and Met of extended metric spaces.
These results are based on the terminal coalgebra construction first presented by Adámek [2]
(in dual form) and independently by Barr [8]. Given an endofunctor F , iterate F on the
unique morphism ! : F1→ 1 to obtain the following ωop-chain

1 !←− F1 F !←−−− FF1 F F !←−−−− FFF1 F F F !←−−−−− · · · (1)

Assume that the limit exists, and denote it by Vω and the limit cone by ℓn : Vω → F n1
(n < ω). We obtain a unique morphism m : FVω → Vω such that for all n ∈ ωop we have

Fℓn =
(
FVω

m−−→ Vω
ℓn+1−−−−→ F n+11

)
. (2)
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21:2 On Kripke, Vietoris and Hausdorff Polynomial Functors

If F preserves the limit Vω, then m is an isomorphism. Its inverse yields the terminal
coalgebra m−1 : Vω → FVω; shortly νF = Vω, and we say that the terminal coalgebra is
obtained in ω steps.

This technique of finitary iteration is the most basic and prominent construction of
terminal coalgebras. However finitary iteration requires that the limit in (1) exists and also
that it is preserved by the functor. It does not apply on Set to the finite power-set functor
Pf . For that functor FVω ̸∼= Vω. However, a modification of finitary iteration does apply, as
shown by Worrell [23]. One makes a second infinite iteration, iterating F on the morphism
m : FVω → Vω rather than on ! : F1→ 1, obtaining a chain

Vω
m←−− Vω+1

F m←−−− Vω+2
F F m←−−−−− · · · (3)

Its limit is denoted by Vω+ω = limn<ω Vω+n with the limit cone l̄n : Vω+ω → Vω+n, for n < ω.
Worrell’s insight was that this second limit, Vω+ω, is preserved by every finitary functor.
We prove that this also works for set functors built from Pf using product, coproduct,
and composition (which may be non-finitary). These are the Kripke polynomial functors
mentioned in our title.

We are interested in other settings where terminal coalgebras may be built using either
the limit of (1) or the limit of (3). We study fixed points of naturally occurring endofunctors
on Hausdorff spaces and metric spaces, endofunctors built from the Vietoris and Hausdorff
functors and several other natural constructions.

In the category Top a good analogy of Pf is the Vietoris functor V assigning to every
space X the space of all compact subsets equipped with the Vietoris topology (Section 4).
Hofmann et al. [11] define Vietoris polynomial functors as those endofunctors on Top built
from V , the constant functors, and the identity functor, using product, coproduct, and
composition. We study this on the subcategory Haus of Hausdorff spaces and use that
V : Haus→ Haus preserves limits of ωop-chains, a fact for which we present a new proof. This
implies that for Vietoris polynomial functors (defined as above but with V in lieu of Pf),
the terminal coalgebra exists and is the limit of (1). The original proof [11] uses a result by
Zenor [24] whose proof is incomplete. The existence of initial algebras follows.

We also present a result for the category Met of metric spaces and nonexpanding maps.
The role of the Vietoris functor is played by the Hausdorff functor H assigning to every
space X the space HX of all compact subsets with the Hausdorff metric.

Other contributions. In addition to the aforementioned results we show results obtained by
either varying the category or the endofunctor. For example, consider again the Hausdorff
polynomial functors. Whenever F is such a functor and the constants involved in its
construction are complete spaces, νF again turns out to be complete. Analogous results hold
for compact spaces, or ultrametric spaces. Finally, we present a proof of the description of
νPf and Vω for Pf exhibited by Worrell [23] (the latter without a proof).

We simplify a proof of a known negative result: the variation of H obtained by moving
from compact sets to closed sets has no fixed points.

Related work. Our work is more general and hence improves results of Abramsky [1],
Hofmann et al. [11], and Worrell [23].

There are numerous results about the existence and construction of terminal coalgebras
in the literature. At several places we discuss other possible approaches to our results.
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2 Preliminaries

We review a few preliminary points. We assume that readers are familiar with basic notions
of category theory as well as algebras and coalgebras for an endofunctor. We denote by Set
the category of sets and functions, Top is the category of topological spaces and continuous
functions, and Met is the category of (extended) metric spaces (so we might have d(x, y) =∞)
and non-expanding maps: the functions f : X → Y where d(f(x), f(x′)) ≤ d(x, x′) holds for
every pair x, x′ ∈ X. Note that this class of morphisms is smaller than the class of continuous
functions between metric spaces.

▶ Remark 2.1. Consider an ωop-chain

X0
f0←−− X1

f1←−− X2
f2←−− · · · (4)

1. In Set, the limit L consists of all sequences (xn)n<ω, xn ∈ Xn that are compatible:
fn(xn+1) = xn for every n. The limit projections are the functions ℓn : L→ Xn defined
by ℓn((xi)) = xn.

2. In Top, the limit is again carried by the same set L as in Set, and the limit projections ℓn

are also the same. The topology on L has as a base the sets ℓ−1
n (U), for U open in Xn.

3. In Met, the limit is again carried by the same set L, and the same limit projections ℓn.
The metric on L is defined by d((xn), (yn)) = supn<ω d(xn, yn).

Smooth Monomorphisms. In addition to terminal coalgebras, we also study initial algebras
for the functors of interest in this paper. For this, we call on a general result which allows
one to infer the existence of the initial algebra for an endofunctor F from the existence of a
terminal coalgebra for F (or in fact of any algebra with monic structure).

For a class M of monomorphisms we denote by SubM(A) the collection of subobjects
of A represented by monomorphisms from M. To say that this is a dcpo means that it is a
set which (when ordered by factorization in the usual way) is a poset having directed joins.

▶ Definition 2.2 [4, Def. 3.1]. LetM be a class of monomorphisms closed under isomorphisms
and composition.
1. We say that an object A has smooth M-subobjects provided that SubM(A) is a dcpo

with bottom ⊥, where the least element and directed joins are given by colimits of the
corresponding diagrams of subobjects.

2. The class M is smooth if every object of A has smooth M-subobjects.
A category has smooth monomorphisms if the class of all monomorphisms is smooth.

▶ Example 2.3.
1. The categories Set and Top have smooth monomorphisms, and so does the full subcategory

of Hausdorff spaces. This is easy to see.
2. The category Met also has smooth monomorphisms (these are the injective non-expanding

maps) [4, Lemma A.1].
The full subcategory CMS of complete metric spaces does not have smooth monomorph-
isms. However, strong monomorphisms (isometric embeddings) are smooth in both Met
and CMS [4, Lemma A.2].

3. Strong monomorphisms (subspace embeddings) in Top are not smooth [3, Ex. 3.5].

▶ Theorem 2.4 [4, Cor. 4.4]. LetM be a smooth class of monomorphisms. If an endofunctor F

preserving M has a terminal coalgebra, then it has an initial algebra.

Note that loc. cit. states more: given any algebra m : FA↣ A where m lies inM, the initial
algebra exists and is a subalgebra of (A, m).

CALCO 2023
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3 Kripke Polynomial Functors

We turn to the first collection of functors mentioned in the title of this paper: the Kripke
polynomial functors on Set. The name stems from Kripke structures used in modal logic.
Our definition below is a slight generalization of the (finite) Kripke polynomial functors
presented by Jacobs [12, Def. 2.2.1]. (Kripke polynomial functors using the full power-set
functor were originally introduced by Rößiger [19].) We admit arbitrary products in lieu of
just arbitrary exponents.

▶ Definition 3.1. The Kripke polynomial functors F are the set functors built from the finite
power-set functor, constant functors and the identity functor, by using product, coproduct
and composition. In other words, Kripke polynomial functors are built according to the
following grammar:

F ::= Pf | A | Id |
∏

i∈I Fi |
∐

i∈I Fi | FF,

where A ranges over all sets (and is interpreted as a constant functor) and I is an arbitrary
index set.

▶ Remark 3.2. The constant functors could be omitted from the grammar since they are
obtainable from the rest of the grammar. The constant functor with value 1 is the empty
product. For each set A, the constant functor with value A is then a coproduct: A =

∐
a∈A 1.

▶ Example 3.3. The Kripke polynomial functor FX = Pf(A×X) is the type functor of
finitely branching labelled transition systems with a set A of actions.

▶ Remark 3.4. An endofunctor is finitary if it preserves directed colimits. Worrell [23]
proved that for every finitary set functor the terminal coalgebra is obtained in ω + ω steps.
We prove a version of Worrell’s result but for Kripke polynomial functors.

There are Kripke polynomial set functors which are not finitary. One example of such a
functor is F (X) = XN, where N is the set of natural numbers. There are also finitary set
functors which are not Kripke polynomial functors. One example is the functor assigning to
a set X the set of nonempty finite subsets of X.

Our proof below uses ideas from Worrell’s work [23].

▶ Theorem 3.5. Every Kripke polynomial functor F has a terminal coalgebra obtained in
ω + ω steps: νF = Vω+ω.

Proof.
1. We first observe that F preserves monomorphisms and intersections of monomorphisms.

This is clear for constant functors and for Id, and it is easy to see for Pf . Moreover, these
properties are clearly preserved by product, coproduct and composition.

2. Let (Xn)n<ω be an ωop-chain in Set. Then the canonical morphism m : F (lim Xn) →
lim FXn is monic. This is obvious for constant functors and Id. Let us check it for Pf .
Denote the limit projections by ℓn : lim Xn → Xn and pn : lim PfXn →PfXn (n < ω);
the canonical morphism m is unique such that pn · m = Pfℓn. Now given S ̸= T in
Pf(lim Xn), without loss of generality we can pick x ∈ T \ S. Using that the ℓn are
jointly monic, for every s ∈ S we can choose n < ω such that ℓn(x) ̸= ℓn(s). Since S

is finite, this choice can be performed independently of s ∈ S. Thus ℓn(x) ̸∈ ℓn[S], and
hence Pfℓn(T ) ̸= Pf(S). Thus, Pfℓn is a jointly monic family. Since pn ·m = Pfℓn, we
see that m is monic.
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3. An induction on Kripke polynomial functors F now shows that m : Vω+1 → Vω is monic.
We have seen this for the base case functors in item 2. The desired property that m

is monic is preserved by products, coproducts and composition. In particular, for a
composition FG note that the canonical morphism for FG is the composition

FG(lim Xn) F m−−−→ F (lim GXn) m′

−−−→ lim FGXn,

where m is the canonical morphism for G w.r.t. the given ωop-chain and m′ the one for
F and the ωop-chain (GXn)n<ω. So this morphism m′ · Fm is monic since both m and
m′ are so and F preserves monomorphisms by item 1.

4. Since F preserves monomorphisms, we see that Fm, FFm etc. are monic. We obtain a
decreasing chain of subobjects Vω+n ↣ Vω. Therefore, the limit Vω+ω = limn<ω Vω+n is
simply the intersection of these subobjects. From item 1 we know that F preserves this
limit. It follows that νF = Vω+ω, as desired. ◀

▶ Corollary 3.6. Every Kripke polynomial functor F on Set has an initial algebra.

This follows from Theorem 3.5, Example 2.3.1, and Theorem 2.4 since F preserves mono-
morphisms.

▶ Example 3.7 [23]. The functor Pf has a terminal coalgebra consisting of all finitely
branching strongly extensional trees (up to isomorphism of trees). Moreover, the limit Vω

consists of all compactly branching strongly extensional trees. We present a proof of these
results in Appendix A (Theorem A.15).

4 Vietoris Polynomial Functors

Hofmann et al. [11] proved that Vietoris polynomial functors on the category Haus of
Hausdorff spaces have terminal coalgebras obtained in ω steps. Our proof is slightly different
from theirs because we wish to avoid a result stated by Zenor [24] whose proof is incomplete.

Recall that a base of a topology is a collection B of open sets such that every open set is
a union of members of B. A subbase is a collection of open sets whose finite intersections
form a base. For every collection B of subsets of the space, there is a smallest topology for
which B is a (sub)base, the family of unions of finite intersections from B.

▶ Definition 4.1. 1. Let X be a topological space. We denote by V X the space of compact
subsets of X equipped with the “hit-and-miss” topology. This topology has as a subbase
all sets of the following forms:

U♢ = {R ∈ V X : R ∩ U ̸= ∅} (R hits U),

U□ = {R ∈ V X : R ⊆ U} (R misses X \ U),
(5)

where U ranges over the open sets of X. We call V X the Vietoris space of X, also known
as the hyperspace of X.

2. Recalling that the image of a compact set under a continuous function is also compact,
for a continuous function f : X → Y we put V f(A) = f [A] for every compact subset A

of X.

▶ Remark 4.2.
1. For a compact Hausdorff space X, Vietoris [22] defined V X to consist of all closed subsets

of X. These are the same as the compact subsets in this case. In the coalgebraic literature,
V X has also mostly been studied for spaces X which are compact Hausdorff. However,

CALCO 2023
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the “classic Vietoris space” (using closed subsets) does not yield a functor on Top (see
Hofmann et al. [11, Rem. 2.28]). Hofmann et al. [11, Def. 2.27] call the functor V in
Definition 4.1 the compact Vietoris functor.

2. Michael [16, Thm. 4.9.8] proved that X is Hausdorff iff so is V X.
3. Vietoris [22] originally proved that for a compact Hausdorff space X (the classic Vietoris

space) V X is compact Hausdorff, too.
4. A Stone space is a compact Hausdorff space having a base of clopen sets. If X is a Stone

space, so is V X; see [16, Thm. 4.9.9] or [13, Section III.4].

▶ Proposition 4.3. For every continuous function f : X → Y and every open U ⊆ Y ,
(f−1(U))♢ = (V f)−1(U♢), and (f−1(U))□ = (V f)−1(U□).

Proof. Let R ∈ V X. Observe that

R ∩ f−1(U) ̸= ∅ ⇐⇒ f [R] ∩ U ̸= ∅ ⇐⇒ f [R] ∈ U♢ ⇐⇒ R ∈ (V f)−1(U♢).

This proves our first assertion for all R. For the second assertion, we have

R ⊆ f−1(U) ⇐⇒ f [R] ⊆ U ⇐⇒ f [R] ∈ U□ ⇐⇒ R ∈ (V f)−1(U□). ◀

▶ Corollary 4.4. The mappings X 7→ V X and f 7→ V f form a functor V on Top.

Indeed, Proposition 4.3 shows that for every subbasic open set of V Y its inverse image
under V f is open in V X. This establishes continuity of V f .

▶ Notation 4.5. We denote by Haus, KHaus and Stone the full subcategories of Top given
by all Hausdorff spaces, all compact Hausdorff spaces and all Stone spaces, respectively. By
Remark 4.2.2–4, V restricts to these three full subcategories, and we denote the restrictions
by V as well.

▶ Remark 4.6.
1. The full subcategories Haus, KHaus and Stone are closed under limits in Top. In particular,

the inclusion functors preserve and reflect limits. In fact, KHaus is a full reflective
subcategory: the reflection of a space is its Stone-Čech compactification.

2. If an ωop-chain as in (4) consists of surjective continuous maps between compact Hausdorff
spaces, then each limit projection ℓn : limk<ω Xk → Xn is surjective, too. Moreover,
Eilenberg and Steenrod [9, Cor. 3.9] prove the surjectivity of projections for all codirected
limits of surjections between compact Hausdorff spaces; see also Ribes and Zalesskii [18,
Prop. 1.1.10]).

3. If X has a base B which is closed under finite unions, then the sets U♢ and U□ for U ∈ B
already form a subbase of V X. Indeed, given a set S of open subsets of X we have
(
⋃
S)♢ =

⋃
{U♢ : U ∈ S}. Moreover, it is easy to see that

(
⋃
S)□ =

⋃
{
( ⋃
F

)□ : F ⊆ S finite};

“⊇” is trivial, and for “⊆” use compactness of R ∈ V X. Hence, if S consists of basic
open sets from B, then

⋃
F ∈ B due to its closure under finite unions. Thus, (

⋃
S)□ is a

union of sets of the form U□ for U ∈ B.

▶ Proposition 4.7. The functor V : Haus→ Haus preserves limits of ωop-chains.

Proof. Consider an ωop-chain as in (4). Let M = lim V Xn, with limit cone rn : M → V Xn.
Let m : V L→M be the unique continuous map such that V ℓn = rn ·m for all n < ω. We
shall prove that m is a bijection and then that its inverse is continuous, which proves that m

is an isomorphism.
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1. Injectivity of m follows from the fact that V ℓn (n < ω) forms a jointly monic family,
as we will now prove. Suppose that A, B ∈ V L satisfy ℓn[A] = ℓn[B] for every n < ω.
We prove that A ⊆ B; by symmetry A = B follows. Given a ∈ A, we show that every
open neighbourhood of a has a nonempty intersection with B. Since B is closed, we then
have a ∈ B (otherwise L \B would be an open neighbourhood of a disjoint from B). It
suffices to prove the desired property for the basic open neighbourhoods ℓ−1

n (U) of a,
for U open in Xn (see Remark 2.1.2). Since ℓn[A] = ℓn[B] we have some b ∈ B which
satisfies ℓn(a) = ℓn(b). Then b ∈ ℓ−1

n (U) ∩B.
2. Surjectivity of m. An element of M is a sequence (Kn)n<ω of compact (hence closed)

subsets Kn ⊆ Xn such that fn[Kn+1] = Kn for every n < ω. We need to find a compact
set K ⊆ L such that ℓn[K] = Kn for every n < ω. With the subspace topology, Kn

is itself a compact space. The connecting maps fn : Xn+1 → Xn restrict to surjective
continuous maps Kn+1 ↠ Kn. Thus, the spaces Kn form an ωop-chain of surjections in
KHaus. Let K be the limit with projections pn : K ↠ Kn. Then K is a subset of L, and
each projection pn is the restriction of ℓn to Xn.
Let us check that the topology on K is the subspace topology inherited from L. A base
of the topology on K is the family of sets p−1

n (U) as U ranges over the open subset of
Kn. Each U is of the form V ∩Kn for some open V of Xn, and p−1

n (U) = ℓ−1
n (V ) ∩K.

Thus p−1
n (U) is open in the subspace topology, and the converse holds as well.

The maps pn are surjective by Remark 4.6.2. Moreover, K is a compact space by
Remark 4.6.1. Thus, K is the desired compact set in V L such that pn[K] = Kn for all n.

3. Finally, we prove that the inverse k : M → V L, say, of m is continuous. We know that
the sets ℓ−1

n (U), for U open in Xn, form a base of L. Moreover, this base is closed under
finite unions. By Remark 4.6.3 and using Proposition 4.3 we obtain that V L has a
subbase given by the following sets

(V ℓn)−1(U♢) = (ℓ−1
n (U))♢ and (V ℓn)−1(U□) = (ℓ−1

n (U))□ for U open in Xn.

It suffices to show that the inverse images of these subbasic open sets of V L are open in
M . For V ℓ−1

n (U♢) with U open in Xn we use that V ℓn · k = rn clearly holds to obtain

k−1(
V ℓ−1

n (U♢) = r−1
n (U♢),

which is a basic open set of M by Remark 2.1.2. For the subbasic open sets V ℓ−1
n (U□)

the proof is similar. ◀

▶ Corollary 4.8. The restrictions of V to KHaus and Stone preserve limits of ωop-chains.

Indeed, use Remark 4.6.1.

▶ Remark 4.9. A codirected limit is the limit of a diagram whose scheme is of the form P op

for a directed poset P . Proposition 4.7 and Corollary 4.8 hold more generally for codirected
limits. The argument is the same. This proves a result stated in Zenor [24], but with an
incomplete proof.

The following definition is due to Kupke et al. [14] for Stone spaces, whereas Hofmann et
al. [11, Def. 2.29] use arbitrary topological spaces, but they later essentially restrict constants
to be (compact) Hausdorff, stably compact or spectral spaces.

▶ Definition 4.10. The Vietoris polynomial functors are the endofunctors on Top built
from the Vietoris functor V , the constant functors, and the identity functor, using product,
coproduct, and composition. Thus, the Vietoris polynomial functors are built according to
the following grammar

F ::= V | A | Id |
∏

i∈I Fi |
∐

i∈I Fi | FF,

where A ranges over all topological spaces and I is an arbitrary index set.

CALCO 2023
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▶ Theorem 4.11. Let F : Top→ Top be a Vietoris polynomial functor, and assume that all
constants in F are Hausdorff spaces. Then F has a terminal coalgebra obtained in ω steps,
and νF = Vω is a Hausdorff space.

Proof. An easy induction on Vietoris polynomial functors F shows that:
1. The functor F has a restriction F0 : Haus→ Haus.
2. The restriction F0 preserves surjective maps; the most important step being for V itself,

and this uses the fact when f : X → Y is continuous and X and Y are Hausdorff, the
inverse images of compact sets are compact.

3. The functor F0 preserves limits of ωop-chains; the most important step is done in Propos-
ition 4.7.

The terminal coalgebra result for F0 follows from the fact which we have mentioned in
Section 2: νF is the limit of the terminal-coalgebra ωop-chain F n

0 1 (n < ω). Since Haus is
closed under limits in Top and F n

0 1 = F n1, the functor F has the same terminal coalgebra
νF = lim F n1. ◀

▶ Corollary 4.12. Let F : Top→ Top be a Vietoris polynomial functor, and assume that all
constants in F are Hausdorff spaces. Then F has an initial algebra.

This follows from Theorem 4.11, Example 2.3.1 and Theorem 2.4, since an easy induction
shows that F preserves monomorphisms.

▶ Corollary 4.13. Let F : Top→ Top be a Vietoris polynomial functor in which all constants
are compact Hausdorff spaces and only finite coproducts are used. Then the terminal coalgebra
νF is a compact Hausdorff space.

Proof. The functor F restricts to an endofunctor on KHaus. Thus, the terminal-coalgebra
ωop-chain F n1 lies in KHaus. Moreover, KHaus is closed under limits in Top because it is a full
reflective subcategory (Remark 4.6.1). Thus, νF = limn<ω F n1 is compact Hausdorff. ◀

▶ Corollary 4.14. Let F : Top→ Top be a Vietoris polynomial functor in which all constants
are Stone spaces and only finite coproducts are used. Then the terminal coalgebra νF is a
Stone space.

The proof is similar.

▶ Remark 4.15. Corollary 4.13 essentially appears in work by Hofmann et al. [11, Thm. 3.42]
(except for the convergence ordinal). Corollary 4.14 is due to Kupke et al. [14]. Our proof
using convergence of the terminal-coalgebra chain is different than the previous ones.

▶ Example 4.16. The terminal coalgebra for V itself was identified by Abramsky [1]. By
what we have shown, it is Vω = lim V n1. An easy induction on n shows that V n1 is Pn

f 1
with the discrete topology; the key point is that each set Pn

f 1 is finite. The topology was
described in Remark 2.1.2: it has as a base the sets ∂−1

n (U) as U ranges over the subsets of
Pn

f 1. By Corollary 4.14, νF is a Stone space.
In Appendix A, we present for Pf a concrete description of Vω as the set of compactly

branching strongly extensional trees.

▶ Remark 4.17. Note that Theorem 4.11 also holds for Vietoris polynomial functors when we
take Haus as our base category. Hofmann et al. [11] consider other full subcategories of Top,
and they also study the completeness of the category of coalgebras for Vietoris polynomial
functors F (however, they restrict to using finite products and finite coproducts in their
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definition of Vietoris polynomial functors). For a Vietoris polynomial functor F on Haus,
the category of coalgebras is complete [11, Cor. 3.41]. Moreover, every subfunctor of F has
a terminal coalgebra [11, Cor. 4.6].

▶ Remark 4.18. Hofmann et al. [11, Ex. 2.27(2)] also consider a related construction called
the lower Vietoris space of X. It is the set of all closed subsets of X with the topology
generated by all sets U♢, cf. (5). This again yields a functor on Top: a given continuous
function is mapped to A 7→ f [A], where f [A] denotes the closure of f [A]. Furthermore,
one has a corresponding notion of lower Vietoris polynomial functors. They prove that
for such functors F on the category of stably compact spaces (defined in [11]), Coalg F is
complete [11, Thm. 3.35]. Furthermore, if a lower Vietoris polynomial functor F on Top can
be restricted to that category, then it has a terminal coalgebra obtained by finite iteration:
νF = Vω [11, Thm. 3.36]. Similar results hold for the category of spectral spaces and spectral
maps.

▶ Remark 4.19. Let us mention a very general result which applies in many situations
to deliver a terminal coalgebra: Makkai and Paré’s Limit Theorem [15, Thm. 5.1.6]. It
implies that every accessible endofunctor F : A → A on a locally presentable category has
an initial algebra and a terminal coalgebra. (Indeed, the theorem implies that the category
of F -coalgebras is cocomplete.) This result cannot be used here because Haus is not locally
presentable: it does not have a small set of objects that is colimit-dense [3, Prop. 8.2].

▶ Open Problem 4.20.
1. Does every Vietoris polynomial functor on Top have a terminal coalgebra?
2. Does every Vietoris polynomial functor on KHaus as in Corollary 4.13 have an initial

algebra?

Item 1 above is equivalent to asking whether the result that νF exists for every Vietoris
polynomial functor would remain true if we allowed non-Hausdorff constants.

5 Hausdorff Polynomial Functors

Analogously to the Vietoris polynomial functors on Top, we introduce Hausdorff polynomial
functors on Met. Closer to the situation of Kripke polynomial functors on Set than to
Vietoris polynomial functors on Top, the Hausdorff polynomial functors on Met have terminal
coalgebras obtained in ω + ω steps.

▶ Notation 5.1. The Hausdorff functor H : Met→ Met maps a metric space X to the space
HX of all compact subsets of X equipped with the Hausdorff distance1 given by

d̄(S, T ) = max
(
supx∈S d(x, T ), supy∈T d(y, S)

)
, for S, T ⊆ X compact,

where d(x, S) = infy∈S d(x, y). In particular d̄(∅, T ) =∞ for nonempty compact sets T . For
a non-expanding map f : X → Y we have Hf : S 7→ f [S].

▶ Remark 5.2.
1. The functors V : Top→ Top and H : Met→ Met are closely related: for compact metric

spaces X the Vietoris space V X is precisely the topological space induced by the Hausdorff
space HX.

1 The definition goes back to Pompeiu [17] and was popularized by Hausdorff [10, p. 293].
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2. Some authors define HX to consist of all nonempty compact subsets of X. However,
Hausdorff [10] did not exclude ∅, and the above formula works (as already indicated)
without such an exclusion.

▶ Remark 5.3.

1. For a complete metric space, HX is complete again (see e.g. Barnsley [7, Thm. 7.1]).
Thus H restricts to a functor on the category CMS of complete metric spaces, which we
denote by the same symbol H.

2. Let UMet denote the category of (extended) ultrametric spaces: the full subcategory of
Met given by spaces satisfying the following stronger version of the triangle inequality:

d(x, z) ≤ max{d(x, y), d(y, z)}.

If X is an ultrametric space, then so is HX. To see this, let S, T, U ∈ HX. Write p for
max{d̄(S, T ), d̄(T, U)}. For each x ∈ S, there is some y ∈ T such that d(x, y) ≤ d̄(S, T ).
For this y, there is some z ∈ U such that d(y, z) ≤ d̄(T, U). So

d(x, z) ≤ max{d(x, y), d(y, z)} ≤ max{d̄(S, T ), d̄(T, U)} = p.

It follows that d(x, U) ≤ p. This for all x ∈ X shows that d(S, U) ≤ p. Note that
p = max{d̄(U, T ), d̄(T, S)}. The same argument shows that supz∈U d(z, S) ≤ p. So we
have d̄(S, U) ≤ p. This proves the ultrametric inequality.
We again denote the restriction of the Hausdorff functor to UMet is denoted by H.

3. For a discrete metric space X (where all distances are 0 or ∞), HX is the discrete space
formed by all finite subsets of X.

4. For an arbitrary metric space X, the finite subsets of X form a dense set in HX. Indeed,
given a compact set S ⊆ X, for every ε > 0, there exists a finite set T ⊆ S such that S is
covered by ε-balls around the points in T . Therefore d(x, T ) ≤ ε for all x ∈ S, and we
have d(y, S) = 0 for all y ∈ T . This implies that d̄(S, T ) ≤ ε.

▶ Example 5.4. For the Hausdorff functor, a terminal coalgebra is carried by the space
of all finitely branching strongly extensional trees equipped with the discrete metric. This
follows from the finite power-set functor Pf having its terminal coalgebra formed by those
trees (Example 3.7). Indeed, the terminal-coalgebra chain Vi (i ∈ Ord) for H is obtained
by equipping the sets in the terminal-coalgebra chain for Pf with the discrete metric.
Furthermore, since limits in Met (or CMS) are set-based, we see that both chains converge
in exactly ω + ω steps. Therefore νH = Vω+ω.

It follows that, unlike the Vietoris functor, the Hausdorff functor does not preserve limits
of ωop-chains: the terminal-coalgebras chain for H(−) does not converge before ω + ω steps
(see Example 5.4.5.4). Thus this functor does not preserve the limit Vω = limn<ω Vn.

▶ Definition 5.5. Let (Xn)n<ω be an ωop-chain in Met. A cone rn : M → Xn is isometric if
for all x, y ∈M we have d(x, y) = supn∈N d(rn(x), rn(y)).

By Remark 2.1.3, limit cones of ωop-chains in Met are isometric.
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▶ Proposition 5.6. The Hausdorff functor preserves isometric cones of ωop-chains.

Proof. Let (Xn)n<ω be an ωop-chain with connecting maps fn : Xn+1 → Xn. Given an
isometric cone ℓn : M → Xn (n < ω), we prove that the cone Hℓn : HM → HXn is also
isometric:

d̄(S, T ) = sup
n<ω

d̄(ℓn(S), ℓn(T )) for all compact subset S, T ⊆M .

We can assume that S and T are nonempty and finite: since finite sets are dense in HM by
Remark 5.3.4, and the maps ℓn are (non-expanding whence) continuous, the desired equality
then holds for all pairs in HM . The case where S or T is empty is trivial.

Since every ℓn is non-expanding, we only need to prove that d̄(S, T ) ≤ c holds for
c = supn<ω d̄(ℓn[S], ℓn[T ]). For this, we show that for every ε > 0, d̄(S, T ) ≤ c + ε. By
the definition of the Hausdorff metric d̄, it suffices to prove that for every x ∈ S we have
d(x, T ) ≤ c + ε. By symmetry, we then also have d(y, S) ≤ c + ε for every y ∈ T .

Given y ∈ T we have d(x, y) = supn<ω d(ℓn(x), ℓn(y)). Thus, there is a k < ω such that

d(x, y) ≤ d(ℓk(x), ℓk(y)) + ε.

Since T is finite, we can choose k such that this inequality holds for all y ∈ T . By definition,

d̄(ℓk(x), ℓk[T ]) = inf
y∈T

d(ℓk(x), ℓk(y)) in Xk.

Again using that T is finite, we can pick some y ∈ T such that d(ℓk(x), ℓk[T ]) = d(ℓk(x), ℓk(y)).
With this y we conclude that

d(x, T ) ≤ d(x, y) ≤ d(ℓk(x), ℓk(y))+ε = d(ℓk(x), ℓk[T ])+ε ≤ d̄(ℓk[S], ℓk[T ])+ε ≤ c+ε. ◀

▶ Remark 5.7. The Hausdorff functor preserves isometric embeddings and their intersections.
Indeed, for every subspace X of a metric space Y , a set S ⊆ X is compact in X iff it is so
in Y . Moreover, given S, T ∈ HX, their distances in HX and HY are the same. Thus, H
preserves isometric embeddings.

Given a collection Xi ⊆ Y (i ∈ I) of subspaces, a set S ⊆
⋂

i∈I Xi is compact in X iff it
is so in Y (and therefore in every Xi). Thus H preserves that intersection.

▶ Definition 5.8. The Hausdorff polynomial functors are the endofunctors on Met built
from the Hausdorff functor, the constant functors, and the identity functor, using product,
coproduct, and composition. Thus, the Hausdorff polynomial functors are built according to
the following grammar (cf. Definition 3.1):

F ::= H | A | Id |
∏

i∈I Fi |
∐

i∈I Fi | FF,

where A ranges over all metric spaces and I is an arbitrary index set.

▶ Theorem 5.9. Every Hausdorff polynomial functor F : Met→ Met has a terminal coalgebra
obtained in ω + ω steps: νF = Vω+ω.

Proof. An easy induction over the structure of Hausdorff polynomial functors shows that
each such functor F preserves:
1. isometric cones of ωop-chains, and
2. isometric embeddings and their intersections.
The most important step is done in Proposition 5.6 and Remark 5.7.

We conclude that in the terminal-coalgebra chain, the map m : Vω+1 → Vω from (2)
in the Introduction is an isometric embedding by item 1. By item 2, all of the maps
m, Fm, FFm, . . . in the chain (Vω+n)n<ω are isometric embeddings. Hence F preserves the
intersection of the ensuing subspaces of Vω viz. the limit Vω+ω = limn<ω Vω+n. Consequently,
we have νF = Vω+ω. ◀
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▶ Remark 5.10. Note that if a Hausdorff polynomial functor F uses only contants given
by complete metric spaces A, then it has a restriction to an endofunctor on CMS. Indeed,
by an easy induction on the structure of F one shows that FX is complete whenever X

is complete. Similarly, when F uses constants which are ultrametric spaces, then F has a
restriction on UMet.

Since CMS and UMet are closed under limits of ωop-chains in Met, we obtain the following

▶ Corollary 5.11. Every Hausdorff polynomial functor on CMet or UMet has a terminal
coalgebra obtained in ω + ω steps.

▶ Corollary 5.12. Every Hausdorff polynomial functor F on Met or CMS has an initial
algebra.

Indeed, since Hausdorff polynomial functors preserve isometric embeddings, this follows
from Theorem 5.9, Example 2.3.2, and Theorem 2.4.

▶ Remark 5.13. We mentioned another possible approach to terminal coalgebras in Re-
mark 4.19. Let us comment on the situation regarding the results on Met here. The
category Met is locally presentable (see e.g. [6, Ex. 2.3]). The Limit Theorem does imply
that on Met, the Hausdorff polynomial functors have terminal coalgebras. In more detail,
the Hausdorff functor is finitary: this was proved for its restriction to 1-bounded metric
spaces [5, Sec. 3], and the proof for H itself is the same. An easy induction then shows that
every Hausdorff polynomial functor is accessible, so that the Limit Theorem can be applied.
However, our elementary proof shows that the terminal coalgebra chain converges in ω + ω

steps. The proof of Makkai and Paré’s Limit Theorem does not yield such a bound.

6 Variation: the Closed Subset Functor on Met

We have been concerned with the Hausdorff functor taking a metric space M to the space of
its nonempty compact subsets. For two variations, let us consider Pcl : Met→ Met taking
M to the set of its closed subsets, and its subfunctor P ′

cl : Met→ Met taking M to the set
of its nonempty closed subsets. Both PclM and P ′

clM are given the Hausdorff metric. For a
non-expanding map f : X → Y , the non-expanding map Pclf : PclX →PclY sends a closed
subset S of X to the closure of f [S]. This makes Pcl and P ′

cl functors. Due to the empty
set, Pcl is a closer analog of H. It is natural to ask whether the positive results of Section 5
hold for these functors Pcl and P ′

cl. As proved by van Breugel [20, Prop. 8], the functor Pcl
has no terminal coalgebra. Turning to P ′

cl, this functor has an initial algebra given by the
empty metric space and a terminal coalgebra carried by a singleton metric space. But P ′

cl
has no other fixed points (see van Breugel et al. [21, Cor. 5]), where an object X is a fixed
point of an endofunctor F if FX ∼= X. We provide below a different, shorter proof.

▶ Remark 6.1.
1. A subset X of a metric space is δ-discrete if whenever x ̸= y are elements of X, d(x, y) ≥ δ.

Every subset of a δ-discrete set is δ-discrete, and every such set is closed. Moreover, if C

and D are different subsets of a δ-discrete set, then d̄(C, D) ≥ δ.
2. A subset S of an ordinal i is cofinal if for all j < i there is some k ∈ S with j ≤ k < i. If

S is not cofinal, then its complement i \ S must be so. (But it is possible that both S

and i \ S are cofinal in i.)
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▶ Theorem 6.2. There is no isometric embedding P ′
clM →M when |M | ≥ 2.

Proof. Suppose towards a contradiction that ι : PclM →M were an isometric embedding
where |M | ≥ 2. If all distances in M are 0 or∞, then P ′

clM is the nonempty power-set of M .
In this case, our result follows from the fact that for |M | ≥ 2, M has more nonempty subsets
than elements. Thus we fix distinct points a, b ∈M of finite distance, and put δ = d(a, b)/2.
Let A = {x ∈M : d(x, a) ≤ δ}, and let B = M \A. (In case d(a, b) =∞, we need to adjust
this by setting δ =∞, and B to be the points whose distance to a is finite. But we shall not
present the argument in this case.)

We proceed to define an ordinal-indexed sequence of elements xi ∈ M . We also prove
that each set Si = {xj : j < i} is δ-discrete, and we put

Xi =
{

A if {j < i : xj ∈ A} is cofinal in i

B else.

For i = 0, put x0 = ι({a, b}). Given an ordinal i > 0, we put

xi = ι(Xi ∩ Si).

Being nonempty (since i > 0) and δ-discrete, Xi ∩ Si lies in P ′
clM .

The remainder of our proof consists of showing that for every ordinal i:

d(xj , xk) ≥ δ for 0 ≤ j < k ≤ i.

We proceed by transfinite induction. Assume that our claim holds for every k < i and then
prove it for i. The base case i = 0 is trivial. For i > 0, note first that it follows from the
induction hypothesis that Si is δ-discrete.

Hence, we need only verify that d(xj , xi) ≥ δ when 0 ≤ j < i. We argue the case Xi = A;
when Xi = B, the argument is similar, mutatis mutandis. For j = 0, recall that x0 = ι({a, b})
and xi = ι(A ∩ Si). Since b has distance at least δ from every element of A, we obtain
d̄({a, b}, A ∩ Si) ≥ δ. As ι is an isometric embedding, this distance is also d(x0, xi). Now
let j > 0. Since we have Xi = A, let k be such that j ≤ k < i and xk ∈ A. Now either
xj = ι(A ∩ Sj) or else xj = ι(B ∩ Sj).

In the first case, note that xk ∈ A ∩ Si since k < i, and xk /∈ Sj by the definition of Sj

since k ≥ j. So A ∩ Sj and A ∩ Si are different nonempty subsets of the δ-discrete set Si.
Hence, the distance between these sets is at least δ, and therefore we have d(xj , xi) ≥ δ.

In the second case, B ∩ Sj is a nonempty subset of B, and thus again it not equal to
A ∩ Si. So again we see that d(xj , xi) = d̄(B ∩ Sj , A ∩ Si) ≥ δ.

We now obtain the desired contradiction since (xi) is an ordinal-indexed sequence of
pairwise distinct elements of M . ◀

▶ Corollary 6.3.
1. The functor P ′

cl : Met→ Met has no fixed points except the empty set and the singletons.
2. The functor Pcl : Met→ Met admits no isometric embedding PclM →M , whence has

no fixed point.

Proof. The first item is immediate from Theorem 6.2. For the second one, observe that
the inclusion map e : P ′

clM →PclM is an isometric embedding. Assuming that there were
an isometric embedding ι : PclM → M , we see that M cannot be empty (since PclM is
nonempty) or a singleton (since then |PclM | = 2). Hence |M | ≥ 2. Moreover, we obtain an
isometric embedding ι · e : P ′

clM →M , contradicting Theorem 6.2. ◀
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7 Summary

We have investigated versions of the finite power-set functor for the categories Haus and
Met. Our main results are that the Vietoris functor V , and indeed all Vietoris polynomial
functors, have terminal coalgebras obtained in ω steps of the terminal-coalgebra chain. The
same holds for the Hausdorff polynomial functors on Met, but the iteration takes ω + ω steps
and so the underlying reasons are different.

Our work on the Kripke and Hausdorff polynomial functors highlights a technique which
we feel could be of wider interest. To prove that a terminal coalgebra exists in a situation
where the limit of the ωop-chain (1) is not preserved by the functor, one could try to find
preservation properties which imply that the limit of the ωop-chain (Vω+n)n was preserved.
In Set, we used finitarity and preservation of monomorphisms and intersections, and in Met
we used preservation of intersections, isometric embeddings, and isometric cones.

We have also seen that for the functor Pcl on Met, there is no fixed point and hence no
terminal coalgebra. We leave open the question of whether every Vietoris polynomial functor
on Top has a terminal coalgebra.
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A Trees and the Limit of the Terminal-Coalgebra Chain for Pf

We give the description of Vω for Pf due to Worrell [23]. We provide a full exposition to the
results which Worrell stated without proof.

A tree is a directed graph t with a distinguished node root(t) from which every other
node can be reached by a unique directed path. Every tree in our sense must have a root, so
there is no empty tree. All of our trees are unordered. We always identify isomorphic trees.

▶ Definition A.1.
1. We use the notation tx for the subtree of t rooted in the node x of t.
2. A tree t is extensional if for every node x distinct children y and z of x give different

(that is, non-isomorphic) subtrees ty and tz.
3. A graph bisimulation between two trees t and u is a relation between the nodes of t and

the nodes of u with the property that whenever x and y are related: (a) every child of x

is related to some child of y, and (b) every child of y is related to some child of x.
4. A tree bisimulation between two trees t and u is a graph bisimulation R with the additional

properties that that
a. The nodes root(t) and root(u) are related; the roots are not related to other nodes; and
b. whenever two nodes are related, their parents are also related.

5. Two trees are tree bisimilar if there is a tree bisimulation between them.
6. A tree t is strongly extensional if every tree bisimulation on it is a subset of the diagonal

∆t = {(x, x) : x ∈ t}.

In other words, t is strongly extensional iff distinct children x and y of the same node
define subtrees tx and ty which are not tree bisimilar.

▶ Remark A.2.
1. Every composition and every union of tree bisimulations is again a tree bisimulation. In

addition, the opposite relation of every tree bisimulation is a tree bisimulation: if R is a
tree bisimulation from t to u, then Rop is a tree bisimulation from u to t. Consequently,
the largest tree bisimulation on every tree is an equivalence relation.

2. A subtree s of a strongly extensional tree t is strongly extensional. Indeed, if R is a tree
bisimulation on s, then R ∪∆t is a tree bisimulation on t. Since R ∪∆t ⊆ ∆t, we have
R ⊆ ∆s.
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▶ Lemma A.3. If t and u are strongly extensional and related by a tree bisimulation, then
we have t = u.

Proof. Let R be a tree bisimulation between t and u. By Remark A.2, Rop · R is a tree
bisimulation on t, whence Rop ·R ⊆ ∆t by strong extensionality. But every node of t is related
to at least one node of u (use induction on the depth of nodes) implying that Rop ·R = ∆t.
Similarly, R ·Rop = ∆u. Thus, R (is a function and it) is an isomorphism of trees, and we
identify such trees. ◀

▶ Notation A.4.
1. Let T be the class of trees. We define maps ∂n : T → Vn = Pn

f 1 as follows: ∂0 is the
unique map to 1, and given the map ∂n and a tree t, we put

∂n+1(t) = {∂n(tx) : x is a child of the root of t}.

On the right we have a subset of Pn
f 1, and this is an element of Pn+1

f 1.
2. The trees t and u are Barr equivalent provided that ∂nt = ∂nu for all n. We write t ≈ u

in this case.
3. For every tree t, we define maps ρt

n : t → Vn = Pn
f 1 in the following way: ρt

0 is the
unique map t → 1, and for all nodes x of t, ρt

n+1(x) = {ρt
n(y) : y is a child of x in t}.

This family of maps ρt
n is a cone: we have ρt

n = vm,n · ρt
m for every connecting map

vm,n : Pm
f 1 → Pn

f 1, m ≥ n. Hence, there is a unique map ρt
ω : t → Vω such that

ℓn · ρt
ω = ρt

n for all n.

▶ Remark A.5. Note that Vn = Pn
f 1 may be described as the set of all extensional trees of

height at most n. Indeed, 1 is described as the singleton set consisting of the root-only tree,
and every finite set of extensional trees in Vn+1 = PfVn is represented by the extensional
tree obtained by tree-tupling the trees from the given set.

▶ Remark A.6.
1. If ρt

n+1(a) = ρt
n+1(b), then for all children a′ of a, there is some child b′ of b and

ρt
n(a′) = ρt

n(b′). This is easy to see from the definition of ρt
n+1.

2. For all trees t, ρt
i(root(t)) = ∂i(t). Furthermore, let b : t→ T be given by b(x) = tx. Then

ρt
i = ∂i · b.

▶ Definition A.7. Let x0, x1, . . . , be a sequence of nodes in a tree t, and let y also be a node
in t. We write lim xn = y to mean that for every n there is some m such that ρt

n(xp) = ρt
n(y)

whenever p ≥ m.
A tree t is compactly branching if for all nodes x of t, the set of children of x is sequentially

compact: for every sequence of (yn) of children of x there is a subsequence (wn) of (yn) and
some child z of x such that lim wn = z.

▶ Example A.8. The following tree t is not compactly branching:

t : y0 y1 · · ·y2
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To see this, consider the sequence y0, y1, . . .. Note that for n ≥ m, ρt
n(yn) = ∂i(tyn) = tym .

We claim that for every subsequence (ykn
) of this sequence (yn) there is no yp such that

limn ykn
= yp. To simplify the notation, we only verify this for the sequence (yn) itself. It

does not converge to any fixed element ym because for p > m,

ρt
p(ym) = ∂p(tym) ̸= ∂p(typ) = ρt

p(yp).

In contrast, the following tree is compactly branching (also observe also that t ≈ t′):

t′ : z

...

y0 y1 · · ·y2

To check the compactness, consider a sequence of children of the root, say (xn). If there is
an infinite subsequence which is constant, then of course that sequence converges. If not,
then there is a subsequence of (xn), say (wn), where each wn is yk for some k ≥ n. In this
case, limn(wn) = z. This is because for all but finitely many n, ρt

n(z) = ∂n(tz) = twn =
∂n(twn

) = ρt
n(wn).

▶ Lemma A.9. If t and u are compactly branching, and if ρt
ω(root(t)) = ρu

ω(root(u)), then
there is a tree bisimulation between t and u which includes {(x, y) ∈ t× u : ρt

ω(x) = ρu
ω(y)}.

Proof. Given compactly branching trees t and u, we define a relation R ⊆ t× u inductively
by

x R y iff (1) x = root(t) and y = root(u), or x and y have R-related parents, and
(2) ρt

ω(x) = ρu
ω(y).

Let us check that R is a tree bisimulation. Suppose that (x, y) are related by R as above,
and let x′ be a child of x in t. Using Remark A.6.1 we see that for each n, there is some child
y′

n of y in u with ρt
n(x′) = ρu

n(y′
n). Consider the sequence y′

0, y′
1, . . .. Now ρt

n(x′) = ρu
n(y′

m)
if m ≥ n, since ρt

n and ρu
n form cones: ρt

n(x′) = vm,n · ρt
m(x′) = vm,n · ρu

m(y′
m) = ρu

n(y′
m).

By sequential compactness, there is a subsequence z0, z1, . . ., and also some child z∗ of y

such that lim zn = z∗. Being a subsequence, ρt
n(x′) = ρu

n(zm) whenever m ≥ n. Let us check
that for all n, ρt

n(x′) = ρu
n(z∗). To see this, fix n and let m ≥ n be large enough so that for

p ≥ m, ρu
n(zp) = ρu

n(z∗). Thus, ρt
n(x′) = ρu

n(zm) = ρu
n(z∗). Thus, ρt

ω(x′) = ρu
ω(z∗), which

shows x′ R z∗, as desired.
The other half of the verification that R is a tree bisimulation is similar. ◀

▶ Notation A.10. In this section, Vω denotes the limit of (1) for the finite power-set functor.
1. We take the elements of Vω to be compatible sequences (xn). That is, xn ∈ Pn

f 1 and
Pn

f !(xn+1) = xn for every n < ω. To save on notation, we write x for (xn). We consider
the relation ⇝ on Vω defined by

x⇝ y iff for all n, yn ∈ xn+1. (6)

2. Let L+ be the set of nonempty finite sequences from Vω. We write such a sequence with
the notation ⟨x1, . . . , xn⟩. We consider the relation ⇒ on L+ defined by

⟨x1, . . . , xn⟩ ⇒ ⟨y1, . . . , ym⟩ iff m = n + 1, x1 = y1, . . ., xn = yn, and xn ⇝ yn+1.

In other words, m = n + 1, ⟨y1, . . . , ym−1⟩ = ⟨x1, . . . , xn⟩, and xn ⇝ ym.
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3. For each x ∈ Vω, let trx be the tree whose nodes are the sequences ⟨x, x2, . . . , xn⟩ ∈ L+

whose first entry is x, with root the one-point sequence ⟨x⟩, and with graph relation the
restriction of ⇒. For readers familiar with tree unfoldings of pointed graphs, trx is the
tree unfolding of the graph (Vω,⇝) at the point x.

4. Finally, let

T = {trx : x ∈ Vω}. (7)

Recall the connecting maps Pn
f ! : Pn+1

f 1→Pn
f 1.

▶ Lemma A.11. Let x ∈ Vω.
1. For all k and all ⟨x, x2, . . . , xn⟩ ∈ trx, ρtrx

k (⟨x, x2, . . . , xn⟩) = xn
k .

2. Let R be a tree bisimulation on trx. If ⟨x, x2, . . . , xn⟩ R ⟨x, y2, . . . , yn⟩, then for all k,

ρtrx

k (⟨x, x2, . . . , xn⟩) = ρtrx

k (⟨x, y2, . . . , yn⟩).

3. The tree trx is strongly extensional and compactly branching, and ∂ω(trx) = ρtrx
ω (⟨x⟩) = x.

Proof.
1. By induction on k. For k = 0, our result is clear: the codomain of ρk is 1. Assume our

result for k, fix x ∈ L+ and ⟨x1, . . . , xn⟩ ∈ trx. We first prove that

{yk : xn ⇝ y} = xn
k+1. (8)

Indeed, if xn ⇝ y, then yk ∈ xn
k+1. Conversely, if a ∈ xn

k+1, we construct y ∈ Vω such
that xn ⇝ y with yk = a. Note that

xn
k = Pk

f !(xn
k+1) = PPk−1

f !(xn
k+1) = Pk−1

f ![xn
k+1].

Since a ∈ xn
k+1, we have Pk−1

f !(a) ∈ xn
k . So we let yk−1 = Pk−1

f !(a). We repeat this
argument to define yk−2, . . ., y1, y0; the point is that yk−i ∈ xn

k−i+1 for i = 0, . . . , k.
Choices are needed when we go the other way from k. Note that

Pk+1
f ![xn

k+2] = Pf(Pk+1
f !)(xn

k+2) = Pk+2
f !(xn

k+2) = xn
k+1.

Every set functor preserves surjective functions, and so Pk+1
f ! is surjective. Thus there

is some yk+1 ∈ xn
k+2 such that Pk+1

f !(yk+1) = yk. The same argument enables us to find
by recursion on i a sequence yk+i+1 ∈ xn

k+i+2 such that Pk+i+1
f !(yk+i+1) = yk+i. This

defines y such that xn ⇝ y according to (6) with yk = a.
The induction step is now easy:

ρtrx

k+1(⟨x, x2, . . . , xn⟩) = {ρtrx

k (⟨x, x2, . . . , xn, y⟩) : xn ⇝ y}
= {yk : xn ⇝ y} by induction hypothesis
= xn

k+1 by (8).

2. This again is an induction on k, and the steps are similar to what we have just seen. We
also note that tuples in trx related by a tree bisimulation must have the same length.

3. Note first that by item 1 with n = 1, we have ρtrx

k (⟨x⟩) = xk for all k. This implies that
ρtrx

ω (⟨x⟩) = x. For the strong extensionality, let R be a tree bisimulation on trx. Suppose
that ⟨x, x2, . . . , xn⟩ and ⟨x, y2, . . . , yn⟩ are related by R. Using items 1 and 2, we see that
for all k, we have xn

k = yn
k . Thus xn = yn. In addition, since R is a tree bisimulation,
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the parents of the two nodes under consideration are also related by R. So the same
argument shows that xn−1 = yn−1. Continuing in this way shows that xn−2 = yn−2, . . .,
x2 = y2. Hence ⟨x, x2, . . . , xn⟩ = ⟨x, y2, . . . , yn⟩.
Finally, we verify that trx is compactly branching. To simplify the notation a little, we
shall show this for children of the root ⟨x⟩. So suppose we have an infinite sequence
⟨x, y1⟩, ⟨x, y2⟩, . . .. Recall that each set Pn

f 1 is finite. By successively thinning the
sequence y1, y2, . . ., we may assume that for all n ∈ ω and all p, q ≥ n, yn

p = yn
q . Let

z ∈ Vω be the ‘diagonal’ sequence zn = yn
n . Since every ⟨x, yn⟩ is a child of the root

⟨x⟩ (in symbols: ⟨x⟩ ⇒ ⟨x, yn⟩), we have x ⇝ yn. This implies that for all n, we have
zn = yn

n ∈ xn+1, whence x ⇝ z. Thus, ⟨x, z⟩ is a child of the root of trx. Recall from
item 1 that ρtrx

n (⟨x, z⟩) = zn. So we obtain the desired conclusion: lim⟨x, yn⟩ = ⟨x, z⟩. ◀

▶ Lemma A.12. For every tree t there is a Barr-equivalent tree t∗ ∈ T such that t∗ is
strongly extensional and compactly branching.

Proof. Given any tree t, we have x = ∂ω(t) ∈ Vω. For all n, xn = ∂n(t). The tree t∗ = trx

in Lemma A.11.3 is strongly extensional and compactly branching. Recall that the root of t∗

is ⟨x⟩. By Lemma A.11.1, we have that for all n < ω,

∂n(t∗) = ρt∗

n (root(trx)) = ρt∗

n (⟨x⟩) = xn = ∂n(t). ◀

▶ Lemma A.13. The set T defined in (7) is the set of all compactly branching, strongly
extensional trees.

Proof. By Lemma A.11.3 we know that every tree in T is strongly extensional and compactly
branching. For the reverse inclusion, let t be compactly branching and strongly extensional.
Let t∗ be as in Lemma A.12 for t. By Lemmas A.3 and A.9, t = t∗. Thus t ∈ T . ◀

▶ Definition A.14. Let D be the set of finitely branching strongly extensional trees. Let
δ : D →PfD take a strongly extensional tree t to the (finite) set of its subtrees tx.

In this definition, we use Remark A.2.2: a subtree of a strongly extensional tree is strongly
extensional.

▶ Theorem A.15 [23]. For the finite power-set functor Pf the following hold:
1. the maps ∂n : T →Pn

f 1 given by ∂n(trx) = xn form a limit of (2); thus, Vω
∼= T ,

2. the coalgebra (D, δ) is terminal.

Proof.
1. The map φ : Vω → T given by φ(x) = trx is obviously surjective. Suppose that trx = try.

The roots of these trees are ⟨x⟩ and ⟨y⟩. For all n, we have that

xn = ρtrx
n (⟨x⟩) = ρtry

n (⟨y⟩) = yn.

Thus ∂ω(⟨x⟩) = ∂ω(⟨y⟩). By Lemmas A.3 and A.9, x = y. So φ is injective. The formula
for ∂n comes from Lemma A.11.1.

2. We use Theorem 3.5. The map m : Vω+1 → Vω in (2) assigns to a finite set of trees in Vω

their tree-tupling. Its image is the set of all strongly extensional, compactly branching
trees which are finitely branching at the root. An easy induction on n shows that Vω+n

is the set of all compactly branching, strongly extensional trees t with the property that
the topmost n levels of t are finitely branching. With this description, Vω+n ⊆ D, and
the limit Vω+ω is simply the intersection D =

⋂
n Vω+n. This shows that the carrier set

of νPf is D. For the structure map δ, note that m : PfVω → Vω in (2) is tree-tupling, as
are Pfm, PfPfm, etc. It follows that in the intersection, D, the coalgebra structure is
the inverse of tree-tupling. ◀
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This concludes our work showing that for the finite power-set functor Pf , Vω is the set T

of strongly extensional, compactly branching trees, and the terminal coalgebra νPf is the
set D of finitely branching, strongly extensional trees.
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